首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Enhanced fatty acid synthesis provides proliferation and survival advantages for tumor cells. Apelin is an adipokine, which serves as a ligand of G protein–coupled receptors that promote tumor growth in malignant cancers. Here, we confirmed that apelin increased sterol regulatory element–binding protein 1 (SREBP1) activity and induced the expression of glutamine amidotransferase for deamidating high‐mobility group A 1 (HMGA1) to promote fatty acid synthesis and proliferation of lung cancer cells. This post‐translational modification stabilized the HMGA1 expression and enhanced the formation of the apelin‐HMGA1‐SREBP1 complex to facilitate SREBP1 activity for lipid metabolism and lung cancer cell growth. We uncovered the pivotal role of apelin‐mediated deamidation of HMGA1 in lipid metabolism and tumorigenesis of lung cancer cells.  相似文献   

4.
Our previous big data analyses showed a high level of association between chitinase 3 like1 (CHI3L1) expression and lung tumor development. In the present study, we investigated whether a CHI3L1‐inhibiting chemical, 2‐({3‐[2‐(1‐cyclohexen‐1‐yl)ethyl]‐6,7‐dimethoxy‐4‐oxo‐3,4‐dihydro‐2‐quinazolinyl}sulfanyl)‐N‐(4‐ethylphenyl)butanamide (K284), could inhibit lung metastasis and studied its mechanism of action. We investigated the antitumor effect of K284 both in vitro and in vivo. K284 (0.5 mg·kg−1 body weight) significantly inhibited lung metastasis in in vivo models after injection of murine melanoma cells (B16F10) or adenocarcinomic human alveolar basal epithelial cells (A549). K284 significantly and concentration‐dependently also inhibited cancer cell proliferation and migration in the A549 and H460 lung cancer cell lines. We found that the binding of K284 to the chitin‐binding domain (CBD) of CHI3L1 prevented the binding of CHI3L1 to its receptor, interleukin‐13 receptor subunit alpha‐2 (IL‐13Rα2), thereby suppressing the CHI3L1 signal. This blocking of the CHI3L1‐IL‐13Rα2 signal caused the inhibition of c‐Jun N‐terminal kinase (JNK)‐activator protein 1 (AP‐1) signals, resulting in the prevention of lung metastasis and cancer cell growth. Our data demonstrate that K284 may serve as a potential candidate anticancer compound targeting CHI3L1.  相似文献   

5.
6.
7.
Tumor‐associated macrophages (TAMs), one of the most common cell components in the tumor microenvironment, have been reported as key contributors to cancer‐related inflammation and enhanced metastatic progression of tumors. To explore the underlying mechanism of TAM‐induced tumor progression, TAMs were isolated from colorectal cancer patients, and the functional interaction with colorectal cancer cells was analyzed. Our study found that coculture of TAMs contributed to a glycolytic state in colorectal cancer, which promoted the stem‐like phenotypes and invasion of tumor cells. TAMs produced the cytokine transforming growth factor‐β to support hypoxia‐inducible factor 1α (HIF1α) expression, thereby upregulating Tribbles pseudokinase 3 (TRIB3) in tumor cells. Elevated expression of TRIB3 resulted in activation of the β‐catenin/Wnt signaling pathway, which eventually enhanced the stem‐like phenotypes and cell invasion in colorectal cancer. Our findings provided evidence that TAMs promoted colorectal cancer progression in a HIF1α/TRIB3‐dependent manner, and blockade of HIF1α signals efficiently improved the outcome of chemotherapy, describing an innovative approach for colorectal cancer treatment.  相似文献   

8.
9.
Bone‐related events caused by breast cancer bone metastasis substantially compromise the survival and quality of life of patients. Because triple‐negative breast cancer (TNBC) lacks hormone receptors and Her2‐targeted therapeutic options, progress in the treatment of TNBC bone metastasis has been very slow. Intercellular adhesion molecule 1 (ICAM1) is highly expressed in various cancers and plays an important role in tumorigenesis and metastasis. However, the effect and mechanism of ICAM1 in TNBC bone metastasis are still unknown. We found that ICAM1 was highly expressed in TNBC and correlated with prognosis in TNBC patients. Cell lines with high expression of ICAM1 exhibited enhanced bone metastasis in tumor‐bearing mice, and silencing ICAM1 expression significantly inhibited bone metastasis in mice. ICAM1 interacted with integrins to activate the epithelial‐to‐mesenchymal transition program through TGF‐β/SMAD signaling, ultimately enhancing cell invasiveness. Therefore, the findings of the present study provide a strong rationale for the application of ICAM1‐targeted therapy in TNBC patients with bone metastasis.  相似文献   

10.
Extracellular ATP has been shown to play an important role in invasion and the epithelial‐mesenchymal transition (EMT) process in breast cancer; however, the mechanism is unclear. Here, by using a cDNA microarray, we demonstrated that extracellular ATP could stimulate hypoxia‐inducible factor (HIF) signaling and upregulate hypoxia‐inducible factor 1/2α (HIF‐1/2α) expression. After knocking down HIF‐1/2α using siRNA, we found that ATP‐driven invasion and EMT were significantly attenuated via HIF2A‐siRNA in breast cancer cells. By using ChIP assays, we revealed that the biological function of extracellular ATP in invasion and EMT process depended on HIF‐2α direct targets, among which lysyl oxidase‐like 2 (LOXL2) and matrix metalloproteinase‐9 (MMP‐9) mediated ATP‐driven invasion, and E‐cadherin and Snail mediated ATP‐driven EMT, respectively. In addition, using silver staining and mass spectrometry, we found that phosphoglycerate kinase 1 (PGK1) could interact with HIF‐2α and mediate ATP‐driven HIF‐2α upregulation. Furthermore, we demonstrated that expressions of HIF‐2α and its target proteins could be regulated via ATP by AKT‐PGK1 pathway. Using a Balb/c mice model, we illustrated the function of HIF‐2α in promoting tumor growth and metastasis in vivo. Moreover, by exploring online databases, we found that molecules involved in ATP‐HIF‐2α signaling were highly expressed in human breast carcinoma tissues and were associated with poor prognosis. Altogether, these findings suggest that extracellular ATP could promote breast carcinoma invasion and EMT via HIF‐2α signaling, which may be a potential target for future anti–metastasis therapy.  相似文献   

11.
The role of TELO2‐interacting protein 1 (TTI1) in the progression of several types of cancer has been reported recently. The aim of this study was to estimate the expression and potential value of TTI1 in non‐small‐cell lung cancer (NSCLC) patients. The expression of TTI1 and its prognostic value in NSCLC from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) database were analyzed. To verify the bioinformatics findings, a tissue microarray containing 160 NSCLC and paired peritumoral tissues from NSCLC patients was analyzed by immunohistochemistry for TTI1. Subsequently, the roles of TTI1 in NSCLC cells were investigated in vivo by establishing xenograft models in nude mice and in vitro by transwell, CCK‐8, wound healing, and colony formation assays. In addition, quantitative real‐time polymerase chain reaction and western blot were applied to explore the underlying mechanism by which TTI1 promotes tumor progression. Finally, the relationship between TTI1 and Ki67 expression level in NSCLC was probed, and Kaplan–Meier and Cox analyses were performed to assess the prognostic merit of TTI1 and Ki67 in NSCLC patients. We found that the expression of TTI1 was significantly upregulated in NSCLC tissues compared to paired peritumoral tissues, which coincides with the bioinformatics findings from the TCGA and GEO databases. TTI1 was highly expressed in NSCLC patients with large tumors, advanced tumor stage, and lymphatic metastasis. In addition, the prognostic analysis identified TTI1 as an independent indication for poor prognosis of NSCLC patients. In vitro, upregulation of TTI1 in NSCLC cells could facilitate cell invasion, metastasis, viability, and proliferation. Mechanistically, our study verified that TTI1 could regulate mTOR activity, which has a pivotal role in human cancer. Consistently, the expressions of TTI1 and Ki67 had a positive relationship in NSCLC cells and tissues. Notably, patients with overexpression of TTI1 or Ki67 had a shorter overall survival rate and a higher disease‐free survival rate compared to patients with low expression of TTI1 or Ki67, and the combination of TTI1 and Ki67 was an independent parameter predicting the prognosis and recurrence of NSCLC patients. We conclude that TTI1 promotes NSCLC cell proliferation, metastasis, and invasion by regulating mTOR activity, and the combination of TTI1 and Ki67 is a valuable molecular biomarker for the survival and recurrence of NSCLC patients.  相似文献   

12.
Patients with hepatocellular carcinoma (HCC) are usually diagnosed at the later stages and have poor survival outcomes. New molecules are urgently needed for the prognostic predication and individual treatment. Our study showed that high levels of NQO1 expression frequently exist in HCC with an obvious cancer‐specific pattern. Patients with NQO1‐high tumors are significantly associated with poor survival outcomes and serve as independent predictors. Functional experiments showed that NQO1 promotes the growth and aggressiveness of HCC in both in vitro and in vivo models, and the underlying mechanism involved NQO1‐derived amplification of ERK/p38‐NRF2 signaling. Combined block of ERK and NRF2 signaling generated stronger growth inhibition compared with any single block, especially for HCC with high‐NQO1. Therefore, NQO1 is a potential biomarker for HCC early diagnosis and prognosis prediction, and also attractive for cancer‐specific targets for HCC treatment.  相似文献   

13.
14.
15.
16.
Persistent mortality rates of medulloblastoma (MB) and severe side effects of the current therapies require the definition of the molecular mechanisms that contribute to tumor progression. Using cultured MB cancer stem cells and xenograft tumors generated in mice, we show that low expression of miR‐326 and its host gene β‐arrestin1 (ARRB1) promotes tumor growth enhancing the E2F1 pro‐survival function. Our models revealed that miR‐326 and ARRB1 are controlled by a bivalent domain, since the H3K27me3 repressive mark is found at their regulatory region together with the activation‐associated H3K4me3 mark. High levels of EZH2, a feature of MB, are responsible for the presence of H3K27me3. Ectopic expression of miR‐326 and ARRB1 provides hints into how their low levels regulate E2F1 activity. MiR‐326 targets E2F1 mRNA, thereby reducing its protein levels; ARRB1, triggering E2F1 acetylation, reverses its function into pro‐apoptotic activity. Similar to miR‐326 and ARRB1 overexpression, we also show that EZH2 inhibition restores miR‐326/ARRB1 expression, limiting E2F1 pro‐proliferative activity. Our results reveal a new regulatory molecular axis critical for MB progression.

Abbreviations

ARRB1
β‐arrestin1
BTC
bulk tumor cell
CSCs
cancer stem cells
EZH2
enhancer of zeste homolog 2
GCP
granule cell progenitors
MB
medulloblastoma
OFC
oncosphere‐forming cell
  相似文献   

17.
Breast cancer development is associated with gene amplification and over expression that is believed to have a causative role in oncogenesis. Previous studies have demonstrated that over expression of TC-1(C8orf4) mRNA occurs in approximately 50% of breast cancer cell lines and primary tumor specimens. Here, we show that TC-1 has transforming properties in human mammary epithelial (HME) cells and its expression is mechanistically linked to FGFR signaling cascades. In vitro experiments demonstrate that TC-1 over expression mediates both anchorage-independent and growth factor-independent proliferation of HME cells. TC-1 was down regulated by the FGFR inhibitor PD173074 in the breast cancer cell line SUM-52 that also has an FGFR2 gene amplification and over expression. Furthermore, forced expression of FGFR2 in HME cells increased the level of expression of endogenous TC-1 mRNA. TC-1 has been implicated as a modulator of Wnt/beta-catenin signaling in 293 cells and in gastric cancer cells. However, while we did find increased expression of a subset of beta-catenin target genes in TC-1 over expressing cells, we did not find an association of TC-1 with global expression of beta-catenin target genes in our cells. Taken together, our data suggest that TC-1 over expression is transforming and may link with the FGFR pathway in a subset of breast cancer.  相似文献   

18.
19.
20.
We aimed to investigate potential roles of LRRC75A-AS1 delivered by M2 macrophage exosomes in inducing cervical cancer progression. We demonstrated LRRC75A-AS1 was highly expressed in exosomes from M2 macrophages which could be absorbed by Hela cells. M2 macrophage-derived exosomes promoted Hela cell proliferation, migration, invasion, and EMT process by delivering LRRC75A-AS1. LRRC75A-AS1 directly targeted and suppressed miR-429 in Hela cells. The regulation of cell functions by exosomes from LRRC75A-AS1-overexpressing M2 macrophages was abrogated by miR-429 mimics. miR-429 directly targeted and repressed SIX1 expression. SIX1 overexpression alleviated the modulation of cellular functions and STAT3/MMP-9 signaling by miR-429 mimics. Also, miR-429 overexpression or SIX1 silence repressed tumor formation and metastasis in nude mice, which was mitigated by exosomes from LRRC75A-AS1-overexpressing M2 macrophages. In conclusion, LRRC75A-AS1 delivered by M2 macrophage exosomes repressed miR-429 to elevate SIX1 expression and promote cervical cancer progression through activating the STAT3/MMP-9 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号