首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Altered muscle fatty acid (FA) metabolism may contribute to the presence of muscle insulin resistance in the genetically obese Zucker rat. To determine whether FA uptake and disposal are altered in insulin-resistant muscle, we measured palmitate uptake, oxidation, and incorporation into di- and triglycerides in isolated rat hindquarters, as well as muscle plasma membrane fatty acid-binding protein (FABP(PM)) content of lean (n = 16, fa/+) and obese (n = 15, fa/fa) Zucker rats (12 weeks of age). Hindquarters were perfused with 7 mmol/l glucose, 1,000 micromol/l albumin-bound palmitate, and albumin-bound [1-(14)C]palmitate at rest (no insulin). Glucose uptake was 42% lower in the obese than in the lean rats and indicated the presence of muscle insulin resistance. Fractional and total rates of palmitate uptake were 42 and 74% higher in the obese than in the lean rats and were associated with higher muscle FABP(PM) content (r(2) = 0.69, P < 0.05). The percentage of palmitate oxidized was not significantly different between groups. FA disposal to storage was altered according to fiber type. When compared with lean rats, the rate of triglyceride synthesis in red muscle was 158% higher in obese rats, and the rate of palmitate incorporation into diglycerides in white muscle was 93% higher in obese rats. Pre- and postperfusion muscle triglyceride levels were higher in both red and white muscles of the obese rats. These results show that increased FA uptake and altered FA disposal to storage may contribute to the development of muscle insulin resistance in obese Zucker rats.  相似文献   

2.
Ischemia-reperfusion (I-R) injury is poorly tolerated by fatty livers, most probably secondary to reduced cellular adenosine triphosphate (ATP) levels. We investigated the effectiveness of tacrolimus pretreatment on fatty liver I-R injury in obese Zucker rats. Tacrolimus (0.3 mg/kg, intravenously) was injected 24 hours before a 75-minute ischemic period and rats were sacrificed 6 hours later. Tacrolimus modified the response to I-R observed in obese Zucker rats, when compared to nontreated obese rats: a significant reduction in hepatocyte necrosis was associated with a significant increase in hepatocyte apoptosis. In addition, cell necrosis and apoptosis were significantly and inversely correlated in lean nontreated and treated obese Zucker rats following I-R. Tacrolimus also significantly increased the hepatic ATP levels, reduced in nontreated obese rats, toward values found in lean Zucker rat livers. This protective effect of tacrolimus was further confirmed in vivo by a significantly improved survival following pretreatment with tacrolimus, 24 hours prior to ischemia. In conclusion, in obese Zucker rat livers, tacrolimus pretreatment reversed the I-R injury toward the one found in lean Zucker rats. The correlations between ATP levels and the opposite changes in necrosis and apoptotic pathways strongly suggest a cause-effect relationship between tacrolimus and changes in ATP levels.  相似文献   

3.
The involvement of the gut hormone GIP (gastric inhibitory polypeptide, glucose-dependent insulinotropic polypeptide) in the hyperinsulinemia of the adult obese Zucker rat was investigated. Glucose, insulin, and GIP responses to oral glucose were compared in lean and obese rats. The sensitivity of the isolated, perfused pancreas to glucose and GIP was studied in basal and hyperglycemic conditions in lean and obese rats. Immunocytochemical studies of the gut and pancreas were also carried out. The glucose and GIP responses to oral glucose were similar in lean and obese rats, but obese animals were hyperinsulinemic compared with lean controls under fasting conditions and after oral glucose. The isolated, perfused pancreas of obese Zucker rats had an elevated insulin response to 300 mg/dl glucose. GIP increased the insulin response to 300 mg/dl glucose threefold in both lean and obese rats. At basal glucose levels (80 mg/dl), GIP augmented insulin release in obese but not in lean rats. Immunocytochemical studies demonstrated the presence of enlarged islets in obese rats due to an increase in the B-cell mass. A-, D-, and PP-cells appeared normal. Obese and lean rats had similar numbers of GIP-containing cells in the gut. This study suggests that GIP may contribute to the fasting hyperinsulinemia characteristic of adult obese Zucker rats. GIP infusion to achieve levels equivalent to those seen in the basal state are capable of stimulating insulin release in the absence of hyperglycemia in the obese rat, which suggests an impairment of the regulatory mechanisms controlling the glucose-dependent insulinotropic action of GIP in these animals.  相似文献   

4.
G Koh  Y Seino  M Usami  T Matsuo  H Ikeda  T Yamamoto  K Tsuda  T Taminato  H Imura 《Diabetes》1990,39(9):1050-1056
To investigate the role of the beta-cell in the occurrence of diabetes in obesity, longitudinal changes of insulin-gene expression and pancreatic insulin content were compared among genetically obese diabetic (Wistar fatty) rats, genetically obese nondiabetic (Zucker fatty) rats, and ventromedial hypothalamus (VMH)-lesioned obese rats. Plasma glucose levels were significantly elevated with age in Wistar fatty rats, whereas they were virtually unchanged in VMH-lesioned and Zucker fatty rats. Obesity and hyperinsulinemia were evident in VMH-lesioned rats 1 wk after the operation and in Zucker and Wistar fatty rats at 5 wk of age. In VMH-lesioned rats, the pancreatic preproinsulin I mRNA (pplmRNA) level and pancreatic insulin content markedly increased approximately two- to threefold (P less than 0.001) with the development of hyperinsulinemia, whereas sham-operated rats showed no significant change. In Zucker and Wistar lean rats, the pplmRNA level and pancreatic insulin content increased with age, corresponding to increases in body weight. In Zucker fatty rats, the pplmRNA level and pancreatic insulin content at 5 and 14 wk of age were significantly higher than those of lean littermates. The pplmRNA level in Zucker fatty rats at 14 wk of age reached 290% of that of their lean littermates (P less than 0.001). On the other hand, the pplmRNA level and pancreatic insulin content in Wistar fatty rats at 5 and 14 wk of age did not increase more than those of their lean littermates at the corresponding ages and were therefore significantly lower than in Zucker fatty rats, which had a higher grade of hyperinsulinemia at 14 wk of age.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The anorexigenic and orexigenic hormones leptin and ghrelin act in opposition to one another. When leptin signaling is reduced, as in the Zucker fatty rat, or when circulating ghrelin is increased during fasting, the effect of ghrelin becomes more dominant, indicating an influence of both hormones on ghrelin action. This effect could be mediated via the level of expression of ghrelin receptor (growth hormone secretagogue receptor [GHS-R]). For testing this, GHS-R expression was measured using in situ hybridization in Zucker fatty versus lean rats; in fed versus fasted (48 h) rats, treated with either ghrelin or leptin; and in GH-deficient, dwarf versus control rats. In the arcuate nuclei of the Zucker fatty rat and in fasted rats, GHS-R expression is significantly increased. A single leptin intracerebroventricular injection attenuated the fasting-induced increase in GHS-R but had no effect in fed rats 2 h after injection, whereas leptin infusion for 24 h or longer significantly decreased GHS-R expression in fed rats. Ghrelin significantly increased GHS-R expression but not in dwarf rats. These results show that the level of GHS-R expression in the ARC is reduced by leptin and increased by ghrelin and that the effect of ghrelin may be GH dependent.  相似文献   

6.
Brief periods of hyperphagia cause renal injury in the obese Zucker rat   总被引:4,自引:0,他引:4  
BACKGROUND: Female obese (fa/fa) Zucker rats are maximally hyperphagic from the beginning of access to solid food until 20 weeks of age and die primarily from renal failure. We documented that urinary albumin excretion (UAE) rises early in obese rats during this time of greatest hyperphagia. This study was conducted to examine if this early surge of hyperphagia is critical to the initiation of glomerular damage. METHODS: Three groups of six-week-old rats were used: (a) obese females fed ad libitum (AL-obese), (b) obese females pair fed to lean controls until 21 weeks and then allowed to eat ad libitum until 57 weeks (PF. AL-obese), (c) lean (Fa/Fa) Zucker rats fed ad libitum (AL-lean). Cohorts of AL-obese and PF.AL-obese rats were allowed to continue to death or 57 weeks of age, and the rest were terminated at 21 weeks for renal histology. RESULTS: At 21 weeks, neither PF.AL-obese nor AL-lean rats had elevated UAE or glomerular histopathology. In contrast, glomerular injury was severe in AL-obese rats. UAE increased by 10 and 29 weeks in AL- and PF.AL-obese rats, respectively. Plasma triglycerides increased prior to UAE in both PF. AL- and AL-obese rats. CONCLUSIONS: In obese rats fed ad libitum, hyperphagia is followed within a few weeks by hypertriglyceridemia and then by glomerular injury regardless of when ad libitum feeding is initiated. These events do not occur in lean rats or in obese rats pair fed to lean rats. Protective effects of pair feeding did not extend into the period of ad libitum feeding for PF.AL-obese rats. Hyperphagia quickly initiates glomerular injury in obese female Zucker rats.  相似文献   

7.
BACKGROUND: The purpose of this study was to investigate the metabolic alterations in the recipient and microcirculatory changes to the graft in the first 3 months after orthotopic liver transplantation (OLT) of nonsteatotic liver grafts from lean rats into obese Zucker rats. METHODS: Body weight and plasma lipids were measured for 3 months post-OLT. Graft perfusion (hepatic microcirculatory perfusion [HMP]) and vascular structure were measured in vivo at 3 months. Liver biopsy specimens were obtained throughout for morphologic analysis. Sham-operation obese and lean Zucker rats acted as controls. RESULTS: Plasma cholesterol levels were elevated from 2 months after OLT, whereas plasma triglyceride levels were reduced (P<0.05). Plasma high-density lipoprotein cholesterol concentrations increased from the first month after OLT (P<0.05). HMP in OLT animals (137+/-3 perfusion units [PU]) (P<0.05) was intermediate between lean (221+/-11 PU) and obese controls (113+/-5 PU). Hepatic cord width in the OLT group was similar to that in lean controls. Mean liver-to-body weight ratios in OLT animals (4.12%+/-0.39%) were significantly higher than in lean controls (3.25%+/-0.1%). The number of viable hepatocytes per high-power field in the OLT animals was lower than in the lean animals but higher than in obese controls (P<0.05). The transplanted livers showed moderate to marked microvesicular fatty change (MIFC) and glycogen deposition at 3 months after OLT. CONCLUSIONS: Transplantation of a nonsteatotic liver into an obese Zucker rat initially has a positive effect on lipid metabolism. However, 3 months after OLT, the donor liver became steatotic with MIFC changes and reduced perfusion. The authors' results emphasize the importance of the recipient's metabolic status in the maintenance of liver graft function after OLT.  相似文献   

8.
Hepatic ketogenesis plays an important role in catabolism of fatty acids during fasting along with dietary lipid overload, but the mechanisms regulating this process remain poorly understood. Here, we show that Cdc2-like kinase 2 (Clk2) suppresses fatty acid oxidation and ketone body production during diet-induced obesity. In lean mice, hepatic Clk2 protein is very low during fasting and strongly increased during feeding; however, in diet-induced obese mice, Clk2 protein remains elevated through both fed and fasted states. Liver-specific Clk2 knockout mice fed a high-fat diet exhibit increased fasting levels of blood ketone bodies, reduced respiratory exchange ratio, and increased gene expression of fatty acid oxidation and ketogenic pathways. This effect of Clk2 is cell-autonomous, because manipulation of Clk2 in hepatocytes controls genes and rates of fatty acid utilization. Clk2 phosphorylation of peroxisome proliferator–activated receptor γ coactivator (PGC-1α) disrupts its interaction with Mediator subunit 1, which leads to a suppression of PGC-1α activation of peroxisome proliferator–activated receptor α target genes in fatty acid oxidation and ketogenesis. These data demonstrate the importance of Clk2 in the regulation of fatty acid metabolism in vivo and suggest that inhibition of hepatic Clk2 could provide new therapies in the treatment of fatty liver disease.  相似文献   

9.
Neuropeptide Y (NPY) concentrations were measured by radioimmunoassay in eight microdissected hypothalamic regions of obese (fa/fa) and lean (Fa/?) Zucker rats. Freely fed obese rats showed significant (40-100%) increases in NPY concentrations in several regions, notably the paraventricular, ventromedial, and dorsomedial nuclei and the arcuate nucleus/median eminence, compared with lean rats. Hypothalamic NPY concentrations were not affected in either obese or lean rats by food restriction, which caused 25% weight loss over 3 wk. Refeeding to initial weight significantly increased NPY levels in the ventromedial and dorsomedial nuclei in lean rats but did not significantly alter NPY concentrations in any hypothalamic region in obese rats. These observations indicate fundamental differences in the regulation of hypothalamic NPY between obese and lean Zucker rats. NPY injected into the paraventricular nucleus and other regions causes hyperphagia, obesity, and increased secretion of insulin, glucagon, ACTH, and corticosterone. These behavioral and neuroendocrine abnormalities all occur in the obese Zucker syndrome and may be due to increased NPY-ergic activity in the hypothalamus.  相似文献   

10.
Background Gastric banding is thought to decrease appetite in addition to the mechanical effects of food restriction, although this has been difficult to demonstrate in human studies. Our aim was to investigate the changes in orexigenic signals in the obese Zucker rat after gastric banding. Methods Obese Zucker rats (fa/fa) were submitted to gastric banding (GBP), sham gastric banding fed ad libitum (sham), or sham operation with food restriction, pair-fed to the gastric banding group (sham-PF). Lean Zucker rats (fa/+) were used as additional controls. Body weight and food intake were daily recorded for 21 days after surgery when epididymal fat was weighed and fasting ghrelin and hypothalamic NPY mRNA expression were measured. Results Gastric banding in obese Zucker rats resulted in a significant decrease of cumulative body weight gain and food intake. Furthermore, gastric banded rats were leaner than Sham-PF, as expressed by a significantly lower epididymal fat weight. Ghrelin levels of gastric banded rats were not increased when compared to sham-operated animals fed ad libitum and were significantly lower than the levels of weight matched sham-PF rats (1116.9 ± 103.3 g GBP vs 963.2 ± 54.3 g sham, 3,079.5 ± 221.6 sham-PF and 2,969.9 ± 150.9 g lean rats, p < 0.001); hypothalamic NPY mRNA expression was not increased in GBP when compared to sham-operated rats. Conclusion In obese Zucker rats, GBP prevents the increase in orexigenic signals that occur during caloric deprivation. Our data support the hypothesis that sustained weight loss observed after gastric banding does not depend solely on food restriction.  相似文献   

11.
We examined insulin binding, insulin-stimulated autophosphorylation, and phosphorylation of poly(Glu.Na,Tyr)4:1 by liver and skeletal muscle insulin receptor from lean, obese, and obese streptozocin-induced diabetic Zucker rats. Induction of diabetes with streptozocin (30 mg/kg) lowered the lasting insulin level from 11.4 to 3.8 ng/ml, which was not significantly greater than the lean control level. Autophosphorylation and tyrosine kinase activity of liver insulin receptors were increased 70-100% in the obese control group (relative to lean rats), but diabetes reversed this hyperresponsiveness to insulin. In muscle, obesity was associated with a 40-50% decrease in autophosphorylation and tyrosine kinase activity, which was also reversed in the diabetic state. Autophosphorylation and tyrosine kinase activity were significantly correlated in liver and muscle and were also correlated with fasting insulin levels. These data suggest that insulin-receptor tyrosine kinase activity is regulated differently in liver and muscle and that the abnormalities in kinase activity associated with the obese Zucker rat are at least partly secondary to hyperinsulinemia.  相似文献   

12.
J B Clark  S Keen  C M Clark 《Diabetes》1982,31(10):867-873
The hyperinsulinemia of obese rodents has been associated with a reduced number of hepatic insulin receptors except in hepatocytes from fatty Zucker rats. We isolated liver plasma membranes from 10-11-wk-old lean and fatty Zucker rats, some of which were injected with streptozotocin 2--4 wk earlier. We have determined that although the number of hepatic insulin receptors is not reduced in young hyperinsulinemic fatty Zucker rats, the number of receptors can be increased when the hyperinsulinemia of the fatty rats is reduced by treatment with streptozotocin. In the fatty rats, this reduction in circulating insulin is accompanied by a reduction in plasma triglyceride concentration, consistent with a decreased stimulation of hepatic lipogenesis. Competitive binding curves for insulin were obtained with isolated liver plasma membranes and 125I-insulin. Analysis of these curves for affinity and number of receptors indicated that the number of insulin receptors was unchanged for the fatty control rats relative to the lean control rats but was increased in streptozotocin-treated animals. These data indicate that the regulation of hepatic insulin receptors is altered in the young fatty Zucker rat as characterized by a lack of downregulation of hepatic insulin receptors by hyperinsulinemia and an upregulation of hepatic insulin receptors at insulin concentrations higher than those found in lean rats. An altered state of hepatic insulin receptor regulation may be characteristic of developing obesity.  相似文献   

13.
In obesity, the development of cardiomyopathy is associated with the accumulation of myocardial triacylglycerols (TAGs), possibly stemming from elevation of myocardial long-chain fatty acid (LCFA) uptake. Because LCFA uptake is regulated by insulin and contractions, we examined in cardiac myocytes from lean and obese Zucker rats the effects of insulin and the contraction-mimetic agent oligomycin on the initial rate of LCFA uptake, subcellular distribution of FAT/CD36, and LCFA metabolism. In cardiac myocytes from obese Zucker rats, under basal conditions, FAT/CD36 was relocated to the sarcolemma at the expense of intracellular stores. In addition, the LCFA uptake rate, LCFA esterification rate into TAGs, and the intracellular unesterified LCFA concentration each were significantly increased. All these metabolic processes were normalized by the FAT/CD36 inhibitor sulfo-N-succinimidyloleate, indicating its antidiabetic potential. In cardiac myocytes isolated from lean rats, in vitro administration of insulin induced the translocation of FAT/CD36 to the sarcolemma and stimulated initial rates of LCFA uptake and TAG esterification. In contrast, in myocytes from obese rats, insulin failed to alter the subcellular localization of FAT/CD36 and the rates of LCFA uptake and TAG esterification. In cardiac myocytes from lean and obese animals, oligomycin stimulated the initial rates of LCFA uptake and oxidation, although oligomycin only induced the translocation of FAT/CD36 to the sarcolemma in lean rats. The present results indicate that in cardiac myocytes from obese Zucker rats, a permanent relocation of FAT/CD36 to the sarcolemma is responsible for myocardial TAG accumulation. Furthermore, in vitro these cardiac myocytes, although sensitive to contraction-like stimulation, were completely insensitive to insulin, as the basal conditions in hyperinsulinemic, obese animals resemble the insulin-stimulated condition in lean littermates.  相似文献   

14.
Activation of AMP-activated protein kinase (AMPK) with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofurano-side (AICAR) increases glucose transport in skeletal muscle via an insulin-independent pathway. To examine the effects of AMPK activation on skeletal muscle glucose transport activity and whole-body carbohydrate and lipid metabolism in an insulin-resistant rat model, awake obese Zuckerfa/fa rats (n = 26) and their lean (n = 23) littermates were infused for 90 min with AICAR, insulin, or saline. The insulin infusion rate (4 mU.kg(-1).min(-1)) was selected to match the glucose requirements during AICAR (bolus, 100 mg/kg; constant, 10 mg.kg(-1).min(-1)) isoglycemic clamps in the lean rats. The effects of these identical AICAR and insulin infusion rates were then examined in the obese Zucker rats. AICAR infusion increased muscle AMPK activity more than fivefold (P < 0.01 vs. control and insulin) in both lean and obese rats. Plasma triglycerides, fatty acid concentrations, and glycerol turnover, as assessed by [2-13C]glycerol, were all decreased in both lean and obese rats infused with AICAR (P < 0.05 vs. basal), whereas insulin had no effect on these parameters in the obese rats. Endogenous glucose production rates, measured by [U-13C]glucose, were suppressed by >50% during AICAR and insulin infusions in both lean and obese rats (P < 0.05 vs. basal). In lean rats, rates of whole-body glucose disposal increased by more than two-fold (P < 0.05 vs. basal) during both AICAR and insulin infusion; [3H]2-deoxy-D-glucose transport activity increased to a similar extent, by >2.2-fold (both P < 0.05 vs. control), in both soleus and red gastrocnemius muscles of lean rats infused with either AICAR or insulin. In the obese Zucker rats, neither AICAR nor insulin stimulated whole-body glucose disposal or soleus muscle glucose transport activity. However, AICAR increased glucose transport activity by approximately 2.4-fold (P < 0.05 vs. control) in the red gastrocnemius from obese rats, whereas insulin had no effect. In summary, acute infusion of AICAR in an insulin-resistant rat model activates skeletal muscle AMPK and increases glucose transport activity in red gastrocnemius muscle while suppressing endogenous glucose production and lipolysis. Because type 2 diabetes is characterized by diminished rates of insulin-stimulated glucose uptake as well as increased basal rates of endogenous glucose production and lipolysis, these results suggest that AICAR-related compounds may represent a new class of antidiabetic agents.  相似文献   

15.
Increasing evidence from experimental models of chronic renal failure suggests that abnormalities in lipid metabolism may contribute to progressive renal injury. In the present study, hyperlipidemic obese, and normolipemic lean Zucker rats were subjected to unilateral nephrectomy or sham surgery at eight weeks of age. After 32 weeks, renal injury was greater in obese than in lean rats, and injury was made worse by nephrectomy. Among the major lipid classes, increased renal cortical cholesteryl esters were positively correlated with the degree of renal injury, suggesting that mechanisms analogous to those thought to be important in the pathogenesis of atherosclerosis may cause renal injury. Among phospholipid fatty acids, the ratio of oleic to linoleic acids (18:1/18:2) was strongly linked to both glomerular (r = 0.83, P less than 0.01) and tubulo-interstitial (rr = 0.80, P less than 0.01) injury, suggesting a possible role for a relative essential fatty acid deficiency in renal injury. There were also strong, negative associations between eicosapentaenoic acid levels and glomerular (r = -0.63, P less than 0.01) and tubulointerstitial (r = -0.71, P less than .01) injury. Altogether, these results suggest that specific abnormalities in renal lipid metabolism may be important in the pathogenesis of chronic, progressive renal injury.  相似文献   

16.
Turner N  Bruce CR  Beale SM  Hoehn KL  So T  Rolph MS  Cooney GJ 《Diabetes》2007,56(8):2085-2092
A reduced capacity for mitochondrial fatty acid oxidation in skeletal muscle has been proposed as a major factor leading to the accumulation of intramuscular lipids and their subsequent deleterious effects on insulin action. Here, we examine markers of mitochondrial fatty acid oxidative capacity in rodent models of insulin resistance associated with an oversupply of lipids. C57BL/6J mice were fed a high-fat diet for either 5 or 20 weeks. Several markers of muscle mitochondrial fatty acid oxidative capacity were measured, including (14)C-palmitate oxidation, palmitoyl-CoA oxidation in isolated mitochondria, oxidative enzyme activity (citrate synthase, beta-hydroxyacyl CoA dehydrogenase, medium-chain acyl-CoA dehydrogenase, and carnitine palmitoyl-transferase 1), and expression of proteins involved in mitochondrial metabolism. Enzyme activity and mitochondrial protein expression were also examined in muscle from other rodent models of insulin resistance. Compared with standard diet-fed controls, muscle from fat-fed mice displayed elevated palmitate oxidation rate (5 weeks +23%, P < 0.05, and 20 weeks +29%, P < 0.05) and increased palmitoyl-CoA oxidation in isolated mitochondria (20 weeks +49%, P < 0.01). Furthermore, oxidative enzyme activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1alpha, uncoupling protein (UCP) 3, and mitochondrial respiratory chain subunits were significantly elevated in fat-fed animals. A similar pattern was present in muscle of fat-fed rats, obese Zucker rats, and db/db mice, with increases observed for oxidative enzyme activity and expression of PGC-1alpha, UCP3, and subunits of the mitochondrial respiratory chain. These findings suggest that high lipid availability does not lead to intramuscular lipid accumulation and insulin resistance in rodents by decreasing muscle mitochondrial fatty acid oxidative capacity.  相似文献   

17.
We demonstrated previously that high physiological concentrations of free fatty acids (FFA) rapidly decrease insulin binding, degradation, and action in isolated rat hepatocytes. In this study, hepatocytes from lean and obese Sprague-Dawley rats (Alab, Stockholm) were preincubated with or without 0.4 mM oleic acid, and the effect on insulin binding and tyrosine kinase activity was measured. In the absence of exogenous FFA, insulin binding was reduced in hepatocytes from obese compared with lean rats (mean +/- SE reduction 44 +/- 7%, n = 8, P less than 0.01). Furthermore, the inhibitory effect of oleic acid added to hepatocytes from lean rats (n = 8; 40 +/- 9%, P less than 0.01) was not seen in cells from obese rats. Treating obese rats with Etomoxir, a carnitine palmitoyl transferase I inhibitor, increased insulin binding to isolated hepatocytes by 41 +/- 13% (n = 5, P less than 0.05). There was no difference in total binding to partially purified insulin receptors from solubilized hepatocytes from lean and obese rats, whether cells were or were not preincubated with oleic acid. Tyrosine kinase activity of partially purified receptors from basal or insulin-stimulated cells was not affected by either obesity, treatment with Etomoxir, or preincubating the cells with oleic acid. Thus, both obesity and elevated ambient FFA levels are associated with impaired insulin cell surface binding to isolated hepatocytes, possibly through an effect of lipid oxidation on the internalization/recycling of the insulin-receptor complex without any perturbation of the receptor tyrosine kinase activity. The data suggest that the reduced insulin binding to hepatocytes from obese rats is due to elevated ambient FFA levels.  相似文献   

18.
It has recently been shown that the ability of insulinlike growth factor I (IGF-I) to stimulate glucose uptake and to lower circulating amino acid levels is retained in insulin-resistant diabetic BB rats. To examine in vivo effects of IGF-I in obese Zucker rats (another model of insulin resistance) 6 obese and 6 lean rats received euglycemic IGF-I infusions (0.65 nmol.kg-1.min-1). IGF-I-stimulated glucose uptake in obese rats was 50% lower than lean control rats (45.0 +/- 2.8 vs. 92.2 +/- 6.1 mumol.kg-1.min-1, respectively), even though the rise in circulating IGF-I levels was greater in the obese group during IGF-I infusion. In addition, branched chain amino acid concentrations that declined by 45% in lean controls were not suppressed significantly in obese rats (392 +/- 33 basal vs. 327 +/- 29 microM at 90 min). Equivalent results were observed during euglycemic insulin clamps (12 pmol.kg-1.min-1) in 7 obese and 11 lean rats. These studies demonstrate that obese Zucker rats are resistant to the effects of IGF-I and insulin on glucose and amino acid metabolism.  相似文献   

19.
Reactive oxygen species play a key role in pathophysiology of cardiovascular diseases by modulating G-protein-coupled receptor signaling. We have shown that treatment of animal models of diabetes and aging with tempol decreases oxidative stress and restores renal dopamine D1 receptor (D1R) function. In present study, we determined whether oxidation of D1R and upregulation of mitogen-activated protein kinases (MAPK) were responsible for decreased D1R signaling in obese animals. Male lean and obese Zucker rats were supplemented with antioxidants tempol or lipoic acid for 2 weeks. Compared to lean, obese animals were hyperglycemic and hyperinsulinemic with increased oxidative stress, D1R oxidation and decreased glutathione levels. These animals had decreased renal D1R affinity and basal coupling to G-proteins. SKF-38393, a D1R agonist failed to stimulate G-proteins and adenylyl cyclase. Obese animals showed marked increase in renal MAPK activities. Treatment of obese rats with tempol or lipoic acid decreased blood glucose, reduced oxidative stress, and restored the basal D1R G-protein coupling. Antioxidants also normalized MAPK activities and restored D1R affinity and SKF-38393 induced D1R G-protein coupling and adenylyl cyclase stimulation. These studies show that D1R oxidation and MAPK upregulation contribute to D1R dysfunction in obese animals. Consequently, antioxidants while reducing the oxidative stress normalize the MAPK activities and restore D1R signaling.  相似文献   

20.
BACKGROUND: We assessed whether a differential oxidizability of apolipoprotein B (apo B)-containing lipoproteins (LDL and VLDL) may explain the oxidative stress that we had observed at the onset of renal fibrosis in Zucker obese (ZO) rats (Nephrol Dial Transplant 2000, 15: 467--476). METHODS: Ex vivo copper-induced oxidation of lipoproteins was performed in 1-, 3-, and 9-month-old ZO and age-matched lean (ZL) rats. LDL/VLDL oxidizability was determined by spectrophotometry at 234 nm by monitoring the formation of conjugated diene hydroperoxides. RESULTS: A significant increase in lag time (reflecting the resistance to oxidation) was observed in ZO rats at 3 months while the maximal diene production (reflecting the amount of hydroperoxides formed during oxidation) was higher in ZO than in ZL rats as early as 1 month. Lipoproteins were larger in ZO than in ZL rats, as shown by their core to surface component ratio. Furthermore, ZO lipoproteins had increased vitamin E and polyunsaturated fatty acid (PUFA) content, with no change in vitamin E/PUFA ratio. CONCLUSIONS: Rather than oxidizability of apo B-containing lipoproteins, the ability of these molecules to produce high levels of conjugated dienes, which can act as toxic tissue messengers, appears to be a critical trait in the development of renal fibrosis in this rat model of obesity and renal fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号