首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The local lymph node assay (LLNA) is a skin sensitization test that provides animal welfare benefits. To reduce animal usage further, a modified version (rLLNA) was proposed. Conducting the rLLNA as a screening test with a single high dose group and vehicle control differentiated accurately between skin sensitizers and non-sensitizers. This study examined whether a reduction in animal number/group is feasible. Historical data were utilized to examine the impact of conducting the rLLNA with two mice/group. To assess the effect on the stimulation index (SI) 41 datasets with individual animal data derived using five mice/group were analysed. SIs were calculated on all possible combinations of two control and two high dose group disintegrations per minute (dpm) values. For 25 of 33 sensitizer datasets, > 96% of possible dpm combinations resulted in a calculated SI > 3. The lowest percentages of positive SIs were observed with weak allergens when, in the standard LLNA, the mean SIs would have been nearer to the threshold value of 3. The results indicate that moderate, strong and extreme allergens are more likely than weak allergens to be identified as sensitizers when group sizes of two mice are used within the rLLNA. It is concluded that a rLLNA with two mice/group would display decreased sensitivity and is inappropriate for use in hazard identification.  相似文献   

2.
The Local Lymph Node Assay (LLNA) is the most common in vivo regulatory toxicology test for skin sensitisation, quantifying potency as the EC3, the concentration of chemical giving a threefold increase in thymidine uptake in the local lymph node. Existing LLNA data can, along with clinical data, provide useful comparator information on the potency of sensitisers. Understanding of the biological variability of data from LLNA studies is important for those developing non-animal based risk assessment approaches for skin allergy. Here an existing set of 94 EC3 values for 12 chemicals, all tested at least three times in the same vehicle have been analysed by calculating standard deviations (SD) for logEC3 values. The SDs range from 0.08 to 0.22. The overall SD for the 94 logEC3 values is 0.147. Thus the 95% confidence limits (2xSD) for LLNA EC3 values are within a factor of 2, comparable to those for physico-chemical measurements such as partition coefficients and solubility. The residual SDs of Quantitative Mechanistic Models (QMMs) based on physical organic chemistry parameters are similar to the overall SD of the LLNA, indicating that QMMs of this type are unlikely to be bettered for predictive accuracy.  相似文献   

3.
Because of regulatory constraints and ethical considerations, research on alternatives to animal testing to predict the skin sensitization potential of novel chemicals has become a high priority. Ideally, these alternatives should not only predict the hazard of novel chemicals but also rate the potency of skin sensitizers. Currently, no alternative method gives reliable potency estimations for a wide range of chemicals in differing structural classes. Performing potency estimations within specific structural classes has thus been proposed. Detailed structure-activity studies for the in vivo sensitization capacity of a series of analogues of phenyl glycidyl ether (PGE) were recently published. These studies are part of an investigation regarding the allergenic activity of epoxy-resin monomers. Here we report data on the same chemicals in the KeratinoSens in vitro assay, which is based on a stable transgenic keratinocyte cell line with a luciferase gene under the control of an antioxidant response element. A strong correlation between the EC3 values in the local lymph node assay (LLNA) and both the luciferase-inducing concentrations and the cytotoxicity in the cell-based assay was established for six analogues of PGE. This correlation allowed the potency in the LLNA of two novel structurally closely related derivatives to be predicted by read-across with errors of 1.4- and 2.6-fold. However, the LLNA EC3 values of two structurally different bifunctional monomers were overpredicted on the basis of this data set, indicating that accurate potency estimation by read-across based on in vitro data might be restricted to a relatively narrow applicability domain.  相似文献   

4.
The murine local lymph node assay (LLNA) is currently recognized as a stand-alone sensitization test for determining the sensitizing potential of chemicals, and it has the advantage of yielding a quantitative endpoint that can be used to predict the sensitization potency of chemicals. The EC3 has been proposed as a parameter for classifying chemicals according to the sensitization potency. We previously developed a non-radioisotopic endpoint for the LLNA based on 5-bromo-2'-deoxyuridine (BrdU) incorporation (non-RI LLNA), and we are proposing a new procedure to predict the sensitization potency of chemicals based on comparisons with known human contact allergens. Nine chemicals (i.e. diphencyclopropenone, p-phenylenediamine, glutaraldehyde, cinnamicaldehyde, citral, eugenol, isopropyl myristate, propyleneglycol and hexane) categorized as human contact allergen classes 1-5 were tested by the non-RI LLNA with the following reference allergens: 2,4-dinitrochlorobenzene (DNCB) as a class 1 human contact allergen, isoeugenol as a class 2 human contact allergen and alpha-hexylcinnamic aldehyde (HCA) as a class 3 human contact allergen. Consequently, nine test chemicals were almost assigned to their correct allergen class. The results suggested that the new procedure for non-RI LLNA can provide correct sensitization potency data. Sensitization potency data are useful for evaluating the sensitization risk to humans of exposure to new chemical products. Accordingly, this approach would be an effective modification of LLNA with regard to its experimental design. Moreover, this procedure can be applied also to the standard LLNA with radioisotopes and to other modifications of the LLNA.  相似文献   

5.
The human Cell Line Activation Test (h-CLAT), an in vitro skin sensitization test, is based on the augmentation of CD86 and CD54 expression in THP-1 cells following exposure to chemicals. The h-CLAT was found to be capable of determining the hazard of skin sensitization. In contrast, the local lymph node assay (LLNA), widely used as a stand-alone method in Europe and US, identifies the same hazard, but also classifies the potency by using the estimated concentration of SI = 3 (EC3). In this study, several values calculated from the h-CLAT data were evaluated for its correlation to the LLNA EC3 determination. A statistically significant correlation was observed between h-CLAT concentration providing a cell viability of 75% (CV75), h-CLAT estimated concentration of RFI = 150 for CD86 (EC150), and for CD54 (EC200) with LLNA’s EC3. From EC150 and EC200, a minimum induction threshold (MIT) was determined as the smaller of either EC150 or EC200. MIT showed a correlation with EC3 (R = 0.638). Also, MIT had an approximate 80% accuracy for sub-categories of the globally harmonized system (GHS) when a tentative threshold of 13 μg/mL was used. From these data, the h-CLAT values may be one of the useful tools to predict the allergic potency of chemicals.  相似文献   

6.
Effective risk assessment and management of allergic contact dermatitis require three key factors: adequate hazard identification, measurement of the relative potency of identified hazards and an understanding of the nature, extent and duration of exposure. Suitable methods for hazard identification, such as the murine local lymph node assay (LLNA) and the guinea-pig maximization test, are well established and conditions of human exposure normally can be well anticipated. Thus, the need is for a robust and quantitative method for the estimation of relative skin sensitizing potency. One possible approach is via the analysis of LLNA dose-response data. In the LLNA, contact allergens are defined currently as those chemicals that cause a threefold or greater increase in lymph node cell proliferative activity compared with concurrent vehicle-treated controls. It is possible to estimate the concentration of a sensitizer required to generate a threefold stimulation of proliferation in draining lymph nodes; such a concentration is known as the EC3 value. Using a variety of statistical approaches to derive EC3 values from LLNA dose-response data for 10 chemicals, it has been demonstrated that simple linear interpolation between the values either side of the threefold stimulation index provides a robust assessment of the EC3 value without the need for recourse to more sophisticated statistical techniques. Provided that the appropriate concentrations of test chemical have been selected, EC3 values obtained in this way are reproducible both within and between laboratories and form the basis for examination of the utility of this approach for the estimation of relative skin sensitizing potency.  相似文献   

7.
The Globally Harmonized System of Classification and Labelling of Chemicals (GHS) is a hazard classification and communication system for providing information on the safe handling of chemicals worldwide. In this study, we evaluated the applicability of the newly proposed GHS subcategorization criterion for murine local lymph node assay:2-bromodeoxyuridine enzyme-linked immunosorbent assay (LLNA:BrdU-ELISA), Category 1A:EC1.6 ≤6%, Category 1B:EC1.6 >6%, to data derived from LLNA:BrdU-ELISA performed in the CBA/J strain mouse. Fifteen chemicals categorized in GHS hazard Category 1 sensitizers listed in the LLNA performance standard were tested by LLNA:BrdU-ELISA in the CBA/J strain mouse and were classified according to the new criterion. The results revealed that all of the GHS 1A or 1B category chemicals classified according to the EC3 values derived from radioisotopic LLNA (LLNA-RI) could be correctly assigned into the respective 1A and 1B categories using the newly proposed GHS subclassification criterion. In addition, analysis of the correlation between the reported EC3 values and EC1.6 values derived from the LLNA:BrdU-ELISA performed in the CBA/J strain mouse confirmed the existence of a strong correlation (r = 0.9076, P < .0001). These findings suggest that the newly proposed GHS subcategorization criterion for LLNA:BrdU-ELISA is potentially applicable for practical use in GHS subcategorization.  相似文献   

8.
Accurate risk assessment in allergic contact dermatitis is dependent on the successful prospective identification of chemicals which possess the ability to behave as skin sensitisers, followed by appropriate measurement of the relative ability to cause sensitisation; their potency. Tools for hazard identification have been available for many years; more recently, a novel approach to the quantitative assessment of potency--the derivation of EC3 values in the local lymph node assay (LLNA)--has been described. It must be recognised, however, that these evaluations of chemical sensitisers also may be affected by the vehicle matrix in which skin exposure occurs. In this article, our knowledge of this area is reviewed and potential mechanisms through which vehicle effects may occur are detailed. Using the LLNA as an example, it is demonstrated that the vehicle may have little impact on the accuracy of basic hazard identification; the data also therefore support the view that testing ingredients in specific product formulations is not warranted for hazard identification purposes. However, the effect on potency estimations is of greater significance. Although not all chemical allergens are affected similarly, for certain substances a greater than 10-fold vehicle-dependent change in potency is observed. Such data are vital for accurate risk assessment. Unfortunately, it does not at present appear possible to predict notionally the effect of the vehicle matrix on skin sensitising potency without recourse to direct testing, for example by estimation of LLNA EC3 data, which provides a valuable tool for this purpose.  相似文献   

9.
McGarry HF 《Toxicology》2007,238(2-3):71-89
From June 2007, new chemicals legislation on the registration, evaluation, authorization and restriction of chemicals (REACH) will come into force across the European Union. This will require the submission of data on human health effects of chemicals, including chemical safety assessments which will require measurements of potency. For skin sensitization hazard identification, REACH states that the first-choice in vivo assay is the local lymph node assay (LLNA). This test has also been the UK competent authority's preferred test for skin sensitization since 2002, and has now replaced guinea pig tests in dossiers submitted to it under the Notification of New Substances Regulations. Advantages of the LLNA over guinea pig tests include improvements in animal welfare, a more scientific approach to hazard identification, and the inclusion of a dose-response element in the endpoint, which enables an estimation of potency. However, notifiers to the UK competent authority have sometimes been reluctant to use the assay because of concerns over false-positive reactions. Across Europe, these concerns have been heightened in the lead-up to the introduction of REACH, since the use of in vivo alternatives to the LLNA will require scientific justification. This review will address some of these concerns from a regulatory perspective.  相似文献   

10.
In this paper, we propose a quantitative risk assessment methodology for skin sensitization aiming at the derivation of 'safe' exposure levels for sensitizing chemicals, used e.g., as ingredients in consumer products. Given the limited number of sensitizers tested in human sensitization tests, such as the human repeat-insult patch test (HRIPT) or the human maximization test (HMT), we used EC3 values from the local lymph node assay (LLNA) in mice because they provide the best quantitative measure of the skin sensitizing potency of a chemical. A comparison of LLNA EC3 values with HRIPT and HMT LOEL, and NOEL values was carried out and revealed that the EC3, expressed as area dose, can be used as a surrogate value for the human NOEL in risk assessment. The uncertainty/extrapolation factor approach was used to derive (a) an 'acceptable non-sensitizing area dose' (ANSAD) to protect non-allergic individuals against skin sensitization and (b) an 'acceptable non-eliciting area dose' (ANEAD) to protect allergic individuals against elicitation of allergic contact dermatitis. For ANSAD derivation, interspecies, intraspecies and time extrapolation factors are applied to the LLNA EC3. For ANEAD derivation, additional application of a variable sensitization-elicitation extrapolation factor is proposed. Values for extrapolation factors are derived and discussed, the proposed methodology is applied to the sensitizers methylchloroisothiazolinone/methylisothiazolinone, cinnamic aldehyde and nickel and results are compared to published risk assessments.  相似文献   

11.
The murine local lymph node assay (LLNA) is a method for the prospective identification of skin sensitizing chemicals. Proliferative responses induced in lymph nodes draining the site of topical application of the test chemical are measured and those chemicals that induce a stimulation index of three or more compared with concurrent vehicle-treated controls are considered to have the potential to cause skin sensitization. Dose-response data from the LLNA may be used to derive an estimate of relative skin sensitizing potency, based upon derivation of the concentration of chemical required to cause a stimulation index of 3 (EC3 value) as calculated by linear interpolation. The purpose of the present investigations was to examine the stability of LLNA responses and the consistency of derived EC3 values induced by the contact allergen paraphenylenediamine (PPD). Analyses were conducted once a month over a 4-month period in each of two independent laboratories. In all assays, and in both laboratories, PPD elicited a positive response. Although some minor differences in responses between and within laboratories were observed, the derived EC3 values were generally very consistent. In Laboratory 1, EC3 values varied between 0.06 and 0.09% PPD, whereas in Laboratory 2 the range was 0.09-0.20%. These EC3 values are consistent with clinical experience of this material insofar as it is a common and relatively potent cause of allergic contact dermatitis in humans. Taken together, these data confirm the stability of LLNA responses both with time and between laboratories and provide additional support for the use of derived EC3 values in the assessment of relative skin sensitizing potency.  相似文献   

12.
Hundreds of chemicals are contact allergens but there remains a need to identify and characterise accurately skin sensitising hazards. The purpose of this review was fourfold. First, when using the local lymph node assay (LLNA), consider whether an exposure concentration (EC3 value) lower than 100% can be defined and used as a threshold criterion for classification and labelling. Second, is there any reason to revise the recommendation of a previous ECETOC Task Force regarding specific EC3 values used for sub-categorisation of substances based upon potency? Third, what recommendations can be made regarding classification and labelling of preparations under GHS? Finally, consider how to integrate LLNA data into risk assessment and provide a rationale for using concentration responses and corresponding no-effect concentrations. Although skin sensitising chemicals having high EC3 values may represent only relatively low risks to humans, it is not possible currently to define an EC3 value below 100% that would serve as an appropriate threshold for classification and labelling. The conclusion drawn from reviewing the use of distinct categories for characterising contact allergens was that the most appropriate, science-based classification of contact allergens according to potency is one in which four sub-categories are identified: ‘extreme’, ‘strong’, ‘moderate’ and ‘weak’. Since draining lymph node cell proliferation is related causally and quantitatively to potency, LLNA EC3 values are recommended for determination of a no expected sensitisation induction level that represents the first step in quantitative risk assessment.  相似文献   

13.
Kimber I 《Toxicology》2001,158(1-2):59-64
The local lymph node assay (LLNA) is a method for the identification of skin sensitization hazard. The method is based upon measurement of proliferative responses induced in draining lymph nodes following topical exposure of mice to the test chemical. More recently the LLNA has also been used for the evaluation of relative skin sensitization potency in the context of risk assessment. Idiosyncratic drug reactions resulting from the stimulation of allergic or autoimmunogenic responses are poorly understood but represent an important clinical problem. In this article, the potential utility of the LLNA, either in a conventional modified configuration, to provide information of value in assessment the potential for systemic allergenicity is considered.  相似文献   

14.
15.
CBA/J and CBA/Ca mice are the recommended strains for local lymph node assays (LLNAs). Here, we report quantitative and qualitative comparisons between both mouse strains to provide useful information for the strain selection of sensitization testing. LLNA was conducted, in accordance with Organisation for Economic Co‐operation and Development Test Guideline No. 429, with CBA/J and CBA/Ca mice using five chemicals including typical contact sensitizers and non‐sensitizers: 2,4‐dinitrochlorobenzene (DNCB), isoeugenol, α‐hexylcinnamic aldehyde (HCA), propylene glycol (PG), and hexane; then outcomes were compared based on the raw data (disintegrations per minute, DPM), stimulation index (SI) values, EC3 values and positive/negative decisions. Although a significant difference was noted between DPM values derived from each strain of mice, SI values exhibited no considerable difference. The EC3 values for DNCB in CBA/J and CBA/Ca mice were 0.04 and 0.03, those for isoeugenol were 1.4 and 0.9, and those for HCA were 7.7 and 6.0, respectively. All EC values derived from each test system were almost equivalent and were within the range of acceptance criteria of the ICCVAM performance standard for LLNA. Positive/negative outcomes for all test chemicals were consistent. In conclusion, no considerable differences were observed in the final outcomes derived from CBA/J and CBA/Ca mice in LLNA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
There is a strong impetus to develop nonanimal based methods to predict skin sensitization potency. An approach based on physical organic chemistry, whereby chemicals are classified into reaction mechanistic domains and quantitative models or read-across methods are derived for each domain, has been the basis of several recent publications. This article is concerned with the S(N)Ar reaction mechanistic domain. Electrophiles able to react by the S(N)Ar mechanism have long been recognized as skin sensitizers and have been used extensively in research studies on the biology of skin sensitization. Although qualitative discriminant analysis approaches have been developed for estimating the sensitization potential for S(N)Ar electrophiles on a yes/no qualitative basis, no quantitative mechanistic model (QMM) has so far been developed for this domain. Here, we derive a QMM that correlates skin sensitization potency, quantified by murine local lymph node assay (LLNA) EC3 data on a range of S(N)Ar electrophiles. It is based on the Hammett σ(-) values for the activating groups and the Taft σ* value for the leaving group. The model takes the form pEC3=2.48 Σσ(-) + 0.60 σ* - 4.51. This QMM, generated from mouse LLNA data, provides a reactivity parameter 2.48 Σσ(-) + 0.60 σ*, which was applied to a set of 20 compounds for which guinea pig test results were available in the literature and was found to successfully discriminate the sensitizers from the nonsensitizers. The reactivity parameter correctly predicted a known human sensitizer 2,4-dichloropyrimidine. New LLNA data on two further S(N)Ar electrophiles are consistent with the QMM.  相似文献   

17.
A modified local lymph node assay (LLNA) with ex vivo tritium thymidine (3H-TdR) labeling of the proliferating lymph node cells was used for determination of the allergenic potency of chemicals used in the production of rubber for latex medical gloves. Fifteen chemicals known to induce contact hypersensitivity reactions in man, including various thiuram, carbamate, and benzothiazole compounds, and one amine were tested. The EC3 (effective concentration inducing a 3-fold increase in proliferation of lymph node cells [Stimulation Index, SI = 3]) was calculated with nonlinear regression analysis, including a bootstrap method for determination of the 5-95% confidence interval of the EC3 value. This procedure identified 14 out of the 15 chemicals tested as sensitizers, while for one chemical, ZDBC, no EC3 could be calculated due to low responses and a lack of a dose-response relationship in the data obtained. The ranking order of the chemicals with increasing EC3 values (and thus decreasing allergenic potency) was found to be in the following order: ZDEC < TMTD < TETD < ZPC < ZDMC < MBTS < PTD < TMTM < MBT < MBI < PTT < ZMBT < TBTD < DEA < ZDBC. Our results indicate that the chemicals of choice for use in the production of natural rubber latex products would be for the thiuram compounds, TBTD; for the carbamates, ZDBC; and for the benzothiazoles, ZMBT. However, one has to be aware that besides potency, the total amount of residual chemical present in the final product is also important for allergy induction.  相似文献   

18.
Discordant results were observed when testing five prototype polyfunctional silicone materials for skin sensitization potential in the murine local lymph node assay (LLNA) and in the guinea pig maximization test (GPMT). While all five silicone materials were consistently negative in the GPMT, the testing in the LLNA revealed weak to moderate skin sensitisation potential for four of the five test materials. Neither study quality nor other known chemical factors could explain these findings. Further analysis did not provide sufficient evidence for a link between the LLNA responses and the irritancy of the test substances. Only in the case of one of the test materials, the occurrence of an excessive level of irritation could be linked to the positive LLNA result. Considering all existing information including physico–chemical and structure activity and animal data as well as existing human experience from silicone exposures at the workplace or their use in cosmetic products, the weight of evidence suggests that none of the examined silicone materials represents a significant skin sensitization hazard to humans. The suitability of the LLNA appears questionable for this class of materials. In case of any additional data needs for other or new silicone materials, the skin sensitization testing strategy will require careful evaluation and will need to be set up on a case by case basis.  相似文献   

19.
Skin sensitization is a toxicity endpoint of widespread concern, for which the mechanistic understanding and concurrent necessity for non-animal testing approaches have evolved to a critical juncture, with many available options for predicting sensitization without using animals. Cosmetics Europe and the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods collaborated to analyze the performance of multiple non-animal data integration approaches for the skin sensitization safety assessment of cosmetics ingredients. The Cosmetics Europe Skin Tolerance Task Force (STTF) collected and generated data on 128 substances in multiple in vitro and in chemico skin sensitization assays selected based on a systematic assessment by the STTF. These assays, together with certain in silico predictions, are key components of various non-animal testing strategies that have been submitted to the Organization for Economic Cooperation and Development as case studies for skin sensitization. Curated murine local lymph node assay (LLNA) and human skin sensitization data were used to evaluate the performance of six defined approaches, comprising eight non-animal testing strategies, for both hazard and potency characterization. Defined approaches examined included consensus methods, artificial neural networks, support vector machine models, Bayesian networks, and decision trees, most of which were reproduced using open source software tools. Multiple non-animal testing strategies incorporating in vitro, in chemico, and in silico inputs demonstrated equivalent or superior performance to the LLNA when compared to both animal and human data for skin sensitization.  相似文献   

20.
《Toxicology in vitro》2010,24(6):1803-1809
The local lymph node assay (LLNA) has been developed to assess skin sensitization, and based on the EC3 value, it can also be used to evaluate allergen potency. Therefore, in the development of in vitro alternatives to the LLNA assay, one should not only consider the hazard identification but also the possibility to classify allergens relatively to their potency.We have recently described a selective release of interleukin-8 (IL-8) by chemical allergens in THP-1 cell line, and identified the activation of p38 mitogen-activated protein kinase (p38 MAPK) as a common pathway. Therefore, the purpose of this study was to expand the number of chemicals tested and to investigate whether IL-8 production and p38 MAPK activation can be used to classify allergens according to their potency.THP-1 cells were exposed to the contact allergens (p-benzoquinone, 2-aminophenol, isoeugenol, diethyl maleate, citral and imidazolidinyl urea), selected according to their potency in the LLNA, and to lactic acid and propylene glycol as non-sensitizers. p38 MAPK activation was evaluated 5–15 min after treatment by FACS analysis, while IL-8 release was assed by ELISA following 24 h of incubation. p38 MAPK was activated by all contact allergens, including the pro-apten isoeugenol, whereas IL-8 release was significantly increased after stimulation with all allergens tested, except for isoeugenol. The failure of isoeugenol may be due to decrease in the stability of IL-8 mRNA. Irritants exposure, as expected, failed to induce both p38 MAPK activation and IL-8 release.A significant correlation between IL-8 release and the LLNA EC3 was found (Pearson correlation r = 0.743, p = 0.0036, n = 12). On the contrary, the activation of p38 MAPK showed no significant correlation between LLNA data and vigor of p38 MAPK activation.Overall, data presented confirm our previous observations and reveal IL-8 as potential tool not only to identify sensitizers, with the exception of pro-haptens, but also to classify them according to their potency, while p38 MAPK activation allows the identification of all sensitizers, including pro-haptens, but was not useful for potency classification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号