首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Centromeres of most organisms are embedded within constitutive heterochromatin, the condensed regions of chromosomes that account for a large fraction of complex genomes. The functional significance of this centromere-heterochromatin relationship, if any, is unknown. One possibility is that heterochromatin provides a suitable environment for assembly of centromere components, such as special centromeric nucleosomes that contain distinctive histone H3-like proteins. We describe a Drosophila H3-like protein, Cid (for centromere identifier) that localizes exclusively to fly centromeres. When the cid upstream region drives expression of H3 and H2B histone-green fluorescent protein fusion genes in Drosophila cells, euchromatin-specific deposition results. Remarkably, when the cid upstream region drives expression of yeast, worm, and human centromeric histone-green fluorescent protein fusion proteins, localization is preferentially within Drosophila pericentric heterochromatin. Heterochromatin-specific localization also was seen for yeast and worm centromeric proteins constitutively expressed in human cells. Preferential localization to heterochromatin in heterologous systems is unexpected if centromere-specific or site-specific factors determine H3-like protein localization to centromeres. Rather, the heterochromatic state itself may help localize centromeric components.  相似文献   

2.
The structural and functional analyses of heterochromatin are essential to understanding how heterochromatic genes are regulated and how centromeric chromatin is formed. Because the repetitive nature of heterochromatin hampers its genome analysis, new approaches need to be developed. Here, we describe how, in double mutants for Su(var)3-9 and SuUR genes encoding two structural proteins of heterochromatin, new banded heterochromatic segments appear in all polytene chromosomes due to the strong suppression of under-replication in pericentric regions. FISH on salivary gland polytene chromosomes from these double mutant larvae allows high resolution of heterochromatin mapping. In addition, immunostaining experiments with a set of antibodies against euchromatic and heterochromatic proteins reveal their unusual combinations in the newly appeared segments: binding patterns for HP1 and HP2 are coincident, but both are distinct from H3diMetK9 and H4triMetK20. In several regions, partial overlapping staining is observed for the proteins characteristic of active chromatin RNA Pol II, H3triMetK4, Z4, and JIL1, the boundary protein BEAF, and the heterochromatin-enriched proteins HP1, HP2, and SU(VAR)3-7. The exact cytological position of the centromere of chromosome 3 was visualized on salivary gland polytene chromosomes by using the centromeric dodeca satellite and the centromeric protein CID. This region is enriched in H3diMetK9 and H4triMetK20 but is devoid of other proteins analyzed.  相似文献   

3.
4.
5.
6.
The Arabidopsis genome project assembled 15 megabases of heterochromatic sequence, facilitating investigations of heterochromatin assembly, maintenance, and structure. In many species, large quantities of methylcytosine decorate heterochromatin; these modifications are typically maintained by methyltransferases that recognize newly replicated hemimethylated DNA. We assessed the extent and patterns of Arabidopsis heterochromatin methylation by amplifying and sequencing genomic DNA treated with bisulfite, which converts cytosine, but not methylcytosine, to uracil. This survey revealed unexpected asymmetries in methylation patterns, with one helix strand often exhibiting higher levels of methylation. We confirmed these observations both by immunoprecipitating methylated DNA strands and by restriction enzyme digestion of amplified, bisulfite-treated DNA. We also developed a primer-extension assay that can monitor the methylation status of an entire chromosome, demonstrating that strand-specific methylation occurs predominantly in the centromeric regions. Conventional models for methylation maintenance do not explain these unusual patterns; instead, new models that allow for strand specificity are required. The abundance of Arabidopsis strand-specific modifications points to their importance, perhaps as epigenetic signals that mark the heterochromatic regions that confer centromere activity.  相似文献   

7.
RNA is involved in a variety of chromatin modification events, ranging from large-scale structural rearrangements to subtle local affects. Here, we extend the evidence for RNA-chromatin interactions to the centromere core. The data indicate that maize centromeric retrotransposons (CRMs) and satellite repeats (CentC) are not only transcribed, but that nearly half of the CRM and CentC RNA is tightly bound to centromeric histone H3 (CENH3), a key inner kinetochore protein. RNAs from another tandem repeat (180-bp knob sequence) or an abundant euchromatic retroelement (Opie) are undetectable within the same anti-CENH3 immune complexes. Both sense and antisense strands of CRM and CentC, but not small interfering RNAs homologous to either repeat, were found to coimmunoprecipitate with CENH3. The bulk of the immunoprecipitated RNA ranged in size from 40 to 200 nt. These data provide evidence for a pool of protected, single-stranded centromeric RNA within the centromere/kinetochore complex.  相似文献   

8.
9.
The origin recognition complex (ORC) is a DNA replication initiator protein also known to be involved in diverse cellular functions including gene silencing, sister chromatid cohesion, telomere biology, heterochromatin localization, centromere and centrosome activity, and cytokinesis. We show that, in human cells, multiple ORC subunits associate with hetereochromatin protein 1 (HP1) α- and HP1β-containing heterochromatic foci. Fluorescent bleaching studies indicate that multiple subcomplexes of ORC exist at heterochromatin, with Orc1 stably associating with heterochromatin in G1 phase, whereas other ORC subunits have transient interactions throughout the cell-division cycle. Both Orc1 and Orc3 directly bind to HP1α, and two domains of Orc3, a coiled-coil domain and a mod-interacting region domain, can independently bind to HP1α; however, both are essential for in vivo localization of Orc3 to heterochromatic foci. Direct binding of both Orc1 and Orc3 to HP1 suggests that, after the degradation of Orc1 at the G1/S boundary, Orc3 facilitates assembly of ORC/HP1 proteins to chromatin. Although depletion of Orc2 and Orc3 subunits by siRNA caused loss of HP1α association to heterochromatin, loss of Orc1 and Orc5 caused aberrant HP1α distribution only to pericentric heterochromatin-surrounding nucleoli. Depletion of HP1α from human cells also shows loss of Orc2 binding to heterochromatin, suggesting that ORC and HP1 proteins are mutually required for each other to bind to heterochromatin. Similar to HP1α-depleted cells, Orc2 and Orc3 siRNA-treated cells also show loss of compaction at satellite repeats, suggesting that ORC together with HP1 proteins may be involved in organizing higher-order chromatin structure and centromere function.  相似文献   

10.
11.
Centromeres of eukaryotic chromosomes mark the site for kinetochore formation and microtubule attachment and are essential for accurate chromosome segregation. Although centromere identity is defined by the presence of the histone H3 variant CenH3/centromere protein A (CENP-A), little is known about how epigenetic modifications on CenH3 might regulate kinetochore assembly and centromere function. Here we show that CENP-A from Saccharomyces cerevisiae, termed Cse4, is methylated on arginine 37 (R37) and that this methylation regulates the recruitment of kinetochore components to centromeric sequences. The absence of Cse4 R37 methylation caused a growth defect in cells lacking the centromere binding factor Cbf1 and synthetic lethality when combined with mutations in components of the Ctf19 linker complex that connects the inner kinetochore to microtubule-binding proteins. The cells showed a cell-cycle arrest in G2/M phase and defects in plasmid and chromosome segregation. Furthermore, the levels of Mtw1/MIND (Mtw1 including Nnf1-Nsl1-Dsn1) and Ctf19 components at the centromere, but not of Cse4 itself, were reduced in the absence of Cse4 R37 methylation, thus showing that this modification regulates the recruitment of linker components to the centromere. Altogether, our data identify a unique regulatory principle on centromeric chromatin by posttranslational modification of the amino terminus of CenH3.  相似文献   

12.
The telomere and centromere are two specialized structures of eukaryotic chromosomes that are essential for chromosome stability and segregation. These structures are usually characterized by large tracts of tandemly repeated DNA. In mouse, the two structures are often located in close proximity to form telocentric chromosomes. To date, no detailed sequence information is available across the mouse telocentric regions. The antagonistic mechanisms for the stable maintenance of the mouse telocentric karyotype and the occurrence of whole-arm Robertsonian translocations remain enigmatic. We have identified large-insert fosmid clones that span the telomere and centromere of several mouse chromosome ends. Sequence analysis shows that the distance between the telomeric T2AG3 and centromeric minor satellite repeats range from 1.8 to 11 kb. The telocentric regions of different mouse chromosomes comprise a contiguous linear order of T2AG3 repeats, a highly conserved truncated long interspersed nucleotide element 1 repeat, and varying amounts of a recently discovered telocentric tandem repeat that shares considerable identity with, and is inverted relative to, the centromeric minor satellite DNA. The telocentric domain as a whole exhibits the same polarity and a high sequence identity of >99% between nonhomologous chromosomes. This organization reflects a mechanism of frequent recombinational exchange between nonhomologous chromosomes that should promote the stable evolutionary maintenance of a telocentric karyotype. It also provides a possible mechanism for occasional inverted mispairing and recombination between the oppositely oriented TLC and minor satellite repeats to result in Robertsonian translocations.  相似文献   

13.
Stable barley chromosomes without centromeric repeats   总被引:20,自引:0,他引:20  
The satellite sequences (AGGGAG)(n) and Ty3/gypsy-like retrotransposons are known to localize at the barley centromeres. Using a gametocidal system, which induces chromosomal mutations in barley chromosomes added to common wheat, we obtained an isochromosome for the short arm of barley chromosome 7H (7HS) that lacked the barley-specific satellite sequence (AGGGAG)(n). Two telocentric derivatives of the isochromosome arose in the progeny: 7HS* with and 7HS** without the pericentromeric C-band. FISH analysis demonstrated that both telosomes lacked not only the barley-specific centromeric (AGGGAG)(n) repeats and retroelements but also any of the known wheat centromeric tandem repeats, including the 192-bp, 250-bp, and TaiI sequences. Although they lacked these centromeric repeats, 7HS* and 7HS** both showed normal mitotic and meiotic transmission. Translocation of barley centromeric repeats to a wheat chromosome 4A did not generate a dicentric chromosome. Indirect immunostaining revealed that all tested centromere-specific proteins (rice CENH3, maize CENP-C, and putative barley homologues of the yeast kinetochore proteins CBF5 and SKP1) and histone H3 phosphorylated at serines 10 and 28 localized at the centromeric region of 7HS*. We conclude that the barley centromeric repeats are neither sufficient nor obligatory to assemble kinetochores, and we discuss the possible formation of a novel centromere in a barley chromosome.  相似文献   

14.
The centromere is the genetic locus that organizes the proteinaceous kinetochore and is responsible for attachment of the chromosome to the spindle at mitosis and meiosis. In most eukaryotes, the centromere consists of highly repetitive DNA sequences that are occupied by nucleosomes containing the CenH3 histone variant, whereas in budding yeast, a ~120-bp centromere DNA element (CDE) that is sufficient for centromere function is occupied by a single right-handed histone variant CenH3 (Cse4) nucleosome. However, these in vivo observations are inconsistent with in vitro evidence for left-handed octameric CenH3 nucleosomes. To help resolve these inconsistencies, we characterized yeast centromeric chromatin at single base-pair resolution. Intact particles containing both Cse4 and H2A are precisely protected from micrococcal nuclease over the entire CDE of all 16 yeast centromeres in both solubilized chromatin and the insoluble kinetochore. Small DNA-binding proteins protect CDEI and CDEIII and delimit the centromeric nucleosome to the ~80-bp CDEII, only enough for a single DNA wrap. As expected for a tripartite organization of centromeric chromatin, loss of Cbf1 protein, which binds to CDEI, both reduces the size of the centromere-protected region and shifts its location toward CDEIII. Surprisingly, Cse4 overproduction caused genome-wide misincorporation of nonfunctional CenH3-containing nucleosomes that protect ~135 base pairs and are preferentially enriched at sites of high nucleosome turnover. Our detection of two forms of CenH3 nucleosomes in the yeast genome, a singly wrapped particle at the functional centromere and octamer-sized particles on chromosome arms, reconcile seemingly conflicting in vivo and in vitro observations.  相似文献   

15.
The centromeres of budding yeast are ∼120 bp in size and contain three functional elements: an AT-rich region flanked by binding sites for Cbf1 and CBF3. A specialized nucleosome containing the H3 variant Cse4 (CenH3) is formed at the centromere. Our genome-wide paired-end sequencing of nucleosomal DNA reveals that the centromeric nucleosome contains a micrococcal nuclease-resistant kernel of 123–135 bp, depending on the centromere, and is therefore significantly shorter than the canonical nucleosome. Unlike canonical nucleosomes, the centromeric nucleosome is essentially perfectly positioned. The entire centromere is included, together with at least 1 bp of DNA upstream of the Cbf1 site and at least 4 bp downstream of the CBF3 site. The fact that the binding sites for Cbf1 and CBF3 are included within the centromeric nucleosome has important implications for models of the centromeric nucleosome and for kinetochore function.  相似文献   

16.
Repetitive DNA sequences have been demonstrated to play an important role for centromere function of eukaryotic chromosomes, including those from fission yeast, Drosophila melanogaster, and humans. Here we report on the isolation of a repetitive DNA element located in the centromeric regions of cereal chromosomes. A 745-bp repetitive DNA clone, pSau3A9, was isolated from sorghum (Sorghum bicolor). This DNA element is located in the centromeric regions of all sorghum chromosomes, as demonstrated by fluorescence in situ hybridization. Repetitive DNA sequences homologous to pSau3A9 also are present in the centromeric regions of chromosomes from other cereal species, including rice, maize, wheat, barley, rye, and oats. Probe pSau3A9 also hybridized to the centromeric region of B chromosomes from rye and maize. The repetitive nature and its conservation in distantly related plant species indicate that the pSau3A9 family may be associated with centromere function of cereal chromosomes. The absence of DNA sequences homologous to pSau3A9 in dicot species suggests a faster divergence of centromere-related sequences compared with the telomere-related sequences in plants.  相似文献   

17.
Mammalian centromeres are defined epigenetically. Although the physical nature of the epigenetic mark is unknown, nucleosomes in which CENP-A replaces histone H3 are at the foundation of centromeric chromatin. Hydrogen/deuterium exchange MS is now used to show that assembly into nucleosomes imposes stringent conformational constraints, reducing solvent accessibility in almost all histone regions by >3 orders of magnitude. Despite this, nucleosomes assembled with CENP-A are substantially more conformationally rigid than those assembled with histone H3 independent of DNA template. Substitution of the CENP-A centromere targeting domain into histone H3 to convert it into a centromere-targeted histone that can functionally replace CENP-A in centromere maintenance generates the same more rigid nucleosome, as does CENP-A. Thus, the targeting information directing CENP-A deposition at the centromere produces a structurally distinct nucleosome, supporting a CENP-A-driven self-assembly mechanism that mediates maintenance of centromere identity.  相似文献   

18.
19.
A rosy future for heterochromatin.   总被引:5,自引:1,他引:5       下载免费PDF全文
The demonstration by Zhang and Spradling (1) of efficient P element transposition into heterochromatic regions will aid ongoing studies of heterochromatin structure and function. P element insertions will provide entry points for further molecular analysis of heterochromatin and will allow the isolation of small and large heterochromatic deficiencies. The generation of heterochromatic P insertions also will aid the study of heterochromatic genes. Of the heterochromatic insertions isolated by Zhang and Spradling, five were homozygous lethal, and one of these defined a lethal locus not previously uncovered by heterochromatic deficiencies. P elements have previously been used to mutagenize and clone specific heterochromatic genes (14, 19, 26). New methods, like those described here (1, 32), should allow the efficient identification and molecular isolation of other single-copy heterochromatic genes. Furthermore, since position-effect suppression allowed the recovery of heterochromatic P insertions, it may also allow the recovery of insertions in euchromatic regions previously refractory to P mutagenesis. Studies of position-effect variegation show that genes normally found in heterochromatin require a heterochromatic context for normal expression and that heterochromatin is inhibitory to euchromatic gene expression (16). The physical basis of these related phenomena--chromatin assembly, nuclear positioning, and/or heterochromatin elimination--can be resolved only with a more thorough understanding of heterochromatin structure and functions. Analyzing heterochromatin also will help define the chromosomal components responsible for inheritance processes such as chromosome pairing, sister chromatid adhesion, and centromere function. These efforts will be facilitated by the effective use of P elements combined with other current molecular-genetic approaches.  相似文献   

20.
Human centromeres are defined by megabases of homogenous alpha-satellite DNA arrays that are packaged into specialized chromatin marked by the centromeric histone variant, centromeric protein A (CENP-A). Although most human chromosomes have a single higher-order repeat (HOR) array of alpha satellites, several chromosomes have more than one HOR array. Homo sapiens chromosome 17 (HSA17) has two juxtaposed HOR arrays, D17Z1 and D17Z1-B. Only D17Z1 has been linked to CENP-A chromatin assembly. Here, we use human artificial chromosome assembly assays to show that both D17Z1 and D17Z1-B can support de novo centromere assembly independently. We extend these in vitro studies and demonstrate, using immunostaining and chromatin analyses, that in human cells the centromere can be assembled at D17Z1 or D17Z1-B. Intriguingly, some humans are functional heterozygotes, meaning that CENP-A is located at a different HOR array on the two HSA17 homologs. The site of CENP-A assembly on HSA17 is stable and is transmitted through meiosis, as evidenced by inheritance of CENP-A location through multigenerational families. Differences in histone modifications are not linked clearly with active and inactive D17Z1 and D17Z1-B arrays; however, we detect a correlation between the presence of variant repeat units of D17Z1 and CENP-A assembly at the opposite array, D17Z1-B. Our studies reveal the presence of centromeric epialleles on an endogenous human chromosome and suggest genomic complexities underlying the mechanisms that determine centromere identity in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号