共查询到20条相似文献,搜索用时 15 毫秒
1.
Classes of enteric nerve cells in the guinea-pig small intestine 总被引:17,自引:0,他引:17
Brookes SJ 《The Anatomical record》2001,262(1):58-70
The guinea-pig small intestine has been very widely used to study the physiology, pharmacology and morphology of the enteric nervous system. It also provides an ideal, simple mammalian preparation for studying how nerve cells are organised into functional circuits underlying simple behaviours. Many different types of nerve cells are present in the enteric nervous system and they show characteristic combinations of morphological features, projections, biophysical properties, neurochemicals, and receptors. To identify the different functional classes is an important prerequisite for systematic analysis of how the enteric nervous system controls normal gut behaviour. Based on combinations of multiple-labelling immunohistochemistry and retrograde tracing, it has been possible to account quantitatively for all of the neurones in the guinea-pig small intestine. This article summarises that account and updates it in the light of recent data. A total of 18 classes of neurones are currently distinguishable, including primary afferent neurones, motor neurones, interneurones, secretomotor and vasomotor neurones. It is now possible to take an individual nerve cell and use a few carefully chosen criteria to assign it to a functional class. This provides a firm anatomical foundation for the systematic analysis of how the enteric nervous system normally functions and how it goes wrong in various clinically important disorders. 相似文献
2.
5-HT released by gastrointestinal mucosa and enteric interneurons has powerful effects on gut behavior. However, the targets of 5-HT-containing neurons within enteric circuits are not well characterized. We used antisera against 5-HT and selected markers of known enteric neuron types to investigate the connections made by 5-HT-containing neurons in the guinea-pig jejunum. Confocal microscopy was used to quantify the number of 5-HT-immunoreactive varicosities apposed to immunohistochemically identified cell bodies. Large numbers of varicosities were identified apposing cholinergic secretomotor neurons, immunoreactive for neuropeptide Y, in both myenteric and submucous plexuses. Subgroups of neurons identified by calretinin (ascending interneurons) and nitric oxide synthase (descending interneurons and inhibitory motor neurons) immunoreactivity were also apposed by many varicosities. Longitudinal muscle motor neurons (calretinin immunoreactive) and AH/Dogiel type II (sensory) neurons (calbindin immunoreactive) were apposed by small numbers of varicosities. Combined retrograde tracing and immunohistochemistry were used to identify excitatory circular muscle motor neurons; these were encircled by 5-HT-immunoreactive varicosities, but the appositions could not be quantified. We suggest that 5-HT-containing interneurons are involved in secretomotor pathways and pathways to subgroups of other interneurons, but not longitudinal muscle motor neurons. There also appear to be connections between 5-HT-containing interneurons and excitatory circular muscle motor neurons. Physiological evidence demonstrates a functional connection between 5-HT-containing interneurons and AH/Dogiel type II neurons, but few 5-HT-immunoreactive varicosities were observed apposing calbindin-immunoreactive cell bodies. Taken together these results suggest that neural 5-HT may have significant roles in excitatory pathways regulating both motility and secretion. 相似文献
3.
Functions of neurons in enteric plexuses of cat intestine 总被引:4,自引:0,他引:4
4.
The origins of substance P immunoreactive axons in the small intestine of the guinea-pig were investigated with an immunohistochemical technique in whole mount preparations. Nerve pathways were interrupted either in vitro or in vivo to detect the accumulation of substance P proximal to the lesion and the disappearance of immunoreactive fibres resulting from the degeneration of the severed axons. Various operations, namely, extrinsic denervation, interruption of the myenteric plexus (myotomy) or removal of the myenteric plexus with the longitudinal muscle (myectomy), were performed prior to examination of substance P-containing neurons.There are several projections of substance P-containing neurons which supply the intestine. Extrinsic neurons are the sources of two projections, one to submucosal blood vessels and one to the submucous ganglia. Intrinsic neurons located in the submucous ganglia supply the villi. Five projections arise from the myenteric plexus, a very short projection ending either within the same row of ganglia or within the adjacent rows of ganglia on both sides, a longer projection within the myenteric plexus, a very short projection to the circular muscle, a projection to the submucous ganglia where the axons surround most of submucous nerve cell bodies, and a projection to the villi.It is likely that the highly organised patterns of innervation by different substance P-containing neurons have specific roles in the intestine. Some of these neurons may act as sensory neurons, others as interneurons, and yet others as motor neurons in nerve pathways within the enteric nervous system. 相似文献
5.
Accommodation mediated by enteric inhibitory reflexes in the isolated guinea-pig small intestine. 总被引:2,自引:2,他引:2 下载免费PDF全文
1. The aim of the present study was to investigate whether the guinea-pig small intestine shows accommodation to infused fluid, similarly to other regions of the gastrointestinal tract. Tetrodotoxin, papaverine and transmitter antagonists were used to establish the existence of reflex pathways and the nature of the neurotransmitters involved. 2. Compliance, measured as the change in volume of infused fluid divided by the intraluminal pressure change, was reduced by tetrodotoxin (0.6 microM), indicating that there is an overall neurally mediated relaxation of the circular muscle in response to low rates of distension. Papaverine (10 microM) did not have any significant effect on compliance at the low rates of distension, suggesting that the circular muscle is fully relaxed. 3. At each rate of distension, 400 microM N omega-nitro-L-arginine methyl ester (L-NAME, a nitric oxide synthase inhibitor) significantly decreased the compliance of the intestinal wall, indicating that the circular muscle was relaxed by a nitric oxide-mediated mechanism. Apamin (0.5 microM), which blocks a component of inhibitory transmission, did not have a significant effect. 4. In control preparations, the intestinal wall was less compliant when distended by fluid at a fast rate, compared with the lower rates of distension. This was not due to changes in passive components of the intestinal wall or a myogenic response to rapid stretch. 5. When the intestine was distended rapidly, 1 microM hyoscine and 100 microM hexamethonium increased intestinal compliance. However, they had no detectable effect on compliance with low rates of distension.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
6.
Summary The developing enteric nervous system of the guinea-pig has been analysed ultrastructurally. In addition, electron microscope autoradiography, following incubation with tritiated 5-hydroxytryptamine ([3H]5-HT) or tritiated norepinephrine ([3H]NE) was used to locate the developing axons of enteric serotoninergic and adrenergic neurons respectively. Observations have been correlated with previous studies of the development of the various types of enteric neuron and the onset of intestinal neuromuscular function. Prior to 25 days of gestation no neurons can be recognized morphologically. Neurons first appear at 25 days' gestation, together with a primitive neuropil in neural islands within the outer gut mesenchyme. Ganglion cell precursors are primitive at first and resemble the cells in the surrounding mesenchyme. Growth cones are abundant but there are no terminal varicosities or synapses. The circular muscle also begins to form at this time. At 32 days' gestation the longitudinal layer of smooth muscle can be discerned and, within the myenteric plexus, terminal axonal varicosities appear containing small (about 50 nm in diameter) electron-lucent synaptic vesicles. The submucosal plexus appears to be derived from neurons and neurites that reach it from the earlier-developing myenteric plexus. The submucosal plexus can be recognized at 38 days of gestation but is not well developed until day 42. Synapses on ganglion cell somata first appear in the myenteric plexus on gestational day 38 and are numerous on day 42 when the first axo-dendritic synapses can be seen. Between days 42 and 48 the developing neural tissue and growing smooth muscle cells interdigitate but after day 48, the plexus becomes ensheathed by supporting cells and connective tissue and this interdigitation is lost. Prior to day 48 most varicosities contain small electron-lucent synaptic vesicles; however, after this time a variety of terminals appears. Between days 48 and 53 of gestation evidence of degenerating neuronal processes is common, indicating that cell death may occur. Electron microscopic autoradiography with [3H]5-HT reveals labelling of axons in the neuropil of the myenteric plexus at day 32 of gestation. Some primitive appearing cell bodies, however, are also labelled and these cells seem to be entering the myenteric plexus from the surrounding mesenchyme. After 42 days of gestation [3H]5-HT labels only axons of both nerve plexuses. Often, labelled terminals are apposed to ganglion cells or dendrites. In contrast, significant labelling by [3H]NE is not found until gestational day 48. Axons are labelled by [3H]NE and these tend to be located at the interface between the myenteric plexus and the surrounding connective tissue. 相似文献
7.
Immunoreactivity for vasoactive intestinal polypeptide has been localized in neurons in the guinea-pig ileum, colon and stomach. In the ileum, 2.5% of the nerve cell bodies of the myenteric plexus and 45% of those of the submucous plexus showed vasoactive intestinal polypeptide-like immunoreactivity. Varicose axons containing vasoactive intestinal polypeptide ramified amongst the nerve cell bodies of both plexuses and in some cases formed rings of varicosities around non-reactive nerve cells. Axons were traced from the myenteric plexus to the circular muscle and deep muscular plexus. There were numerous positive axons running in fine strands within the circular muscle, parallel to the muscle bundles. Axons containing vasoactive intestinal polypeptide were associated with mucosal blood vessels, but few supplied the vascular network of the submucosa; some immunoreactive axons also contributed to the periglandular plexus of the mucosa. There were no changes in the distribution of axons in the ileum after extrinsic denervation.The results are discussed in relation to the possible functional roles of neurons that contain vasoactive intestinal polypeptide in the intestine: the distribution of such nerve cells in the myenteric plexus and of axons in the circular muscle and sphincters is consistent with this polypeptide being a transmitter of enteric inhibitory neurons; it is also possible that vasoactive intestinal polypeptide is the enteric vasodilator transmitter. 相似文献
8.
An immunohistochemical study of the distribution of enteric GABA-containing neurons in the rat and guinea-pig intestine 总被引:2,自引:0,他引:2
gamma-Aminobutyric acid (GABA) antiserum was applied to sections of rat and guinea-pig intestine which were subsequently processed to reveal any immunoreactivity using either fluorescence or peroxidase techniques. Immunopositive fibres were demonstrated in stomach, duodenum, ileum and colon of rat and guinea-pig intestine. Myenteric ganglia and nerve bundles in the circular muscle contained immunopositive nerve fibres, while the longitudinal muscle, submucosa and mucosa were only rarely innervated. In favourable sections, immunopositive fibres could be seen running from the myenteric plexus into the circular muscle, thus suggesting that the GABA-immunopositive nerves in the circular muscle originate from neurons in the myenteric plexus. In both rat and guinea-pig, immunoreactive nerve cell bodies were most numerous in the myenteric plexus of the colon. In the rat, immunopositive fibres in the circular muscle were most abundant in the ileum, whereas in the guinea-pig it was the colon circular muscle that was most richly innervated. The results demonstrate that neurons which show GABA immunoreactivity are present along the length of the gastrointestinal tract. Their distribution in both myenteric ganglia and circular muscle is heterogeneous both within and between the two species studied. It is probable that this heterogeneity reflects the diversity and specificity of function of this class of enteric neurons. 相似文献
9.
目的观察10只健康黄羽肉鸡肠神经胶质细胞(EGCs)结构特征及钙结合蛋白S100β(S100β)蛋白在鸡小肠的分布特点,为探讨鸡肠神经胶质细胞的形态学特征提供实验依据。方法采用透射电子显微镜技术观察神经胶质细胞的超微结构特点,免疫组织化学SABC-AP法研究S100β蛋白的分布特征。结果电子显微镜下观察表明,鸡肠神经胶质细胞在小肠各段均呈星形,形态上属于星形胶质细胞,细胞核不规则,胞质中分布有大小不一的圆形或椭圆形无髓神经纤维。免疫组织化学显示,S100β在鸡小肠各段黏膜上皮细胞、肠腺表达较强,其中上皮细胞基膜和肠腺上皮细胞顶端为强阳性,固有膜为阴性,在黏膜下神经丛和肌间神经丛均呈强阳性表达。结论鸡肠神经胶质细胞属于星形胶质细胞,其在小肠的分布较为广泛,除具有营养、保护神经节细胞的功能外,可能还参与调节肠腺细胞分泌及黏膜免疫屏障功能。 相似文献
10.
11.
G. Gabella 《Neuroscience》1981,6(3):425-436
The ultrastructure of the glial cells in the enteric plexuses of the rat, guinea-pig, rabbit, cat and sheep has been investigated by freeze-fracture and by thin-section electron microscopy. In all the ganglia studied, glial cells outnumber neurons. They are readily identified by their shape, position and ultrastructure (particularly the abundant amount of gliofilaments) but could not be subdivided into separate types. They provide a partial sheath to the ganglion neurons (but large areas of neuronal membrane lie directly beneath the basal lamina and collagen fibrils) and have long laminar processes extending between nerve processes. Most nerve processes are in direct membrane-to-membrane contact with each other; the glial cells only separate groups of them and rarely form a sheath around an individual neurite.The gliofilaments are anchored to conspicuous dense bodies beneath the cell membrane at the surface of ganglia. The possible significance of these systems of gliofilaments (and the high number of intermediate junctions) is discussed in the light of the severe mechanical stresses imposed on the ganglia by the contractile activity of the gut wall.Numerous specialized contacts, of unknown significance, are found between vesicle-containing nerve varicosities and glial cell bodies or glial processes. In freeze-fracture preparations (cat and guinea-pig), a specific pattern of intramembrane particles allows the cell membrane of the enteric glial cells to be readily identified. 相似文献
12.
Patricia T Mann Bridget R Southwell Heather M Young John B Furness 《Journal of chemical neuroanatomy》1997,12(3):151-164
There are four major classes of descending interneurons in the myenteric plexus of the guinea-pig small intestine. In this study, the connections made by two of these classes of descending interneurons with other interneurons and with inhibitory motor neurons have been investigated using confocal, conventional fluorescence and electron microscopy. The terminals of descending interneurons known to contain both bombesin (BN) and nitric oxide synthase (NOS) were identified by BN immunoreactivity (IR). Cholinergic interneurons known to contain somatostatin (SOM) were identified by SOM-IR. The connections of these two groups of interneurons with the following three classes of nerve cell bodies were examined: those with NOS-IR that also contain γ-aminobutyric acid (GABA) (inhibitory motor neurons), those with only NOS-IR (descending interneurons and inhibitory motor neurons) and those with only GABA-IR (motor neurons). The BN-IR and SOM-IR interneurons were found to form connections with each other, and both types of interneurons provided inputs to motor neurons. Most previous analyses of interconnections in the enteric plexuses have been by conventional fluorescence microscopy and electron microscopy. In the present work these are compared with confocal microscopy. BN-IR varicosities formed pericellular baskets around each class of nerve cell that were easily identifiable with all techniques. Using confocal microscopy, BN-IR varicosities that were in contact with NOS-IR and GABA-IR nerve cells were quantified. Confocal microscopy demonstrated over twice as many contacts as were shown by a previous electron microscopic study. In contrast, conventional fluorescence microscopy showed little indication that SOM-IR varicosities formed inputs to NOS-IR or GABA-IR nerve cells, despite the fact that confocal microscopy revealed direct appositions and electron microscopy revealed synapses. This study has shown that confocal analysis is a valuable adjunct to conventional fluorescence microscopy for determining neuronal circuitry. Moreover, it allows a more rapid collection of data than does electron microscopy. It is concluded that chains of BN-IR and SOM-IR interneurons form descending pathways in the small intestine and that both types of interneuron connect with muscle motor neurons. 相似文献
13.
Immunohistochemical identification of cholinergic neurons in the myenteric plexus of guinea-pig small intestine. 总被引:5,自引:0,他引:5
It is well established that acetylcholine is a neurotransmitter at several distinct sites in the mammalian enteric nervous system. However, identification of the cholinergic neurons has not been possible due to an inability to selectively label enteric cholinergic neurons. In the present study an immunohistochemical method has been developed to localize choline acetyltransferase, the synthetic enzyme for acetylcholine, in order that cholinergic neurons can be visualized. The morphology, neurochemical coding and projections of cholinergic neurons in the guinea-pig small intestine were determined using double-labelling immunohistochemistry. These experiments have revealed that many myenteric neurons are cholinergic and that they can be distinguished by their specific combinations of immunoreactivity for neurochemicals such as calretinin, neurofilament protein triplet, substance P, enkephalin, somatostatin, 5-hydroxytryptamine, vasoactive intestinal peptide and calbindin. On the basis of their previously described projections, functional roles could be attributed to each of these populations. The identified cholinergic neurons are: motorneurons to the longitudinal muscle (choline acetyltransferase/calretinin); motorneurons to the circular muscle (choline acetyltransferase/neurofilament triplet protein/substance P, choline acetyltransferase/substance P and choline acetyltransferase alone); orally directed interneurons in the myenteric plexus (choline acetyltransferase/calretinin/enkephalin); anally directed interneurons in the myenteric plexus (choline acetyltransferase/somatostatin, choline acetyltransferase/5-hydroxytryptamine, choline acetyltransferase/vasoactive intestinal peptide); secretomotor neurons to the mucosa (choline acetyltransferase/somatostatin); and sensory neurons mediating myenteric reflexes (choline acetyltransferase/calbindin). This information provides a unique opportunity to identify functionally distinct populations of cholinergic neurons and will be of value in the interpretation of physiological and pharmacological studies of enteric neuronal circuitry. 相似文献
14.
Changes in the distribution of 5-hydroxytryptamine-like immunoreactivity have been examined in enteric neurons at various times after microsurgical lesions of the enteric plexuses. In the myenteric plexus, varicose immunoreactive nerve fibres disappeared or were reduced in number in ganglia anal to an interruption of the myenteric plexus. Up to about 2 mm on the anal side, all varicose immunoreactive fibres disappeared from the ganglia. At about 14–16 mm below an interruption, there were about 50% of the normal number of fibres in the myenteric ganglia and at about 24 mm the innervation was normal. In the submucosa, fibres immunoreactive for 5-hydroxytryptamine were absent from an area on the anal side following interruption of the myenteric plexus. From consideration of the pattern of disappearance, it is deduced that some myenteric nerve cell bodies send immunoreactive axons in an anal direction to supply submucous ganglia. The axons run for about 8 mm in the myenteric plexus, enter the submucosa and then run for a further 4 mm approximately.Thus, varicose fibres immunoreactive for 5-hydroxytryptamine, which occur around the enteric ganglion cells of both plexuses arise from nerve cell bodies in the myenteric ganglia that send their axons in an anal direction. 相似文献
15.
S. J. H. Brookes A. C. B. Meedeniya P. Jobling M. Costa 《The Journal of physiology》1997,505(2):473-491
16.
V. Sh. Malatsidze 《Bulletin of experimental biology and medicine》1975,80(5):1393-1395
Complex morphological changes, phasic in character, take place in the nervous plexuses of the small intestine after hemiresection. Neurons of both the intermuscular and the submucous plexuses respond similarly to different stages of compensatory and adaptive changes in the residual intestine. The main method of restoration of the normal morphology and function of the nerve cells after degenerative changes is evidently by intracellular regneration. 相似文献
17.
Patch-clamp recording was used to study rectifying K+ currents in myenteric neurons in short-term culture. In conditions that suppressed Ca2+ -activated K+ current, three kinds of voltage-activated K+ currents were identified by their voltage range of activation, inactivation, kinetics and pharmacology. These were A-type current, delayed outwardly rectifying current (I(K),dr) and inwardly rectifying current (I(K),ir). I(K),ir consisted of an instantaneous component followed by a time-dependent current that rapidly increased at potentials negative to -80 mV. Time-constant of activation was voltage-dependent with an e-fold decrease for a 31-mV hyperpolarization amounting to a decrease from 800 to 145 ms between -80 and -100 mV. I(K),ir did not inactivate. I(K),ir was abolished in K+ -free solution. Increases in external K+ increased I(K),ir conductance in direct relation to the square root of external K+ concentration. Activation kinetics were accelerated and the activation range shifted to more positive K+ equilibrium potentials. I(K),ir was suppressed by external Cs+ and Ba2+ in a concentration-dependent manner. Ca2+ and Mg+ were less effective than Ba2+. I(K),ir was unaffected by tetraethylammonium ions. I(K),dr was activated at membrane potentials positive to - 30 mV with an e-fold decrease in time-constant of activation from 145 to 16 ms between -20 and 30 mV. It was half-activated at 5 mV and fully activated at 50 mV. Inactivation was indiscernible during 2.5 s test pulses. I(K),dr was suppressed in a concentration-, but not voltage-dependent manner by either tetraethylammonium or 4-aminopyridine and was insensitive to Cs+. The results suggest that I(K),ir may be important in maintaining the high resting membrane potentials found in afterhyperpolarization-type enteric neurons. They also suggest importance of I(K),ir channels in augmentation of the large hyperpolarizing after-potentials in afterhyperpolarization-type neurons and the hyperpolarization associated with inhibitory postsynaptic potentials. I(K),dr in afterhyperpolarization-type enteric neurons has overall kinetics and voltage behaviour like delayed rectifier currents in other excitable cells where the currents can also be distinguished from A-type and Ca2+ -activated K+ current. 相似文献
18.
19.
20.
The immunocytochemical peroxidase-antiperoxidase technique was used to identify substance P (SP) in the cat small intestine at the ultrastructural level in the nerve plexuses. In the myenteric plexus the SP containing fibres form synapses with the other nerve terminals and run parallel to the circular muscle. The SP in these fibres is present in the vesicles of 80 to 120 nm or 150 to 250 nm in diameter. The results support the contention that SP containing nerve terminals are present in the enteric nervous system. 相似文献