首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysogenic state of bacteriophage lambda is exceptionally stable yet the prophage is readily induced in response to DNA damage. This delicate epigenetic switch is believed to be regulated by two proteins; the lysogenic maintenance promoting protein CI and the early lytic protein Cro. First, we confirm, in the native configuration, the previous observation that the DNA loop mediated by oligomerization of CI bound to two distinct operator regions (O(L) and O(R)), increases repression of the early lytic promoters and is important for stable maintenance of lysogeny. Second, we show that the presence of the cro gene might be unimportant for the lysogenic to lytic switch during induction of the lambda prophage. We revisit the idea that Cro's primary role in induction is instead to mediate weak repression of the early lytic promoters.  相似文献   

2.
Using a module exchange approach, we have tested a long-standing model for the role of Cro repressor in lambda prophage induction. This epigenetic switch from lysogeny to the lytic state occurs on activation of the host SOS system, which leads to specific cleavage of CI repressor. It has been proposed that Cro repressor, which operates during lytic growth and which we shall term the lytic repressor, is crucial to prophage induction. In this view, Cro binds to the O(R)3 operator, thereby repressing the cI gene and making the switch irreversible. Here we tested this model by replacing lambda Cro with a dimeric form of Lac repressor and adding several lac operators. This approach allowed us to regulate the function of the lytic repressor at will and to prevent it from repressing cI, because lac repressor could not repress P(RM) in our constructs. Repression of cI by the lytic repressor was not required for prophage induction to occur. However, our evidence suggests that this binding can make induction more efficient, particularly at intermediate levels of DNA damage that otherwise cause induction of only a fraction of the population. These results indicate that this strategy of module exchange will have broad applications for analysis of gene regulatory circuits.  相似文献   

3.
4.
5.
The bistable gene regulatory switch controlling the transition from lysogeny to lysis in bacteriophage λ presents a unique challenge to quantitative modeling. Despite extensive characterization of this regulatory network, the origin of the extreme stability of the lysogenic state remains unclear. We have constructed a stochastic model for this switch. Using Forward Flux Sampling simulations, we show that this model predicts an extremely low rate of spontaneous prophage induction in a recA mutant, in agreement with experimental observations. In our model, the DNA loop formed by octamerization of CI bound to the OL and OR operator regions is crucial for stability, allowing the lysogenic state to remain stable even when a large fraction of the total CI is depleted by nonspecific binding to genomic DNA. DNA looping also ensures that the switch is robust to mutations in the order of the OR binding sites. Our results suggest that DNA looping can provide a mechanism to maintain a stable lysogenic state in the face of a range of challenges including noisy gene expression, nonspecific DNA binding, and operator site mutations.  相似文献   

6.
The lambda phage repressor binds cooperatively to the three sites in the right operator (O(R)) according to the following pattern. If the DNA is wild type, O(R)1 and O(R)2 are filled coordinately because of interactions between repressor dimers bound to these two sites. Site O(R)3 is filled only at higher repressor concentrations. In contrast, if O(R)1 is mutant, O(R)2 and O(R)3 are filled coordinately because of interactions between repressors bound to these sites. In this case, the affinity of O(R)3 is increased and that of O(R)2 is decreased relative to the wild type. We infer that a repressor dimer bound to the middle site O(R)2 can interact either with another repressor dimer bound to O(R)1 (wild-type case) or, alternatively, with one bound to O(R)3 (mutant O(R)1 case). We argue that these repressor interactions are mediated by protein-protein contacts between adjacent repressor dimers, because the isolated amino-terminal domains of repressor bind to the operator sites noncooperatively. The cro protein of phage lambda, a second regulatory protein, which recognizes the same three sites in O(R) as does repressor, binds non-cooperatively. Experiments performed in vivo show that regulation of gene expression by repressor can be influenced critically by cooperative interactions. We demonstrate that the effect of repressor in a lysogen on the activity of the promoter P(RM) can be changed from activation to repression by deletion of O(R)1. We explain this effect in terms of the alternative cooperative interactions described above.  相似文献   

7.
8.
9.
10.
Complex gene regulatory circuits contain many interacting components. In principle, all of these components and interactions may be essential to the function of the circuit. Alternatively, some of them may be refinements to a simpler version of the circuit that improve its fitness. In this work, we have tested whether a particular property of a critical regulatory protein, CI, is essential to the behavior of the phage lambda regulatory circuit. In the lysogenic state, CI represses the expression of the lytic genes, allowing a stable lysogenic state, by binding cooperatively to six operators. A mutant phage lacking cooperativity because of a change in cI could not form stable lysogens; however, this defect could be suppressed by the addition of mutations that altered two cis-acting sites but did not restore cooperativity. The resulting triple mutant was able to grow lytically, form stable single lysogens, and switch to lytic growth upon prophage induction, showing a threshold response in switching similar to that of wild-type lambda. We conclude that cooperative DNA binding by CI is not essential for these properties of the lambda circuitry, provided that suppressors increase the level of CI. Unlike wild-type lysogens, mutant lysogens were somewhat unstable under certain growth conditions. We surmise that cooperativity is a refinement to a more basic circuit, and that it affords increased stability to the lysogenic state in response to environmental variations.  相似文献   

11.
12.
13.
14.
The lysis-lysogeny decision of bacteriophage lambda has been a paradigm for a developmental genetic network, which is composed of interlocked positive and negative feedback loops. This genetic network is capable of responding to environmental signals and to the number of infecting phages. An interplay between CI and Cro functions suggested a bistable switch model for the lysis-lysogeny decision. Here, we present a real-time picture of the execution of lytic and lysogenic pathways with unprecedented temporal resolution. We monitor, in vivo, both the level and function of the CII and Q gene regulators. These activators are cotranscribed yet control opposite developmental pathways. Conditions that favor the lysogenic response show severe delay and down-regulation of Q activity, in both CII-dependent and CII-independent ways. Whereas CII activity correlates with its protein level, Q shows a pronounced threshold before its function is observed. Our quantitative analyses suggest that by regulating CII and CIII, Cro plays a key role in the ability of the lambda genetic network to sense the difference between one and more than one phage particles infecting a cell. Thus, our results provide an improved framework to explain the longstanding puzzle of the decision process.  相似文献   

15.
A multiscale simulation of a complex between the lac repressor protein (LacI) and a 107-bp-long DNA segment is reported. The complex between the repressor and two operator DNA segments is described by all-atom molecular dynamics; the size of the simulated system comprises either 226,000 or 314,000 atoms. The DNA loop connecting the operators is modeled as a continuous elastic ribbon, described mathematically by the nonlinear Kirchhoff differential equations with boundary conditions obtained from the coordinates of the terminal base pairs of each operator. The forces stemming from the looped DNA are included in the molecular dynamics simulations; the loop structure and the forces are continuously recomputed because the protein motions during the simulations shift the operators and the presumed termini of the loop. The simulations reveal the structural dynamics of the LacI-DNA complex in unprecedented detail. The multiple domains of LacI exhibit remarkable structural stability during the simulation, moving much like rigid bodies. LacI is shown to absorb the strain from the looped DNA mainly through its mobile DNA-binding head groups. Even with large fluctuating forces applied, the head groups tilt strongly and keep their grip on the operator DNA, while the remainder of the protein retains its V-shaped structure. A simulated opening of the cleft of LacI by 500-pN forces revealed the interactions responsible for locking LacI in the V-conformation.  相似文献   

16.
Abstract. Ruffin N, Lantto R, Pensieroso S, Sammicheli S, Hejdeman B, Rethi B, Chiodi F (Karolinska Institutet, Stockholm; and South Hospital, Stockholm, Sweden). Immune activation and increased IL‐21R expression are associated with the loss of memory B cells during HIV‐1 infection. J Intern Med 2012; 272: 492–503. Objectives. Microbial translocation and chronic immune activation were previously shown to be associated with impairment of T cell functions and disease progression during infection with human immunodeficiency virus type‐1 (HIV‐1); however, their impact on B cell function and number remains unknown. By measuring markers of immune activation and molecules involved in apoptosis regulation, we have evaluated the association between microbial translocation and loss of memory B cells in HIV‐1‐infected patients. Methods. Markers of activation [the interleukin‐21 receptor (IL‐21R) and CD38] and apoptosis (Bim, Bcl‐2 and annexin V) were measured in B cell subpopulations by multicolour flow cytometry. Levels of soluble CD14 (sCD14) and lipopolysaccharide (LPS), measures of microbial translocation, were determined in plasma. Purified B cells were also exposed in vitro to Toll‐like receptor (TLR) ligands. Results. IL‐21R expression was higher in cells from HIV‐1‐infected patients, compared with control subjects, with the highest levels in nontreated patients. An inverse correlation was observed between IL‐21R expression and percentages of circulating resting memory (RM) B cells. IL‐21R‐positive memory B cells were also more susceptible to spontaneous apoptosis and displayed lower levels of Bcl‐2. It is interesting that the levels of sCD14, which are increased during HIV‐1 infection, were correlated with decreased percentages of RM B cells and high IL‐21R expression. In the plasma of HIV‐1‐infected individuals, a correlation was found between sCD14 and LPS levels. TLR activation of B cells in vitro resulted in IL‐21R up‐regulation. Conclusions. Microbial translocation and the associated immune activation during HIV‐1 infection may lead to high expression levels of the IL‐21R activation marker in RM B cells, a feature associated with increased apoptosis and a reduced number of these cells in the circulation.  相似文献   

17.
18.
19.
Short DNA duplexes are protected when lambda DNA is digested with nuclease in the presence of lambda repressor. As the ratio of repressor to operator is increased, six successively larger fragments are recovered, ranging in size from 35 to 100 base pairs, each of which binds repressor. Study of these fragments indicates that, at each of the two lambda operators (o(L) and o(R)), repressor first binds to a unique site (not necessarily terminal), and that five additional sites are then filled in linear right-ward or left-ward order. The nucleotide sequences and affinities for repressor of o(L) and o(R) are not identical, although six fragments of similar size are protected at each operator. Evidence is presented arguing against the existence of hairpin-like structures in the operator fragments, and, moreover, it is shown that the operator duplex does not unwind when repressor binds to it.  相似文献   

20.
Prokaryotic repressor-operator systems provide exemplars for the sequence-specific interactions between DNA and protein. The crucial atomic contacts of the two macromolecules are attained in a compact, geometrically defined structure of the DNA-protein complex. The pitch of the DNA interface seems an especially sensitive part of this architecture because changes in its length introduce new spacing and rotational relations in one step. We discovered a natural system that may serve as a model for investigating this problem: the repressor of the 16-3 phage of Rhizobium meliloti (helix-turn-helix class protein) possesses inherent ability to accommodate to various DNA twistings. It binds the cognate operators, which are 5'-ACAA-4 bp-TTGT-3' (O(L)) and 5'-ACAA-6 bp-TTGT-3' (O(R)) and thus differ 2 bp in length, and consequently the two half-sites will be rotated with respect to each other by 72 degrees in the idealized B-DNA (64 degrees by dinucleotide steps calculations). Furthermore, a synthetic intermediate (DNA sequence) 5'-ACAA-5 bp-TTGT-3' (O5) also binds specifically the repressor. The natural operators and bound repressors can form higher order DNA-protein complexes and perform efficient repression, whereas the synthetic operator-repressor complex cannot do either. The natural operators are bent when complexed with the repressor, whereas the O5 operator does not show bending in electrophoretic mobility assay. Possible structures of the complexes are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号