首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The amine- and peptide-producing pulmonary neuroendocrine cells (PNEC) are widely distributed within the airway mucosa of mammalian lung as solitary cells and innervated clusters, neuroepithelial bodies (NEB), which function as airway O2 sensors. These cells express Cftr and hence could play a role in the pathophysiology of cystic fibrosis (CF) lung disease. We performed confocal microscopy and morphometric analysis on lung sections from Cftr-/- (null), Cftr+/+, and Cftr+/- (control) mice at developmental stages E20, P5, P9, and P30 to determine the distribution, frequency, and innervation of PNEC/NEB, innervation and cell mass of airway smooth muscle, and neuromuscular junctions using synaptic vesicle protein 2, smooth muscle actin, and synaptophysin markers, respectively. The mean number of PNEC/NEB in Cftr-/- mice was significantly reduced compared with control mice at E20, whereas comparable or increased numbers were observed postnatally. NEB cells in Cftr null mice showed a significant reduction in intracorpuscular nerve endings compared with control mice, which is consistent with an intrinsic abnormality of the PNEC system. The airways of Cftr-/- mice showed reduced density (approximately 20-30%) of smooth muscle innervation, decreased mean airway smooth muscle mass (approximately 35%), and reduced density (approximately 20%) of nerve endings compared with control mice. We conclude that the airways of Cftr-/- mice exhibit heretofore unappreciated structural alterations affecting cellular and neural components of the PNEC system and airway smooth muscle and its innervation resulting in blunted O2 sensing and reduced airway tonus. Cftr could play a role in the development of the PNEC system, lung innervation, and airway smooth muscle.  相似文献   

3.
Successful isolation and culture of pulmonary neuroendocrine cells (PNEC) is essential for the investigation of cellular and membrane properties of these cells. Such studies are important to define the functional role for PNEC but are hampered by their scant numbers and widespread distribution within the pulmonary epithelium. Several in vitro methods for the isolation and culture of these cells have been described over the past decade, including organ culture, isolation of single cell suspensions enriched for PNEC, and immunomagnetic cell separation techniques. This paper reviews the various methods and discusses their advantages and pitfalls. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Whole-mount airway preparations isolated from the lungs of mice treated by intraperitoneal injection of naphthalene and allowed to recover for 5 days were examined for the distribution and abundance of solitary pulmonary neuroendocrine cells (PNECs) and neuroepithelial bodies (NEBs) along the main axial pathway of the right middle lobe. Sham mice treated with corn oil vehicle were examined in a similar manner. An antibody to calcitonin gene-related peptide, a neuroendocrine cell marker, was used to identify the location, size, and number of PNECs and NEBs in the airways. After naphthalene treatment and epithelial repair, NEBs were significantly increased along the walls of the airways as well as on branch point ridges. The surface area covered by NEBs composed of 20 or fewer PNECs was significantly enlarged after naphthalene treatment compared with control NEBs of an equivalent cell number. The PNEC number per square millimeter was also increased more than threefold above control values after naphthalene treatment. These findings provide further support for a key role of neuroendocrine cells in the reparative process of airway epithelial cell renewal after injury.  相似文献   

5.
Background: The Notch signaling pathway plays complex roles in developing lungs, including regulation of proximodistal fates, airway cell specification and differentiation. However, the specific Notch‐mediated signals involved in lung development remain unclear. Results: Here we report that Jagged1 is expressed in a subset of bronchial and bronchiolar epithelial cells, where it controls proximal airway cell fate and differentiation. In agreement with previous studies involving disruption of all Notch signaling, we found that deletion of Jagged1 in airway epithelium increased the number of ciliated cells at the expense of Clara cells, a phenotype associated with downregulation of Hes1. Deletion of Jagged1 also led to an increased number of pulmonary neuroendocrine cells (PNEC), suggesting that Jagged1/Notch signaling inhibits PNEC cell fate. As expected, Jagged1 deletion did not affect alveolar cell differentiation, although alveolar septation was impaired, likely an indirect effect of proximal airway defects. Finally, in the postnatal lung, Jagged1 deletion induced mucous metaplasia, accompanied by downregulation of Hes1 and Hes5. Conclusions: Our results demonstrate that Jagged1‐mediated Notch signaling regulates multiple cell fate decisions as well as differentiation in the respiratory system to coordinate lung development and to maintain a balance of airway cell types in adult life. Developmental Dynamics 242:678–686, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

6.
7.
We describe a novel method for the isolation and subsequent culture of pulmonary neuroendocrine cells (PNEC) from normal fetal rabbit lung using immunomagnetic techniques with a monoclonal antibody, MOC-1. This surface antigen has originally been identified on small cell carcinoma of the lung. Our immunohistochemical studies have shown that MOC-1 cross-reacts with PNEC of human and rabbit fetal lungs on frozen sections, and in fixed cultures of rabbit fetal lung. Using a combination of mechanical and enzymatic disaggregation, a single-cell suspension of fetal rabbit lung was obtained. These cells were incubated with MOC-1 conjugated to magnetic beads. PNEC were selectively removed from the heterogeneous mixture using a magnet, giving up to 2-fold enrichment compared with our previously reported method. These cells were maintained in culture in a functional state for up to 7 days. The ability to prepare PNEC from rabbit fetal lung offers an opportunity to develop in vitro models to investigate the physiologic and biochemical properties of these cells, and ultimately it may lead to a better understanding of their function in health and disease.  相似文献   

8.
Pulmonary neuroendocrine cells (PNEC) are numerous in the fetus where they have been implicated to have a role in fetal lung development. We assessed the effects of putative growth factors, gastrin releasing peptide (GRP), cholecystokinin (CCK), gastrin (GN), serotonin (5-HT), and epidermal growth factor (EGF), some of which are produced by PNEC, either alone or in combination, on cultured fetal rabbit PNEC from 20, 24, and 28 day fetuses. GRP increased the total protein of the cultures over a 7 day period in an age-dependent manner, with greatest effect in cultures from the 24 day fetus, no effect with the 28 day fetus, and an inhibitory effect on 20 day cultures. This was accompanied by an increase in PNEC, which could be blocked by treatment of the cultures with a monoclonal antibody to GRP (2A11). There was no increase in 3H-thymidine labeling of PNEC in GRP treated cultures but an increase in numbers of cells partially stained for 5-HT, suggesting the induction of a precursor cell. Other growth factors had neither an inhibitory nor a stimulatory effect either alone or in combination with GRP. Preliminary studies with 125I-GRP receptor localization suggests that the GRP receptor is mostly expressed on pulmonary fibroblasts, and less on epithelial cells, so that the role for GRP in fetal lung development, at least in the rabbit, is probably indirect, acting via a paracrine mechanism. © 1993 Wiley-Liss, Inc.  相似文献   

9.
10.
The airways of the mammalian lung are lined with highly specialized epithelial cell types that are the targets of airborne toxicants and injury. Notch signaling plays an important role in the ontogeny of airway epithelial cells, but its contributions to recruitment, expansion or differentiation of resident progenitor/stem cells, and repair and re-establishment of the normal composition of airway epithelium following injury have not been addressed. In this study, the role of a specific Notch receptor, Notch1, was investigated by targeted inactivation in the embryonic lung epithelium using the epithelial-specific Gata5-Cre driver line. Notch1-deficient mice are viable without discernible defects in pulmonary epithelial cell-fate determination and differentiation. However, in an experimental model of airway injury, activity of Notch1 is found to be required for normal repair of the airway epithelium. Absence of Notch1 reduced the ability of a population of cells distinguished by expression of PGP9.5, otherwise a marker of pulmonary neuroendocrine cells, which appears to serve as a reservoir for regeneration of Clara cells. Hairy/enhancer of split-5 (Hes5) and paired-box-containing gene 6 (Pax6) were found to be downstream targets of Notch1. Both Hes5 and Pax6 expressions were significantly increased in association with Clara cell regeneration in wild-type lungs. Ablation of Notch1 reduced Hes5 and Pax6 and inhibited airway epithelial repair. Thus, although dispensable in developmental ontogeny of airway epithelial cells, normal activity of Notch1 is required for repair of the airway epithelium. The signaling pathway by which Notch1 regulates the repair process includes stimulation of Hes5 and Pax6 gene expression.  相似文献   

11.
12.
罗俊铭 《解剖学报》1994,25(4):417-420,T010
用光镜免疫组织化学和原位包埋免疫电镜技术观察了低氧对成年大鼠肺降钙素阳性神经内分泌细胞的影响,计数了单位面积内单个神经内分泌细胞、神经上皮小体以及NEC与NEB细胞个数之和的阳性细胞总数。统计分析结果显示,低氧导致TNE、NEB和组成NEB的细胞数目增多。原位包埋免疫电镜法发现,降钙素免疫反应物定位于神经分泌颗粒内。  相似文献   

13.
Since Dale and Laidlaw first produced airway obstruction in animals by infusing histamine, much has been done to understand the role of histamine in hyperreactive airway diseases. Histamine has been found to activate three subtypes of receptors: the H1 subtype, which mediates a number of cellular events resulting in airway obstruction; the H2 subtype, which plays an unclear and perhaps variable role in mediating airway caliber changes; and the newly described H3 subtype, which has not yet been studied in relation to airway caliber. The mechanisms involved in the synthesis, storage, and release of histamine from mast cells and basophils have been described. Pulmonary cells responsible for airway obstruction via H1 receptor stimulation have been identified and include bronchial smooth muscle, epithelial, endothelial, and pulmonary macrophage cells. Radioligand binding studies have begun to characterize the density and affinity of pulmonary H1 receptors. Intracellular events following H1 receptor stimulation have been shown to include calcium influx, phosphatidyl-inositol turnover, increases in cGMP, and the synthesis of prostaglandins. Despite a great deal of effort to define the relation between histamine and the parasympathetic nervous system, their exact interactions leading to changes in airway caliber remain to be resolved. Many pathologic conditions and mediators related to inflammation have been shown to increase histamine-induced airway responsiveness. A few endogenous mediators and a number of pharmacologic agents have been shown to decrease histamine-induced airway responsiveness. Although much has been done to elucidate the role of histamine and the H1 receptor system in modulating airway caliber, much more needs to be done to fully understand the complexities and significance of the H1 receptor system in normal and pathologic states of the airway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ciliated airway epithelial cells are critical for mucosal barrier function, including host defense against pathogens. This cell population is often the primary target and thereby the first line of defense against many common respiratory viruses. It is also the precursor for mucous cells and thereby promotes mucociliary clearance of infectious and other noxious agents. Cells with motile cilia in other organs (e.g., brain and reproductive organs) may also have roles in development and reproduction. However, definitive proof of ciliated cell function is hampered by the lack of strategies to specifically target this cell population for loss of function in vivo. To this end, cell type-specific gene promoters have been combined with the Cre/LoxP system to disrupt genes in airway and alveolar epithelial cell populations expressing surfactant protein C (SP-C) or Clara cell secretory protein (CCSP). By contrast, an analogous system to disrupt gene function in ciliated airway epithelial cells was still needed. Here we report the generation and analysis of mouse lines with a FOXJ1 promoter driving the Cre recombinase and show that this system mediates genomic recombination specifically in ciliated cells. The pattern of recombination recapitulates endogenous FOXJ1 promoter function, being restricted to ciliated cells present in pulmonary airways as well as choroid plexus, ependyma, oviduct, and testis. This transgenic mouse system thereby offers a new strategy for specific knockouts of genes in ciliated cells. It should prove extremely useful for defining ciliated cell function in airway mucosal immunity as well as development and reproduction.  相似文献   

15.
Innervated groups of neuroendocrine cells, called neuroepithelial bodies (NEBs), are diffusely spread in the epithelium of intrapulmonary airways in many species. Our present understanding of the morphology of NEBs in mammalian lungs is comprehensive, but none of the proposed functional hypotheses have been proven conclusively. In recent reviews on airway innervation, NEBs have been added to the list of presumed physiological lung receptors. Microscopic data on the innervation of NEBs, however, have given rise to conflicting interpretations. Using neuronal tracing, denervation, and immunostaining, we recently demonstrated that the innervation of NEBs is much more complex than the almost unique vagal nodose sensory innervation suggested by other authors. The aim of the present work is to summarize our present understanding about the origin and chemical coding of the profuse nerve terminals that selectively contact pulmonary NEBs. A thorough knowledge of the complex interactions between the neuroendocrine cells and at least five different nerve fiber populations is essential for defining the position(s) of NEBs among the many pulmonary receptors characterized by lung physiologists.  相似文献   

16.
Ever since pulmonary neuroendocrine cells were first described, a chemoreceptor function has been attributed to them. This hypothesis proposes that the innervated clusters of these cells, which are known to degranulate when the oxygen tension around them is reduced, respond to hypoxia to initiate activity in a reflex arc and ultimately adjust some aspect of pulmonary function. If this were true, one might expect to see changes in the pulmonary neuroendocrine system in species exposed to the unremitting hypoxia at natural high altitude. Whilst evidence from some studies suggests that such changes do occur, others have been unable to demonstrate any effect. To some extent this may be attributable to species variability, but might also reflect whether the organism is genetically adapted or merely acclimatized to life in an oxygen-poor environment. © 1993 Wiley-Liss, Inc.  相似文献   

17.
In previous studies, we demonstrated that pulmonary neuroendocrine cell (PNEC) hyperplasia in hamsters treated with diethylnitrosamine (DEN) plus 65% hyperoxia (DEN/O2) reflects predominantly neuroendocrine cell differentiation. Several peptides implicated in non-neoplastic PNEC hyperplasia are hydrolyzed by CD10/neutral endopeptidase 24.11 (CD10/NEP), an enzyme known to downregulate neurogenic inflammation of the lung by modulating locally effective concentrations of multiple bioactive peptides. In fetal mice, we observed that CD10/NEP inhibition by SCH32615 potentiates cell proliferation and type II cell differentiation in the lung in utero. Further, CD10/NEP messenger RNA levels parallelled relative PNEC numbers in DEN/O2-treated hamster lung, suggesting that the enzyme might mediate spontaneous regression of PNEC hyperplasia. The goals of the present study were: (1) to determine whether CD10/NEP inhibition would alter the extent of PNEC hyperplasia occurring in these hamsters, and (2) to analyze cellular mechanisms potentially involved in altering numbers of PNECs in this model. We administered SCH32615 chronically to a subset of DEN/O2-treated hamsters. Immunostaining of lungs from the CD10/ NEP-inhibited subset demonstrated significant acceleration of the development of PNEC hyperplasia, increased PNEC proliferation, and diminished PNEC apoptosis as compared with animals receiving no SCH32615. These observations indicate that PNEC hyperplasia can occur as a result of multiple cellular processes, including increased neuroendocrine cell differentiation, proliferation, and survival. CD10/NEP modulates PNEC numbers primarily by promoting cell differentiation and proliferation during lung injury, probably via increasing the half-life of bioactive peptides in the lung.  相似文献   

18.
BACKGROUND: Active sodium absorption is the dominant mechanism of ion transport in airway epithelium, but its role in pulmonary physiology and airway host defense is unknown. To address this question, we studied the function of airway epithelial cells and determined the frequency of pulmonary symptoms in patients with systemic pseudohypoaldosteronism, a salt-losing disorder caused by loss-of-function mutations in the genes for the epithelial sodium channel. METHODS: In nine patients 1.5 to 22 years of age who had systemic pseudohypoaldosteronism, we tested for mutations in the genes for the epithelial sodium channel, estimated the rate of sodium transport in the airway, determined the volume and ion composition of airway surface liquid, reviewed clinical features, collected laboratory data pertinent to pulmonary function, and, in three adults, measured mucociliary clearance. RESULTS: The patients with systemic pseudohypoaldosteronism had loss-of-function mutations in the genes for the epithelial sodium-channel subunits, no sodium absorption from airway surfaces, and a volume of airway surface liquid that was more than twice the normal value. The mean (+/-SE) mucociliary transport rate was higher in the 3 adult patients than in 12 normal subjects (2.0+/-0.7 vs. 0.5+/-0.3 percent per minute, P=0.009). Young patients (those five years of age or less) all had recurrent episodes of chest congestion, coughing, and wheezing, but no airway infections with Staphylococcus aureus or Pseudomonas aeruginosa. Older patients (those more than five years of age) had less frequent respiratory symptoms. CONCLUSIONS: Patients with systemic pseudohypoaldosteronism fail to absorb liquid from airway surfaces; the result is an increased volume of liquid in the airways. These results demonstrate that sodium transport has a role in regulating the volume of liquid on airway surfaces.  相似文献   

19.
Evidence for stem-cell niches in the tracheal epithelium.   总被引:24,自引:0,他引:24  
It is generally important to elucidate airway epithelial cell lineages and to identify multipotent progenitors as targets for gene therapy. Stem (S) cells are typically present in specialized compartments spatially proximal to their differentiated progeny, but an equivalent paradigm has not been demonstrated in the airway. We discovered a distinct population of cells displaying high levels of keratin expression in murine tracheal submucosal gland ducts, and tested the hypothesis that bromodeoxyuridine (BrdU) label-retaining cells (LRCs), thought to represent the S-cells, were present in this compartment. Mice received weekly epithelial damage by intratracheal detergent or SO(2) inhalation for 4 wk and received intraperitoneal injections of BrdU every 48 h during the injury and repair period. At 3 and 6 d after injury, BrdU-positive epithelial cells were noted along the entire tracheal length in both basal and lumenal cell positions. At later time points (20 and 95 d) LRCs were localized to gland ducts in the upper trachea and to systematically arrayed foci in the lower trachea, typically near the cartilage-intercartilage junction. LRCs were not pulmonary neuroendocrine cells. Heterotopic tracheal grafts after surface epithelial removal demonstrated reconstitution of a surface-like epithelium from gland remnants. These results suggest that airway epithelial S cells are localized to specific niches.  相似文献   

20.
Lung transplantation remains the only therapeutic option for many patients suffering from end-stage pulmonary disease. Long-term success after lung transplantation is severely limited by the development of bronchiolitis obliterans. The murine heterotopic tracheal transplantation model has been widely used for studies investigating pathogenesis of obliterative airway disease and immunosuppressive strategies to prevent its development. Despite its utility, this model employs proximal airway that lacks airflow and is not vascularized. We have developed a novel model of orthotopic vascularized lung transplantation in the mouse, which leads to severe vascular rejection in allogeneic strain combinations. Here we characterize differences in the fate of airway epithelial cells in nonimmunosuppressed heterotopic tracheal and vascularized lung allograft models over 28 days. Up-regulation of growth factors that are thought to be critical for the development of airway fibrosis and interstitial collagen deposition were similar in both models. However, while loss of airway epithelial cells occurred in the tracheal model, airway epithelium remained intact and fully differentiated in lung allografts, despite profound vascular rejection. Moreover, we demonstrate expression of the anti-apoptotic protein Bcl-2 in airway epithelial cells of acutely rejected lung allografts. These findings suggest that in addition to alloimmune responses, other stimuli may be required for the destruction of airway epithelial cells. Thus, the model of vascularized mouse lung transplantation may provide a new and more physiologic experimental tool to study the interaction between immune and nonimmune mechanisms affecting airway pathology in lung allografts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号