首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Novel derivatives of 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (GBR 12909, 1) and 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (GBR 12935, 2) with various substituents in positions C2 and C3 of the phenylpropyl side chain were synthesized and evaluated for their ability to bind to the dopamine transporter (DAT) and the serotonin transporter (SERT). In the C2 series, the substituent in the S-configuration, with a lone-pair of electrons, significantly enhanced the affinity for DAT, whereas the steric effect of the substituent was detrimental to DAT binding affinity. In the C3 series, neither the lone electron pair nor the steric effect of the substituent seemed to affect DAT binding affinity, while sp (2) hybridized substituents had a detrimental effect on affinity for DAT. In the series, the 2-fluoro-substituted (S)-10 had the highest DAT binding affinity and good DAT selectivity, while the 2-amino-substituted (R)-8 showed essentially the same affinity for DAT and SERT. The oxygenated 16 and 18 possessed the best selectivity for DAT.  相似文献   

2.
A series of analogues related to 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (2) and 1-?2-[bis(4-fluorophenyl)methoxy]ethyl?-4-(3-phenylpropyl)piperazine (3) (GBR 12935 and GBR 12909, respectively), in which the piperazine moiety was replaced by bridged piperazines for structural rigidity, has been designed, synthesized, and evaluated for their ability to bind to the dopamine transporter (DAT) and to inhibit the uptake of (3)H-labeled dopamine (DA). The binding data indicated that compounds 7 and 11, the N-methyl- and N-propylphenyl-3,8-diaza[3.2. 1]bicyclooctane analogues of 3, showed high affinity for the DAT (IC(50) = 8.0 and 8.2 nM, respectively), and 7 had high selectivity at the DAT relative to the serotonin transporter (SERT) (88- and 93-fold for binding and reuptake, respectively). They also displayed linear activity in DA uptake inhibition, possessing a similar binding and reuptake inhibition profile to 3. The N-indolylmethyl analogue 16 showed the highest affinity (IC(50) = 1.4 nM) of the series, with a 6-fold increase over its corresponding N-phenypropyl derivative 11. Interestingly, this compound exhibited a high ratio (29-fold) of IC(50) for the inhibition of DA reuptake versus binding to the DAT. Replacing the piperazine moiety of 2 and 3 with (1S, 4S)-2,5-diazabicyclo[2.2.1]heptane resulted in compounds 23-26, which showed moderate to poor affinity (IC(50) = 127-1170 nM) for the DAT. Substitution of the homopiperazine moiety of 4 with a more rigid 3,9-diazabicyclo[4.2.1]nonane gave compounds 28-33. However, the binding data showed that compound 32 displayed a 10-fold decrease in affinity at the DAT and a 100-fold decrease in selectivity at the DAT relative to the SERT compared to its corresponding homopiperazine compound 4.  相似文献   

3.
An investigation into the preparation of potential extended-release cocaine-abuse therapeutic agents afforded a series of compounds related to 1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine (1a) and 1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine (1b) (GBR 12935 and GBR 12909, respectively), which were designed, synthesized, and evaluated for their ability to bind to the dopamine transporter (DAT) and to inhibit the uptake of [(3)H]-labeled dopamine (DA). The addition of hydroxy and methoxy substituents to the benzene ring on the phenylpropyl moiety of 1a-1d resulted in a series of potent and selective ligands for the DAT (analogues 5-28). The hydroxyl groups were included to incorporate a medium-chain carboxylic acid ester into the molecules, to form oil-soluble prodrugs, amenable to "depot" injection techniques. The introduction of an oxygen-containing functionality to the propyl side chain provided ketones 29 and 30, which demonstrated greatly reduced affinity for the DAT and decreased potency in inhibiting the uptake of [(3)H]DA, and benzylic alcohols 31-36, which were highly potent and selective at binding to the DAT and inhibiting [(3)H]DA uptake. The enantiomers of 32 (34 and 36) were practically identical in biological testing. Compounds 1b, 32, 34, and 36 all demonstrated the ability to decrease cocaine-maintained responding in monkeys without affecting behaviors maintained by food, with 34 and 36 equipotent to each other and both more potent in behavioral tests than the parent compound 1b. Intramuscular injections of compound 41 (the decanoate ester of racemate 32) eliminated cocaine-maintained behavior for about a month following one single injection, without affecting food-maintained behavior. The identification of analogues 32, 34, and 36, thus, provides three potential candidates for esterification and formulation as extended-release cocaine-abuse therapeutic agents.  相似文献   

4.
A series of 4-[2-[bis(4-fluorophenyl)methoxy]ethylpiperidines were examined for their ability to bind to the dopamine transporter (DAT), the norepinephrine transporter, and the serotonin transporter (SERT). In particular, the role of the N-substituent on affinity and selectivity for the DAT was probed. 4-[2-[Bis(4-fluorophenyl)methoxy]ethyl-1-(2-naphthylmethyl)piperidine was found to possess subnanomolar affinity (K(i) = 0.7 nM) and good selectivity for the DAT (SERT/DAT = 323).  相似文献   

5.
A series of 4-[2-[bis(4-fluorophenyl)methoxy]ethyl-1-benzylpiperidines were examined for their ability to bind to the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). Binding results indicated that the presence of an electron-withdrawing group in the C(4)-position of the N-benzyl group is beneficial for binding to the DAT. Several analogues have been identified with high affinity for the DAT, up to 500-fold selectivity over the SERT and about 170-fold selectivity over the NET in binding and uptake inhibition assays.  相似文献   

6.
To explore structure-activity relationships (SAR) of a novel conformationally constrained lead cis-3,6-disubstituted piperidine derivative derived from (2,2-diphenylethyl)-[1-(4-fluorobenzyl)piperidine-4-ylmethyl]amine (I), a series of compounds was synthesized by derivatizing the exocyclic N-atom at the 3-position of the lead. This study led to the formation of substituted phenyl and heterocyclic derivatives. All novel compounds were tested for their affinity at the dopamine transporter (DAT), serotonin transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in competing for the binding of [3H]WIN 35 428, [3H]citalopram, and [3H]nisoxetine, respectively. Selected compounds were also evaluated for their activity in inhibiting the uptake of [3H]DA. The SAR results demonstrated that the nature of substitutions on the phenyl ring is important in activity at the DAT with the presence of an electron-withdrawing group having the maximum effect on potency. Replacement of the phenyl ring in the benzyl group by heterocyclic moieties resulted in the development of compounds with moderate activity for the DAT. Two most potent racemic compounds were separated by a diastereoisomeric separation procedure, and differential affinities were observed for the enantiomers. Absolute configuration of the enantiomers was obtained unambiguously by X-ray crystal structural study. One of the enantiomers, compound S,S-(-)-19a, exhibited the highest potency for the DAT (IC50 = 11.3 nM) among all the compounds tested and was as potent as GBR 12909 (1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine). However, the compound (-)-19a was more selective than GBR 12909 in binding to the DAT compared with binding to the SERT and NET. The present results establish the newly developed 3,6-disubstituted piperidine derivatives as a novel template for high-affinity inhibitors of DAT. Structurally these molecules are more constrained compared to our earlier flexible piperidine molecules and, thus, should provide more insights about their bioactive conformations.  相似文献   

7.
A series of novel diamine, amine-amide, and piperazinone analogues of N-[2-(bisarylmethoxy)ethyl]-N'-(phenylpropyl)piperazines, GBR 12909 and 12935, were synthesized and evaluated as inhibitors of presynaptic monoamine neurotransmitter transporters. The primary objective of the study was to determine the structural requirements for selectivity of ligand binding and potency for neurotransmitter reuptake inhibition. In general, the target compounds retained transporter affinity; however, structural variations produced significant effects on reuptake inhibition and transporter selectivity. For example, analogues prepared by replacing the piperazine ring in the GBR structure with an N, N'-dimethylpropyldiamine moiety displayed enhanced selectivity for binding and reuptake inhibition at the norepinephrine (NE) transporter site (e.g. 4 and 5). Congeners in which the amide nitrogen atom was attached to the aralkyl moiety of the GBR molecule showed moderate affinity (K(i) = 51-61 nM) and selectivity for the dopamine transporter (DAT) site. In contrast, introduction of a carbonyl group adjacent to either nitrogen atom of the piperazine ring (e.g. 25 and 27) was not well tolerated. From the compounds prepared, analogue 16 was selected for further evaluation. With this congener, locomotor activity induced by cocaine at a dose of 20 mg/kg was attenuated with an AD(50) (dose attenuating cocaine-induced stimulation by 50%) of 60.0 +/- 3.6 mg/kg.  相似文献   

8.
Vanoxerine (1-[2-[bis(4-fluorophenyl)methoxy]ethyl]-4-(3-phenylpropyl)piperazine; GBR12909) is a promising agent for the treatment of cocaine dependence. Knowledge of the major pathway for GBR12909 metabolism is important for prediction of the likelihood of drug-drug interactions, which may affect the therapeutic clinical outcome, when this agent is used in cocaine-dependent individuals receiving multiple drug therapy. We studied biotransformation of GBR12909 in human liver microsomes (n = 4), human hepatocytes, and microsomes containing cDNA-expressed human P450 isoforms with GBR12909 concentrations within the range of steady-state plasma concentrations detected in healthy volunteers. A high-pressure liquid chromatography assay was used to measure parent GBR12909 and its primary metabolite. GBR12909 was metabolized by human liver microsomes, hepatocytes, and cDNA-expressed human P450s to a single metabolite. Ketoconazole, a selective inhibitor of CYP3A, reduced GBR12909 biotransformation in human liver microsomes and primary hepatocytes by 92 +/- 2 and 92.4 +/- 0.4%, respectively. Quercetin (an inhibitor of CYP2C8/3A4) was a less effective inhibitor producing 62 +/- 22% inhibition in human liver microsomes and 54 +/- 35% in hepatocytes. Other P450 selective inhibitors did not decrease GBR12909 biotransformation more than 29% in either human liver microsomes or hepatocytes with the exception of chlorzoxazone (CYP2E1), which inhibited GBR12909 biotransformation by 71.4 +/- 18.5% in primary human hepatocytes. Ciprofloxacin (CYP1A2), sulfaphenazole (CYP2C9), quinidine (CYP2D6), chlorzoxazone (CYP2E1), and mephenytoin (CYP2C19) did not demonstrate statistically significant inhibition (p > 0.05) of GBR12909 biotransformation in liver microsomes. cDNA-expressed P450 3A4 metabolized GBR12909 to a greater extent than 2C8 and 2E1. These data suggest the possibility that multiple P450 isoforms may be involved in human GBR12909 metabolism but that CYP3A appears to be the major enzyme responsible for human GBR12909 biotransformation.  相似文献   

9.
The binding characteristics of [3H]GBR 12935 (1-[2-(diphenylmethoxy)ethyl]-4-(3-phenylpropyl)piperazine), a selective dopmaine uptake inhibitor, were examined in intact membrane preparations and solubilized extracts of terminal field regions of dopamine pathways in the brain of the rats. There were many similarities in the properties of binding sites for [3H]GBR 12935 in the striatum, nucleus accumbens and olfactory tubercle. The binding of [3H]GBR 12935 was saturable and the affinity constants were not significantly different between regions of the brain. The binding of [3H]GBR 12935 was inhibited by amfonelic acid, GBR 12909, mazindol, methylphenidate and cocaine, with comparable affinities in each region of the brain and with the same order of potency in both preparations. Furthermore, the rank order of potencies for inhibiting the binding of [3H]GBR 12935 was the same as for inhibiting the uptake of [3H]dopamine in these regions of the brain. There did appear to be some degree of heterogeneity of binding sites for [3H]GBR 12935 in each of these regions of the brain, as both amfonelic acid and mazindol were best fitted by two-site models. Whether this apparent heterogeneity was due to the existence of two distinct binding sites or to two components of a single site is unclear. It did not, however, appear to be due to binding to uptake sites for norepinephrine or serotonin, as neither nisoxetine nor fluoxetine, selective inhibitors of the uptake of norepinephrine and serotonin, respectively, inhibited the binding of [3H]GBR 12935, at concentrations which inhibit the uptake of norepinephrine or serotonin.  相似文献   

10.
In general, 3alpha-(diphenylmethoxy)tropane (benztropine)-based dopamine uptake inhibitors do not demonstrate cocaine-like pharmacological activity in models of psychostimulant abuse and have been proposed as potential medications for the treatment of cocaine addiction. However, several (S)-2-carboalkoxy-substituted-3alpha-[bis(4-fluorophenyl)methoxy]tropane analogues were discovered to stimulate locomotor activity and substitute in subjects trained to discriminate cocaine, suggesting a role of the 2-position substituent in mediating these cocaine-like actions. Herein, we describe the synthesis of a series of novel N- and 2-substituted-3alpha-[bis(4-fluoro- or 4-chlorophenyl)methoxy]tropane analogues. Most of these analogues demonstrated high affinity binding to the dopamine transporter (DAT; K(i) = 1.8-40 nM), and selectivity over the other monoamine transporters and muscarinic M(1) receptors. When the (S)-2-carboalkoxy substituent was replaced with (S)-2-ethenyl, the resulting analogue 11 demonstrated the highest DAT binding affinity in the series (K(i) = 1.81 nM) with DAT selectivity over serotonin transporters (SERT; 989-fold), norepinephrine transporters (NET; 261-fold) and muscarinic receptors (90-fold). When the 4'-F groups of compounds 5 (K(i) = 2.94 nM) and 8 (K(i) = 6.87 nM) were replaced with 4'-Cl in the (S)-2-carboalkoxy series, DAT binding affinities were slightly reduced (K(i) = 12.6 and 14.6 nM for 6 and 7, respectively), yet inhibition of dopamine uptake potency remained comparably high (IC(50) range = 1.5-2.5 nM). Interestingly, the 4'-Cl analogue (+/-)-6 substituted less in rats trained to discriminate cocaine than the 4'-F analogue (+/-)-5. These studies demonstrate that manipulation of the 2-, N-, and 3-position substituents in the 3alpha-(diphenylmethoxy)tropane class of dopamine uptake inhibitors can result in ligands with high affinity and selectivity for the DAT, and distinctive in vivo pharmacological profiles that cannot be predicted by their effects in vitro.  相似文献   

11.
We have prepared azabicyclo[3.2.1] derivatives (C-3-substituted tropanes) that bind with high affinity to the dopamine transporter and inhibit dopamine reuptake. Within the series, 3-[2-[bis-(4-fluorophenyl)methoxy]ethylidene]-8-methyl-8-azabicyclo[3.2.1]octane (8) was found to have the highest affinity and selectivity for the dopamine transporter. These azabicyclo[3.2.1] (bridged piperidine) series of compounds differ from the well-known benztropines by a 2-carbon spacer between C-3 and a diarylmethoxy moiety. Interestingly, these new compounds demonstrated a much lower affinity for the muscarinic-1 site, at least a 100-fold decrease compared to benztropine. Replacing N-methyl with N-phenylpropyl in two of the compounds resulted in a 3-10-fold increase in binding affinity for the dopamine transporter. However, those compounds lost selectivity for the dopamine transporter over the serotonin transporter. Replacement of the ether oxygen in the diarylmethoxy moiety with a nitrogen atom gave relatively inactive amines, indicating the important role which is played by the ether oxygen in transporter binding. Reduction of the C-3 double bond in 8 gave 3 alpha-substituted tropanes, as shown by X-ray crystallographic analyses of 11, 12, and 19. The 3 alpha-substituted tropanes had lower affinity and less selectivity than the comparable unsaturated ligands.  相似文献   

12.
A series of substituted N-benzyl analogues of the dopamine transporter (DAT) specific compound, 4-[2-(diphenylmethoxy)ethyl]-1-benzylpiperidine were synthesized and biologically characterized. Different 4'-alkyl, 4'-alkenyl, and 4'-alkynyl substituents were introduced in the phenyl ring of the benzyl moiety along with the replacement of the same phenyl ring by the isomeric alpha- and beta-naphthyl groups. Different polar substitutions at the 3'- and 4'-position were also introduced. Novel compounds were tested for their binding affinity at the dopamine, serotonin, and norepinephrine transporter systems in the brain by competing for [(3)H]WIN 35 428, [(3)H]citalopram, and [(3)H]nisoxetine, respectively. Selected compounds were also evaluated for their activity in inhibiting the uptake of [(3)H]dopamine. Binding results demonstrated that alkenyl and alkynyl substitutions at the 4'-position produced potent compounds in which compound 6 with a vinyl substitution was the most potent. In vivo evaluation of three selected compounds indicated that despite their high potency at the DAT, these compounds stimulated locomotor activity (LMA) less than cocaine when tested across similar dose ranges. In a drug discrimination study procedure, none of these three compounds generalized from cocaine in mice trained to discriminate 10 mg/kg cocaine from vehicle. In a 4 h time course LMA experiment, one of our previous lead piperidine derivatives (1a) showed considerable prolonged action. Thus, in this report, we describe a structure-activity relationship study of novel piperidine analogues assessed by both in vitro transporter assays and in vivo behavioral activity measurements.  相似文献   

13.
Studies were performed to elucidate the effects of 1-[2-[bis (fluorophenyl) methoxy]ethyl]-4-(3-phenylpropyl) piperazine dihydrochloride (I-893), a newly synthesized aryl-1,4-dialkyl-piperazine derivative, on turnover of dopamine and norepinephrine in the rat brain. The contents of both monoamines were not affected by I-893 at an oral dose of 10 mg/kg. The oral administration of 50-250 mg/kg produced a transient increase in dopamine content of the caudate nucleus and hypothalamus, and thereafter, the content dose-dependently decreased. Norepinephrine levels in the hypothalamus and frontal cortex were slightly decreased by I-893. I-893 potentiated the rate of alpha-methyl-p-tyrosine-induced depletion of dopamine and norepinephrine. The 3-methoxytyramine content in animals treated with pargyline was increased by I-893 in the caudate nucleus and olfactory tubercle. NSD-1015-induced accumulation of DOPA was suppressed by larger doses of I-893. Oral administration of I-893 (10-50 mg/kg/day) for 14 days slightly attenuated the inhibitory effects of the drug on the norepinephrine level, while it did not affect the inhibitory effect on the dopamine level. These results suggest that I-893 facilitates the release of dopamine and norepinephrine and/or inhibits the uptake of the monoamines in the presynaptic nerve terminals.  相似文献   

14.
N-[2-[4-(4-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (1), a high-affinity and selective dopamine D(4) receptor ligand, was chosen as a lead, and structural modifications were done on its amide bond and on its alkyl chain linking the benzamide moiety to the piperazine ring and by preparing some semirigid analogues. The binding profile at dopamine D(4) and dopamine D(2), serotonin 5-HT(1A), and adrenergic alpha(1) receptors of 16 new compounds was determined. From the results emerged that the modification of the amide bond and the elongation of the intermediate alkyl chain caused a decrease in dopamine D(4) receptor affinity. All prepared semirigid analogues displayed D(4) receptor affinity values in the same range of the opened counterparts.  相似文献   

15.
Substituted 1-[2-(diphenylmethoxy)ethyl]piperazines were tested for their affinity to specific [3H]dopamine binding sites in membrane preparations from the corpus striatum of the rat. In particular, 4-(3-phenyl-2-prop(en)yl)- and 4-(3-phenyl-2-butyl)-substitution yielded compounds potent in displacing [3H]dopamine from its binding sites, with IC50-values in the order of 10 nM. There was a significant correlation between the IC50-values determined in this binding assay and the IC50-values obtained for the same compounds in a previous study on their potency to inhibit the uptake of dopamine in synaptosomal preparations of the striatum of the rat. Current insight in structural requirements for binding to dopamine receptors, as obtained mainly with rigid analogues of dopamine, gives no satisfactory explanation for the dopaminergic activity of the piperazine derivatives tested.  相似文献   

16.
The development of structure-activity relationships (SAR) with divergent classes of monoamine transporter ligands and comparison of their effects in animal models of cocaine abuse have provided insight into the complex relationship among structure, binding profiles, and behavioral activity. Many 3alpha-(diphenylmethoxy)tropane (benztropine) analogues are potent dopamine uptake inhibitors but exhibit behavioral profiles that differ from those of cocaine and other compounds in this class. One of the most potent and dopamine transporter (DAT) selective N-substituted benztropine analogues (N-(4-phenyl-n-butyl)-3alpha-(bis[4-fluorophenyl]methoxy)tropane, 1c) is devoid of cocaine-like behaviors in rodent models but is also highly lipophilic (cLogD = 5.01), which compromises its water solubility and may adversely affect its pharmacokinetic properties. To further explore the SAR in this series and ultimately to design dopamine uptake inhibitors with favorable lipophilicities for drug development, a comparative molecular field analysis (CoMFA) was performed on a set of benztropine analogues previously synthesized in our laboratory. The CoMFA field analysis on the statistically significant (r2(cv) = 0.632; r2(ncv) = 0.917) models provided valuable insight into the structural features required for optimal binding to the DAT, which was used to design a series of novel benztropine analogues with heteroatom substitutions at the tropane N-8. These compounds were evaluated for binding at DAT, serotonin (SERT) and norepinephrine (NET) transporters, and muscarinic M1 receptors in rat brain. Inhibition of [3H]DA uptake in synaptosomes was also evaluated. Most of the analogues showed high DAT affinity (12-50 nM), selectivity (10- to 120-fold), potent inhibition of dopamine uptake, and lower lipophilicities as predicted by cLogD values.  相似文献   

17.
A series of 4-[2-[bis(4-fluorophenyl)methoxy]ethyl]-piperidines and 4-[2-[(bisphenyl)methoxy]ethyl]-piperidines with different types of substituents in the phenylpropyl side-chain were synthesized and examined for their ability to bind to the dopamine transporter (DAT), the serotonin transporter (SERT), and the norepinephrine transporter (NET). All of the compounds showed high binding affinities for the DAT in the low to subnanomolar range. Their ability to bind to the SERT and the NET, while maintaining their high affinity for the DAT, could be altered by substitution in positions C2 and C3 of the phenylpropyl side-chain. This approach gave rise to a new set of compounds with selectivity for the DAT, the DAT and the SERT, or the DAT and the NET. Six compounds (7, 9, 11, 12, 14, and 20) with relatively low SERT/DAT ratios were selected for additional study in biogenic amine uptake inhibition assays based on the biogenic amine transporter binding results. Some of the new ligands can serve as pharmacological tools to block DAT or DAT and another transporter simultaneously.  相似文献   

18.
We have undertaken a program to develop cocaine antagonists based on the premise that such compounds should block cocaine binding but permit reuptake of dopamine at the dopamine transporter (DAT). To evaluate the structural features of potential cocaine antagonists, 3-aminomethylpiperidine and 4-aminopiperidine moieties were incorporated at the central bridge region (piperazine ring) of GBR 12935. The compounds were assayed as inhibitors of [(125)I]RTI-55 binding at the DAT and monoamine transport. The results indicated that most of the new compounds preferentially inhibited norepinephrine reuptake by its transporter (NET) but in some cases retained binding selectivity for the DAT. In general, the binding selectivity and potency of [(3)H]NE reuptake inhibition were very sensitive to modifications of the central bridge diamine moiety (position of two basic nitrogen atoms). Compound 6 exhibited the highest ratio (14-fold) of DA reuptake inhibition to RTI-55 binding inhibition at the DAT; however, in an in vitro assay of cocaine antagonism, this compound failed to reduce inhibition of [(3)H]DA uptake by cocaine. These results demonstrated that separation of biological activities into the binding and reuptake inhibition can be achieved by alterations in the internal diamine component of GBR 12935, but additional modifications are necessary before these agents constitute lead compounds for development as cocaine antagonists.  相似文献   

19.
Extensive structure-activity relationships at the dopamine transporter (DAT) have been developed around two classes of tropane-based ligands. Opposing stereoselectivity and divergent structural requirements for optimal DAT binding suggest that these tropane-based DAT inhibitors may not access identical binding domains. To further investigate this hypothesis, a series of (S)-2beta-carboalkoxy-3alpha-(bis[4-fluorophenyl]methoxy)tropanes (11a-f, 13-16) and their identically (R)-2beta-substituted 3beta-(3,4-dichlorophenyl)tropanes (3, 5a-d) were prepared and evaluated for binding at the DAT and for inhibition of [(3)H]dopamine uptake in rat brain. These studies showed that most of the identically 2-carboalkoxy-substituted analogues, within the two classes of compounds, bind with high affinity to DAT (K(i) = 5.5-100 nM), albeit with opposite stereochemistry. However, the larger azido- (15) and isothiocyanato- (16) (S)-2beta-carbophenylethoxy-3alpha-(bis[4-fluorophenyl]methoxy)tropanes demonstrated a significant decrease in DAT binding potency (IC(50) = 210 and 537 nM, respectively), suggesting that the DAT does not tolerate 2-position steric bulk in the benztropine class, as it does with the 2-substituted 3-aryltropanes. In addition, binding affinities at the serotonin transporter, norepinephrine transporter, and muscarinic receptors were evaluated and compared for compounds 2, 3, 11a-e, and 13. Together, the binding profiles across these systems demonstrated significant differences between these two classes of tropane-based ligands, which may be exploited toward the discovery of a cocaine-abuse pharmacotherapeutic.  相似文献   

20.
In our effort to develop a pharmacotherapy for the treatment of cocaine addiction, we embarked on synthesizing novel molecules targeting the dopamine transporter (DAT) molecule in the brain as DAT has been implicated strongly in the reinforcing effect of cocaine. Our previously developed DAT-selective piperidine analogue, 4-[2-(diphenylmethoxy)ethyl]-1-benzylpiperidine, was the basis for our current structure-activity relationship (SAR) studies exploring the significance of the contribution of the benzhydryl O- and N-atoms in these molecules in interacting with the DAT. Thus, we replaced the benzhydryl O-atom with an N-atom, altered the location of the benzhydryl N-atom to an adjacent position, and in one other occasion converted the benzhydryl O-ether linkage into an oxime-type derivative. Furthermore, we also evaluated the important contribution of the piperidine N-atom to binding by altering its pK(a) value chemically. Novel analogues were tested for potency in inhibiting [3H]WIN 35,428, [3H]citalopram, and [3H]nisoxetine binding at the DAT, serotonin transporter (SERT), and norepinepherine transporter (NET). [3H]DA was used to measure DA reuptake inhibition. The results indicated that the benzhydryl O- and N-atoms are exchangeable for the most part. On the other hand, an enhanced interaction with the SERT was observed when the benzhydryl N-atom moved to an adjacent position (21a; DAT (IC(50)) = 19.7, SERT (IC(50)) = 137 nM, NET (IC(50)) = 1111 nM). In either cases, further alkylation of the N-atom reduced the activity for the transporter. The presence of a powerful electron-withdrawing cyano group in compound 5d expectedly produced the most potent and selective ligand for the DAT (DAT (IC(50)) = 3.7 nM, DAT/SERT = 615). Selected compounds were further analyzed in the dopamine reuptake inhibition assay. Preliminary behavioral assessment of some of the selected compounds in mice indicated that these compounds are much less stimulating when compared with cocaine at comparable doses. In drug-discrimination studies these selected compounds incompletely generalized from the cocaine stimulus in mice trained to discriminate 10 mg/kg cocaine from vehicle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号