首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retinal projections to the pretectal nuclei, accessory optic system and superior colliculus in pigmented and albino ferrets were studied using anterograde tracing techniques. Both Nissl- and myelin-stained material was used to identify the pretectal nuclei, nuclei of the accessory optic system and the layers of the superior colliculus. Following monocular injection of either horseradish peroxidase or rhodamine-B-isothiocyanate, four pretectal nuclei, including the nucleus of the optic tract, posterior pretectal nucleus, anterior pretectal nucleus and the olivary pretectal nucleus, could be identified to receive direct retinal input in both pigmented and albino strains. In the accessory optic system, retinal terminals were observed in the dorsal, lateral and medial terminal nuclei as well as in the interstitial nucleus of the superior fasciculus, posterior fibres. The retinal projection to the superior colliculus was found to innervate the three superficial layers. The retinal projections to the pretectal nuclei and nuclei of the accessory optic system in the pigmented animals were bilateral, although the label was most dense contralateral to the injected eye. Ipsilateral retinal projections to the pretectal nuclei and nuclei of the accessory optic system appeared to be absent in albino ferrets, i.e. they were invisible with our methods. In both pigmented and albino ferrets retinal terminals in the contralateral superior colliculus densely innervated the three superficial layers. In both strains the ipsilateral projection appeared as clusters which were absent in rostral and caudal poles. In pigmented animals the ipsilateral projection was much denser and more extensive than in albinos. Following injection of retrograde tracers into the brainstem at the level of the dorsal cap of the inferior olive, retrogradely labelled neurons in the pretectum were found in the ipsilateral nucleus of the optic tract. Their somata overlapped mainly with scattered retinal terminals close to the pretectal surface and rarely or not all with the deeper prominent terminal clusters. In the accessory optic system, inferior olive projecting neurons were observed in all four ipsilateral nuclei and fully coincided with the retino-recipient zones. In the superior colliculus, retrogradely labelled neurons were found contralateral to the injection site in the deep layers.  相似文献   

2.
Retinal projections were examined in the native cat, Dasyurus viverrinus using Fink-Heimer material and autoradiography. We found six regions in the brain which receive retinal projections. These are (1) the dorsal lateral geniculate nucleus (2) the ventral lateral geniculate nucleus (3) the lateral posterior nucleus (4) the pretectum (5) the superior colliculus, and (6) the accessory optic system. We did not examine the hypothalamus. The accessory optic system and the lateral posterior nucleus receive a contralateral retinal projection only and the other four regions receive a bilateral retinal projection. There is extensive binocular overlap in the dorsal lateral geniculate nucleus. On the side contralateral to an eye injection of 3H leucine our autoradiographs show four contralateral layers which fill most of the nucleus. Three of these layers, 3, 4 and 5, also receive input from the opsilateral eye. Layer 1 which lies adjacent to the optic tract receives only contralateral retinal input. Layer 2 receives a direct retinal input only from the ipsilateral eye. The ipsilateral projection to the dorsal lateral geniculate nucleus forms a fairly continuous patch which is not divided into separate layers. The ipsilateral retinal input is located in the dorsal part of the lateral geniculate nucleus. The ventral quarter of the nucleus only receives a contralateral retinal input and therefore represents the monocular part of the visual field.  相似文献   

3.
The retinal projections in the ringtailed possum, Pseudocheirus peregrinus were determined using Fink-Heimer material and autoradiography. At least seven regions in the brain receive retinal projections. These are (1) the suprachiasmatic nucleus of the hypothalamus (2) the dorsal lateral geniculate nucleus (3) the ventral lateral geniculate nucleus (4) the lateral posterior nucleus (5) the pretectum (6) the superior colliculus, and (7) the accessory optic system. The accessory optic system and lateral posterior nucleus receive a contralateral retinal projection only and the other five regions receive a bilateral retinal projection. The dorsal lateral geniculate nucleus consists of two parts: an outer alpha division of closely packed cells and an inner beta division containing loosely scattered cells. There are no cell layers apparent within the alpha division in Nissl sections. The autoradiographs and Fink-Heimer material reveal four concealed laminae within the alpha division. Lamina 1, which is adjacent to the optic tract and lamina 3 receive a predominantly contralateral input. Laminae 2 and 4 receive a predominantly ipsilateral input. The beta segment contains a fifth lamina which receives contralateral retinal input.  相似文献   

4.
Autoradiography was used to investigate the optic system of the Chinese pangolin, Manis pentadactyla. The pattern of retinal projections in the Chinese pangolin is similar to that described in other mammals. Each retina projects bilaterally to the suprachiasmatic nucleus, dorsal and ventral lateral geniculate nuclei, pretectal area, and superior colliculus (SC). Only contralateral projections are found to the medial, lateral, and dorsal accessory optic nuclei. The large lateral nucleus receives a dense projection from the retina and forms a compact mass on the dorsolateral area of the cerebral peduncle. The lamination of the SC could not be clearly demonstrated in the brain of the Chinese pangolin.  相似文献   

5.
The intergeniculate leaflet (IGL) and the ventral lateral geniculate nucleus (VLG) are ventral thalamic derivatives within the lateral geniculate complex. In this study, IGL and VLG efferent projections were compared by using anterograde transport of Phaseolus vulgaris-leucoagglutinin and retrograde transport of FluoroGold. Projections from the IGL and VLG leave the geniculate in four pathways. A dorsal pathway innervates the thalamic lateral dorsal nucleus (VLG), the reuniens and rhomboid nuclei (VLG and IGL), and the paraventricular nucleus (IGL). A ventral pathway runs through the geniculohypothalamic tract to the suprachiasmatic nucleus and the anterior hypothalamus (IGL). A medial pathway innervates the zona incerta and dorsal hypothalamus (VLG and IGL); the lateral hypothalamus and perifornical area (VLG); and the retrochiasmatic area (RCA), dorsomedial hypothalamic nucleus, and subparaventricular zone (IGL). A caudal pathway projects medially to the posterior hypothalamic area and periaqueductal gray and caudally along the brachium of the superior colliculus to the medial pretectal area and the nucleus of the optic tract (IGL and VLG). Caudal IGL axons also terminate in the olivary pretectal nucleus, the superficial gray of the superior colliculus, and the lateral and dorsal terminal nuclei of the accessory optic system. Caudal VLG projections innervate the lateral posterior nucleus, the anterior pretectal nucleus, the intermediate and deep gray of the superior colliculus, the dorsal terminal nucleus, the midbrain lateral tegmental field, the interpeduncular nucleus, the ventral pontine reticular formation, the medial and lateral pontine gray, the parabrachial region, and the accessory inferior olive. This pattern of IGL and VLG projections is consistent with our understanding of the distinct functions of each of these ventral thalamic derivatives.  相似文献   

6.
The Nile grass rat (Arvicanthis niloticus) has a high proportion of cone photoreceptors (~30–40%) compared with that in the common laboratory mouse and rat (~1–3%) and may prove a preferable murine model with which to study cone‐driven information processing in retina and primary visual centers. However, other than regions involved in circadian control, little is known about the retinorecipient structures in this rodent. We undertook a detailed analysis of the retinal projections as revealed after intravitreal injection of the anterograde tracer cholera toxin subunit B. Retinal efferents were evaluated in 45 subcortical structures. Contralateral projections were always dominant. Major contralateral inputs consisted of the suprachiasmatic nucleus, dorsolateral geniculate nucleus (dLGN), intergeniculate leaflet, ventral geniculate nucleus (magnocellular part), lateroposterior thalamic nucleus, all six pretectal nuclei, superficial layers of the superior colliculus (SC), and the main nuclei of the accessory optic system. Terminals from the contralateral eye were also localized in an unnamed field rostromedial to the dLGN as well as in the subgeniculate thalamic nucleus. Ipsilateral inputs were found mainly in the suprachiasmatic nucleus, dLGN, intergeniculate leaflet, internal sector of the magnocellular part of the ventral geniculate nucleus, olivary pretectal nucleus, and SC optic layer. Retinal afferents were not detected in the basal forebrain or the dorsal raphe nucleus. Morphometric measurements revealed that the superficial layers of the SC are disproportionately enlarged relative to other retinorecipient regions and brain size compared with rats and mice. We suggest that this reflects the selective projection of cone‐driven retinal ganglion cells to the SC. J. Comp. Neurol. 521:1699–1726, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
C G Cusick  J H Kaas 《Brain research》1982,256(3):275-284
Retinal projections in newborn squirrels were compared to those in adults by using horseradish peroxidase (HRP) as a highly sensitive anterograde tracer. In both newborn and adult squirrels, the HRP reaction product was found in the dorsal lateral geniculate nucleus, the superior colliculus, the pretectal nuclei, and the nuclei of the accessory optic tract. Thus, newborn squirrels have retinal input to most or all structures normally innervated in the adult. However, the pattern of terminations differed in the newborn from that in the adult, and this was especially apparent in the dorsal lateral geniculate nucleus and the superior colliculus. In the dorsal lateral geniculate nucleus, the regions of ipsilateral and contralateral retinal inputs were clearly less segregated than in adults, although the adult laminar pattern of retinal terminations was partially apparent, even though there was yet no cytoarchitectural evidence of the adult lamination pattern. In the superior colliculus, a marked difference was seen in the pattern of ipsilateral retinal terminations. In the adult, ipsilateral retinotectal input was restricted to a narrow, dense, patchy, mediolateral band in stratum opticum in the rostral colliculus. In the newborn, the ipsilateral retinotectal input was less dense, free of patches, spread in thickness to include much of the stratum opticum and the superficial grey, and spread in extent to include all but the caudal pole of the colliculus. These observations are consistent with the prevailing view that visual connections are initially widespread and become restricted during the course of development.  相似文献   

8.
Autoradiographic and anterograde degeneration tracing methods were used to study and compare the organization of retinofugal pathways in two marsupial opossums, Didelphis virginiana and Marmosa mitis. Seven identical retinal targets were demonstrated for each opossum. These include: (1) the suprachiasmatic nucleus of the hypothalamus, (2) the dorsal and (3) ventral lateral geniculate nuclei, (4) the lateral posterior nucleus, (5) the pretectal complex, (6) the superior colliculus and (7) the accessory optic nuclei. While the pattern of retinal input to six of the seven targets was quite similar in the two species, the organization of the retinogeniculate pathways exhibited striking differences. In particular, our autoradiographs reveal no separation of ocular inputs within the lateral geniculate nucleus of Didelphis, i.e. the ipsilateral input is overlapped completely by the more extensive contralateral projection. In contrast, there is considerable separation, as well as overlap, of the ocular inputs within the lateral geniculate nucleus of Marmosa. Our autoradiographs reveal several distinct bands of label within each geniculate nucleus, and upon superimposing the nuclei, ipsilateral and contralateral to the placement it is apparent that two of the bands overlap, while five do not (three ipsi, two contra).  相似文献   

9.
C E Ribak  A Peters 《Brain research》1975,92(3):341-368
The projections from the lateral geniculate body of the rat were followed using the technique of autoradiography after injections of [3H] proline into the dorsal and/or ventral nuclei of this diencephalic structure. Autoradiographs were prepared from either frozen or paraffin coronal sections through the rat brain. The dorsal nucleus of the lateral geniculate projected via the optic radiation to area 17 of the cerebral cortex. There was also a slight extension of label into the zones of transition between areas 17, 18 and 18a. The distribution of silver grains in the various layers of the cerebral cortex was analyzed quantitatively and showed a major peak of labeling in layer IV with minor peaks in outer layer I and the upper half and lowest part of layer VI. The significance of these peaks is discussed in respect to the distribution of geniculocortical terminals in other mammalian species. The ventral nucleus of the lateral geniculate body had 5 major projections to brain stem structures both ipsilateral and contralateral to the injected nucleus. There were two dorsomedial projections: (1) a projection to the superior colliculus which terminated mainly in the medial third of the stratum opticum, and (2) a large projection via the superior thalamic radiation which terminated in the ipsilateral pretectal area; a continuation of this projection passed through the posterior commissure to attain the contralateral pretectal area. The three ventromedial projections involved: (1) a geniculopontine tract which coursed through the basis pedunculi and the lateral lemniscus to terminate in the dorsomedial and dorsolateral parts of the pons after giving terminals to the lateral terminal nucleus of the accessory optic tract, (2) a projection via Meynert's commissure to the suprachiasmatic nuclei of both sides of the brain stem as well as to the contralateral ventral lateral geniculate nucleus and lateral terminal nucleus of the accessory optic tract, and (3) a medial projection to the ipsilateral zona incerta. The results obtained in these experiments are contrasted with other data on the rat's central visual connections to illustrate the importance of these connections in many subcortical visual functions.  相似文献   

10.
Efferent projections of the optic tectum were studied with the anterograde degeneration method in the longnose gar. Ascending projections were found bilaterally to 3 pretectal nuclei — the superficial pretectal nucleus, nucleus pretectalis centralis and nucleus pretectalis profundus — and to a number of targets which lie further rostrally — the central posterior nucleus, dorsal posterior nucleus, accessory optic nucleus, nucleus ventralis lateralis, nucleus of the ventral optic tract, rostral part of the preglomerular complex, suprachiasmatic nucleus, anterior thalamic nucleus, nucleus ventralis medialis, nucleus intermedius, nucleus prethalamicus and rostral entopeduncular nucleus. Projections of the tectum reach the contralateral side via the supraoptic decussation and are less dense contralaterally than ipsilaterally. Descending projections resulting from tectal lesions include: (1) a tectal commissural pathway to the core of the torus longitudinalis bilaterally and the contralateral tectum and torus semicircularis; and (2) a pathway leaving the tectum laterally from which fibers terminate in the ipsilateral torus semicircularis, an area lateral to the nucleus of the medial longitudinal fasciculus, lateral tegmental nucleus, nucleus lateralis valvulae, nucleus isthmi and the reticular formation. A component of this bundle decussates at the level of the lateral tegmental nucleus to project to the contralateral reticular formation.

On the basis of comparisons of these findings with the pattern of retinal projections in gars and other data, it is argued that the nuclei previously called the lateral geniculate and rotundus in fish are not the homologues of the nuclei of those names in land vertebrates but are rather pretectal cell groups. The overall organization of both retinal and tectal projections in gars is strikingly similar to that in land vertebrates; at present, the best candidate for a rotundal homologue is the dorsal posterior nucleus.  相似文献   


11.
The central projections of the retina in the nurse shark were studied by anterograde transport of horseradish peroxidase and tritiated proline. With regard to efferent retinal fibres, both techniques gave completely identical results. Projections were found to pretectal area, dorsal thalamus, basal optic nucleus, and optic tectum, all at the contralateral side. The retinal target cells in the dorsal thalamus are restricted to the ventrolateral optic nucleus and the posterior optic nucleus. No evidence was found for an earlier-reported projection to the lateral geniculate nucleus. The present findings show that the ventrolateral optic nucleus exhibits homological features of the dorsal lateral geniculate nucleus in other vertebrate groups, whereas the lateral geniculate nucleus of the nurse shark is much more comparable to the nucleus rotundus of teleosts and birds and would be more appropriately so named. The application of the HRP technique also allowed us to study afferents to the retina by retrograde transport of tracer. Retrogradely labeled cells were observed in the contralateral optic tectum and are apparently similar to those reported for teleosts and birds.  相似文献   

12.
Circadian rhythms generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment melanopsin and the neuropeptide pituitary adenylate cyclase‐activating polypeptide (PACAP). The ipRGCs regulate other nonimage‐forming visual functions such as the pupillary light reflex, masking behavior, and light‐induced melatonin suppression. To evaluate whether PACAP‐immunoreactive retinal projections are useful as a marker for central projection of ipRGCs in the monkey brain, we characterized the occurrence of PACAP in melanopsin‐expressing ipRGCs and in the retinal target areas in the brain visualized by the anterograde tracer cholera toxin subunit B (CtB) in combination with PACAP staining. In the retina, PACAP and melanopsin were found to be costored in 99% of melanopsin‐expressing cells characterized as inner and outer stratifying melanopsin RGCs. Two macaque monkeys were anesthetized and received a unilateral intravitreal injection of CtB. Bilateral retinal projections containing colocalized CtB and PACAP immunostaining were identified in the SCN, the lateral geniculate complex including the pregeniculate nucleus, the pretectal olivary nucleus, the nucleus of the optic tract, the brachium of the superior colliculus, and the superior colliculus. In conclusion, PACAP‐immunoreactive projections with colocalized CtB represent retinal projections of ipRGCs in the macaque monkey, supporting previous retrograde tracer studies demonstrating that melanopsin‐containing retinal projections reach areas in the primate brain involved in both image‐ and nonimage‐forming visual processing. J. Comp. Neurol. 522:2231–2248, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
The intergeniculate leaflet (IGL), a major constituent of the circadian visual system, is one of 12 retinorecipient nuclei forming a “subcortical visual shell” overlying the diencephalic–mesencephalic border. The present investigation evaluated IGL connections with nuclei of the subcortical visual shell and determined the extent of interconnectivity between these nuclei. Male hamsters received stereotaxic, iontophoretic injections of the retrograde tracer, cholera toxin β fragment, or the anterograde tracer, Phaseolus vulgaris-leucoagglutin, into nuclei of the pretectum (medial, commissural, posterior, olivary, anterior, nucleus of the optic tract, posterior limitans), into the superior colliculus, or into the visual thalamic nuclei (lateral posterior, dorsal lateral geniculate, intergeniculate leaflet, ventral lateral geniculate). Retrogradely labeled cell bodies identified nuclei with afferents projecting to the site of injection, whereas the presence of anterogradely labeled fibers with terminals revealed brain nuclei targeted by neurons at the site of injection. The IGL projects bilaterally to all nuclei of the visual shell except the lateral posterior and dorsal lateral geniculate nuclei. The IGL also has afferents from the same set of nuclei, except the nucleus of the optic tract. The extensive bilateral efferent projections distinguish IGL from the ventral lateral geniculate nucleus. The superior colliculus, commissural pretectal, olivary pretectal, and posterior pretectal nuclei also project bilaterally to the majority of subcortical visual nuclei. The IGL has a well-established role in circadian rhythm regulation, but there is as yet no known function for it in the larger context of the subcortical visual system, much of which is involved in oculomotor control. J. Comp. Neurol. 396:288–309, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

14.
Restricted injections either of horseradish peroxidase conjugated with wheat germ agglutinin, or of unconjugated horseradish peroxidase were made into hooded rats in order to distinguish subcortical sources of afferents to dorsal lateral geniculate nucleus from those to the adjacent visually responsive thalamic reticular nucleus, which modulates geniculate activity. Five “nonvisual” brainstem regions project to the dorsal lateral geniculate nucleus: mesencephalic reticular formation, dorsal raphe nucleus, periaqueductal gray matter, dorsal tegmental nucleus, and locus coeruleus. Projections are generally bilateral, but ipsilateral projections dominate. Of these regions, three also project ipsilaterally to the thalamic reticular nucleus: mesencephalic reticular formation, periaqueductal gray matter, and dorsal tegmental nucleus. Similar discrete injections of horseradish peroxidase into ventral lateral geniculate nucleus allowed a comparison of afferents to dorsal and ventral lateral geniculate nuclei. In addition to the five nonvisual brainstem regions which project to the dorsal division, the ventral lateral geniculate nucleus receives afferents from the perirubral reticular formation and the central gray matter at the thalamic level. The dorsal and ventral lateral geniculate nuclei receive substantially different afferents from subcortical visual centres. The dorsal division receives projections from superior colliculus, pretectum, and parabigeminal nucleus whereas the ventral division receives afferents from superior colliculus, additional pretectal nuclei, lateral terminal nucleus of the accessory optic system, and the contralateral ventral lateral geniculate nucleus.  相似文献   

15.
A defining feature of the amniote tecto-fugal visual pathway is a massive bilateral projection to the thalamus originating from a distinct neuronal population, tectal ganglion cells (TGCs), of the optic tectum/superior colliculus (TeO/SC). In sauropsids, the thalamic target of the tecto-fugal pathway is the nucleus rotundus thalami (Rt). TGCs axons collateralize en route to Rt to target the nucleus pretectalis principalis (PT), which in turn gives rise to bilateral projection to the TeO. In rodents, the thalamic target of these TGCs afferents is the caudal division of the pulvinar complex (PulC). No pretectal structures in receipt of TGC collaterals have been described in this group. However, Baldwin et al. (Journal of Comparative Neurology, 2011;519(6):1071–1094) reported in the squirrel a feedback projection from the PulC to the SC. Pulvino-tectal (Pul-T) cells lie at the caudal pole of the PulC, intermingled with the axonal terminals of TGCs. Here, by performing a combination of neuronal tracing, immunohistochemistry, immunofluorescence, and in situ hybridization, we characterized the pattern of projections, neurochemical profile, and genoarchitecture of Pul-T cells in the diurnal Chilean rodent Octodon degus. We found that Pul-T neurons exhibit pretectal, but not thalamic, genoarchitectonical markers, as well as hodological and neurochemical properties that match specifically those of the avian nucleus PT. Thus, we propose that Pul-T cells constitute a pretectal cell population hidden within the dorsal thalamus of mammals. Our results solve the oddity entailed by the apparent existence of a noncanonic descending sensory thalamic projection and further stress the conservative character of the tectofugal pathway.  相似文献   

16.
B E Reese 《Brain research》1985,354(2):288-292
The topography of aberrant ipsilateral retinogeniculate projections following ablation of the superior colliculus in infancy has been examined. Rat pups received a unilateral ablation of the superior colliculus in infancy, which is known to produce an aberrant ipsilateral retinogeniculate projection in the caudal quarter of this nucleus, ipsilateral to the ablation. When adult, each rat received a retinal lesion in the eye ipsilateral to the ablation at varying locations along the temporal crescent and the brains were subsequently processed for anterograde degeneration. The topographic relationship between the retina's temporal crescent and the ipsilateral dorsal lateral geniculate nucleus appeared normal in the rostral three quarters of the nucleus, but an aberrant projection from the far temporal retina (the upper temporal crescent) was demonstrated in the caudal quarter of the nucleus, residing dorsolaterally beneath the optic tract. This location within the dorsal lateral geniculate nucleus normally receives its retinal input from the contralateral temporal retina at reduced eccentricity. As these two retinal regions are likely to be binocularly conjugate, it is proposed that these rearrangements in retinal terminal fields following early collicular ablation produce an ocularly aberrant yet visuotopically appropriate retinogeniculate projection.  相似文献   

17.
Retinal projections in the house musk shrew (Suncus murinus) were determined by the anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP). Unilateral injection of WGA-HRP into the vitreous body resulted in the terminal labeling of the optic projections in the suprachiasmatic nucleus (SCH), the ventral (CGLv) and dorsal (CGLd) lateral geniculate nuclei, the intergeniculate leaflet (IGL), the pretectum, the superficial layers of the superior colliculus (CS), and the dorsal terminal nucleus (DTN) of the accessory optic system (AOS). Labeling of the SCH was bilateral, with ipsilateral predominance, and covered the whole dorsoventral extent of the nucleus. Immunohistochemical studies revealed that VIP-like immunoreactive neurons and fibers were present in almost all parts of the SCH. No hypothalamic regions other than the SCH received the optic fibers. The ipsilateral projections to the CGLv, CGLd, and IGL were sparse, and a considerable number of uncrossed retinal fibers were found in the pretectal olivary nucleus. No retinal projections to the lateral posterior thalamic nucleus (LP) were found. Ipsilateral optic fibers projected sparsely to the medial part of the CS. The AOS consisted of a small DTN with a very few crossed retinal projections but no lateral and medial terminal nuclei. In addition, the AOS had no inferior fascicle.  相似文献   

18.
The functional organization of the visual system was studied in the albino rat. Metabolic differences were measured using the 14-C-2-deoxyglucose (DG) autoradiographic technique during visual stimulation of one entire retina in unrestrained animals. All optic centers responded to changes in light intensity but to different degrees. The greatest change occurred in the superior colliculus, less in the lateral geniculate, and considerably less in second-order sites such as layer IV of visual cortex. These optic centers responded in particular to on/off stimuli, but showed no incremental change during pattern reversal or movement of orientation stimuli. Both the superior colliculus and lateral geniculate increased their metabolic rate as the frequency of stimulation increased, but the magnitude was twice as great in the colliculus. The histological pattern of metabolic change in the visual system was not homogenous. In the superior colliculus glucose utilization increased only in stratum griseum superficiale and was greatest in visuotopic regions representing the peripheral portions of the visual field. Similarly, in the lateral geniculate, only the dorsal nucleus showed an increased response to greater stimulus frequencies. Second-order regions of the visual system showed changes in metabolism in response to visual stimulation, but no incremental response specific for type or frequency of stimuli. To label proteins of axoplasmic transport to study the terminal fields of retinal projections 14C-amino acids were used. This was done to study how the differences in the magnitude of the metabolic response among optic centers were related to the relative quantity of retinofugal projections to these centers. Fast and slow axoplasmic transport were studied using three separate amino acids. In each case over 64% of the radioactivity projecting contralateral from the eye was found in superior colliculus. considerably less isotope was found in dorsal lateral geniculate (11-17%), ventral lateral geniculate (3, 7-6.2%), pretectal nuclei (5-12%), and the accessory optic system (3-7%). The greatest concentration of radioactivity within each optic center was found in the visuotopic aspect subserving the superior visual field; particularly the medial aspects of the superior colliculus, olivary pretectal nucleus, and posterior pretectal nucleus, and the anterior portion of the nucleus of the optic tract. The representation of central vision in the colliculus was relatively pale, as was a zone within the middle of the contralateral dorsal lateral geniculate. The anatomical and physiological results of this study suggest that differences in deoxyglucose metabolism among optic centers are primarily related to the number of retinofugal endings and the kind of visual stimulation. Changes within any one center primarily reflect the density of retinal endings subserving the visual field.  相似文献   

19.
Retinal projections to the pretectal and terminal accessory optic nuclei were studied in normal wild-type mice and mutant mice with abnormal optokinetic nystagmus (OKN, Mangini, Vanable, Williams, and Pinto: J. Comp. Neurol. 241:191-209, '85). The mutants used were pearl, which exhibits an inverted OKN in response to stimulation of only the temporal retina, and beige and beige-J, which show inverted OKN in response to stimulation of only the temporal retina and, in addition, exhibit eye movements with a vertical component in response to horizontally moving, full-field stimuli. These projections were studied following intraocular injections of 3H-proline or horseradish peroxidase (HRP) with, respectively, light microscopic autoradiography or HRP histochemistry. In wild-type mice, strong contralateral retinal projections covered the entire nucleus of the optic tract, the anterior and posterior divisions of the olivary pretectal nucleus, and the posterior pretectal nucleus. Similar heavy contralateral projections were distributed over the dorsal and medial terminal nuclei of the accessory optic system. Also, terminals sparsely covered the entire neuropil of the contralateral lateral terminal nucleus in some but not all wild-type mice. The most prominent accessory optic input was to the medial terminal nucleus and was provided by the inferior fasciculus of the accessory optic tract. A typical mammalian superior fasciculus of the accessory optic system with anterior, middle, and posterior components was present. Ipsilateral label was found in anterior and posterior olivary pretectal nuclei in all of the wild-type animals, but was found inconsistently in the ipsilateral terminal accessory optic nuclei. The pattern of contralateral retinal projection to the nucleus of the optic tract and posterior pretectal nucleus in mutants was indistinguishable from that seen in the normal wild-type mice. However, retinal inputs to the ipsilateral anterior and posterior olivary pretectal nuclei were significantly reduced in pearl mutants and were exceedingly sparse in the beige and beige-J mutant mice, while the contralateral inputs to these nuclei were increased in a complementary fashion in the mutants. The labeling of the accessory optic input to the contralateral dorsal terminal nucleus appeared to be substantially reduced in all of the mutant mice. The size of the principal accessory optic fascicle, the inferior fasciculus, was significantly smaller in beige, beige-J, and pearl mice; this reduction was greater in the beige and beige-J than in the pearl mice.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号