首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Convergence of sensory modalities in the nonhuman primate cerebral cortex is still poorly understood. We present an anatomical tracing study in which polysensory association cortex located at the fundus and upper bank of the rostral superior temporal sulcus presents reciprocal connections with primary olfactory structures. At the same time, projections from this polysensory area reach multiple primary olfactory centres. Retrograde (Fast Blue) and anterograde (biotinylated dextran-amine and 3H-amino acids) tracers were injected into primary olfactory structures and rostral superior temporal sulcus. Retrograde tracers restricted to the anterior olfactory nucleus resulted in labelled neurons in the rostral portion of the upper bank and fundus of superior temporal sulcus. Injections of biotinylated dextran-amine at the fundus and upper bank of the superior temporal sulcus confirmed this projection by labelling axons in the dorsal and lateral portions of the anterior olfactory nucleus, as well as piriform, periamygdaloid and entorhinal cortices. Retrograde tracer injections at the rostral superior temporal sulcus resulted in neuronal labelling in the anterior olfactory nucleus, piriform, periamygdaloid and entorhinal cortices, thus providing confirmation of the reciprocity between primary olfactory structures and the cortex at the rostral superior temporal sulcus. The reciprocal connections between the rostral part of superior temporal sulcus and primary olfactory structures represent a convergence for olfactory and other sensory modalities at the cortex of the rostral temporal lobe.  相似文献   

2.
Cingulate cortex of the rhesus monkey: II. Cortical afferents   总被引:16,自引:0,他引:16  
Cortical projections to subdivisions of the cingulate cortex in the rhesus monkey were analyzed with horseradish peroxidase and tritiated amino acid tracers. These projections were evaluated in terms of an expanded cytoarchitectural scheme in which areas 24 and 23 were divided into three ventrodorsal parts, i.e., areas 24a-c and 23a-c. Most cortical input to area 25 originated in the frontal lobe in lateral areas 46 and 9 and orbitofrontal areas 11 and 14. Area 25 also received afferents from cingulate areas 24b, 24c, and 23b, from rostral auditory association areas TS2 and TS3, from the subiculum and CA1 sector of the hippocampus, and from the lateral and accessory basal nuclei of the amygdala (LB and AB, respectively). Areas 24a and 24b received afferents from areas 25 and 23b of cingulate cortex, but most were from frontal and temporal cortices. These included the following areas: frontal areas 9, 11, 12, 13, and 46; temporal polar area TG as well as LB and AB; superior temporal sulcus area TPO; agranular insular cortex; posterior parahippocampal cortex including areas TF, TL, and TH and the subiculum. Autoradiographic cases indicated that area 24c received input from the insula, parietal areas PG and PGm, area TG of the temporal pole, and frontal areas 12 and 46. Additionally, caudal area 24 was the recipient of area PG input but not amygdalar afferents. It was also the primary site of areas TF, TL, and TH projections. The following projections were observed both to and within posterior cingulate cortex. Area 29a-c received inputs from area 46 of the frontal lobe and the subiculum and in turn it projected to area 30. Area 30 had afferents from the posterior parietal cortex (area Opt) and temporal area TF. Areas 23a and 23b received inputs mainly from frontal areas 46, 9, 11, and 14, parietal areas Opt and PGm, area TPO of superior temporal cortex, and areas TH, TL, and TF. Anterior cingulate areas 24a and 24b and posterior areas 29d and 30 projected to area 23. Finally, a rostromedial part of visual association area 19 also projected to area 23. The origin and termination of these connections were expressed in a number of different laminar patterns. Most corticocortical connections arose in layer III and to a lesser extent layer V, while others, e.g., those from the cortex of the superior temporal sulcus, had an equal density of cells in both layers III and V.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Entorhinal cortex (EC) relays information from the hippocampus to the cerebral cortex. The origin of this entorhino-cortical pathway was studied semiquantitatively and topographically with the use of 23 retrograde tracer injections in cortical areas of the frontal, temporal, and parietal lobes of the monkey. To assess possible alternative, parallel pathways, the parahippocampal region, comprised of temporal pole (TP), perirhinal (PRC), and posterior parahippocampal cortices (PPH), was included in the study. The majority of the cortical areas receive convergent projections from EC and the parahippocampal region. Strong EC layer V output is directed to temporal pole, medial frontal and orbitofrontal cortices, and the rostral part of the polysensory area of the superior temporal sulcus (sts). Moderate EC output is directed to the caudal superior temporal gyrus, area TE, and parietal cortex, and little to none to the lateral frontal cortex. With the exception of the projection to the medial frontal cortex, output from TP, PRC, and PPH surpassed that from EC, although with regional differences. TP layers II-III, V-VI project strongly to all areas injected except parietal cortex and caudal superior temporal gyrus, while PRC layers III/V-VI send strong projections to rostral parts of area TE and sts. PPH layers III/V-VI project heavily to parietal cortex and caudal superior temporal gyrus. These results suggest that the medial temporal output is primarily organized hierarchically, but at the same time, it has multiple exits of information. These parallel, alternative routes may influence local circuitry in the cerebral cortex and participate in the consolidation of declarative memory.  相似文献   

4.
During the course of a larger study of the afferent and efferent connections of the entorhinal cortex in the macaque monkey we have found evidence for a hitherto undescribed projection to the entorhinal cortex from the superior temporal gyrus. The evidence is derived principally from experiments in which small volumes of wheat germ agglutinin-conjugated horseradish peroxidase (WGA-HRP) were injected into different parts of the entorhinal cortex, but has been confirmed by 3H-amino acid autoradiography. After WGA-HRP injections into the entorhinal cortex, retrogradely labeled neurons have been seen mainly in layer III, but also to some extent in layer VI, throughout much of the superior temporal gyrus. The projection appears to be topographically organized in the sense that the ventral insular cortex and the adjoining temporal operculum have been found to project to the periamygdaloid cortex and the lateral division of the entorhinal cortex; the convexity of the superior temporal gyrus and the cortex along the dorsal bank of the superior temporal gyrus project further caudally to the medial division of the entorhinal cortex; and the cortex surrounding the fundus of the superior temporal sulcus projects to the perirhinal cortex. Following an injection of 3H-amino acids into the convexity of the superior temporal gyrus, terminal labeling has been seen over layers I and II of the entorhinal cortex and over layer I in the most lateral portion of the presubiculum. While the distribution of retrogradely labeled cells in our WGA-HRP experiments encompasses several cytoarchitectonically distinguishable areas in the superior temporal gyrus, the most heavily labeled field appears to coincide with what Gross and his colleagues have termed the 'superior temporal polysensory area' on the dorsal bank of the superior temporal sulcus.  相似文献   

5.
Area TPO in the upper bank of the superior temporal sulcus (STS) of macaque monkeys is thought to correspond to the superior temporal polysensory (STP) cortex, but has been shown to have neurochemical/connectional subdivisions. To examine directly the relationship between chemoarchitecture and cortical connections of area TPO, the upper bank of the STS was sectioned tangential to the cortical surface. Three subdivisions of area TPO (TPOr, TPOi, and TPOc) were examined with cytochrome oxidase (CO) histochemistry and neurofilament protein (NF) immunoreactivity and architectonic patterns were compared with connections on the same or adjacent sections. Area TPOc, which may partly overlap with the location of the medial superior temporal area MST, exhibited regular patchy staining for CO in layers III/IV and a complementary pattern in the NF stain. Area TPOr, but not TPOi, also had a patchy pattern of complementary staining in CO and neurofilament similar to TPOc, although not as distinct. Tracer injections within cortex including the frontal eye fields (areas 46 and 8) labeled areas TPOc, TPOi, and TPOr. The caudal inferior parietal lobule (IPL) projected to all three areas. The projections from prearcuate and posterior parietal cortices showed both overlap and nonoverlap with each other within TPOc, TPOi, and TPOr. Projections were to all neurochemical components within the subdivisions of TPO. The findings support the parcellation of area TPO into three subdivisions and extend findings of chemoarchitectonic modules within high-order association cortices.  相似文献   

6.
There is a population of neurons in the cortex in the middle and anterior part of the superior temporal sulcus (STS) of the monkey with responses which are selective for faces. If, consistent with the effects of damage to the temporal lobe, these neurons are involved in face recognition or in making appropriate social responses to different individuals, then it might be expected that at least some of these neurons might respond differently to different faces. To investigate whether at least some of these neurons do respond differently to different faces, their responses were measured to a standard set of faces, presented in random sequence using a video framestore. It was found that a considerable proportion of the neurons with face selective responses tested (34/44 or 77%) responded differently to different faces, as shown by analyses of variance. An index of the discriminability of the most and least effective face stimulus (d') ranged between 0.2 and 5.0 for the different neurons. Although these neurons often responded differently to different faces, they did not usually respond to only one of the faces in the set, so that information that a particular face had been shown was present across an ensemble of neurons, rather than in the responses of an individual neuron. These findings indicate that the responses of these neurons would be useful in providing information on which different behavioral responses made to different faces could be based. These neurons could thus be filters, the output of which could be used for recognition of different individuals and in emotional responses made to different individuals.  相似文献   

7.
Although the common marmoset has become a model for the study of several neurological conditions that affect the frontal lobe, knowledge of the boundaries of the areas located in the orbital and medial frontal regions has remained incomplete. Here we examined histological sections stained for myelin, Nissl substance, and cytochrome oxidase, allowing identification of likely homologues of most of the architectural fields defined in Old World monkeys. Ventrally, we identified three granular fields at or near the frontal pole (area 10, and the medial and lateral subregions of area 11), and two granular fields along the lateral margin of the orbitofrontal cortex (medial and orbital subdivisions of area 12). More caudal and medially, dysgranular and agranular cortices included four subdivisions of area 13 as well as rostral and caudal subdivisions of area 14 (at the ventromedial convexity). The ventral frontotemporal transition encompassed at least two subdivisions of agranular insular cortex, as well as the likely homologues of the gustatory cortices. Most of the medial surface was encompassed by area 10 (which projected a caudomedial finger‐like extension toward the subgenual cortex), together with a relatively large dysgranular area 32 and an agranular area 25 (in subgenual cortex). Finally, the caudal limit of the medial frontal cortex included two fields of agranular cingulate cortex (areas 24a and 24b). These findings enhance our understanding of the architectural organization of the marmoset frontal cortex and highlight a highly conserved basic organization across simian primates, allowing the informed interpretation of experimental neurological studies. J. Comp. Neurol. 514:11–29, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
The inferior temporal (IT) cortex of 6 macaques was injected with horseradish peroxidase. HRP-labeled cells were found throughout IT cortex itself (outside the injection area) but were not found in the polysensory areas that surround IT dorsally, anteriorly and ventrally. Posterior to IT, labeled cells were found in the anterior parts of prestriate cortex. In one animal, the anterior prestriate region was injected with HRP. Labeled cells were then found in the regions of posterior prestriate cortex that receive direct projections from striate cortex. These results suggest that IT cortex receives information from striate cortex after at least two stages of processing in prestriate cortex.  相似文献   

9.
The projections to the retrosplenial cortex (areas 29 and 30) from the hippocampal formation, the entorhinal cortex, perirhinal cortex, and amygdala were examined in two species of macaque monkey by tracking the anterograde transport of amino acids. Hippocampal projections arose from the subiculum and presubiculum to terminate principally in area 29. Label was found in layer I and layer III(IV), the former seemingly reflecting both fibers of passage and termination. While the rostral subiculum mainly projects to the ventral retrosplenial cortex, mid and caudal levels of the subiculum have denser projections to both the caudal and dorsal retrosplenial cortex. Appreciable projections to dorsal area 30 [layer III(IV)] were only seen following an extensive injection involving both the caudal subiculum and presubiculum. This same case provided the only example of a light projection from the hippocampal formation to posterior cingulate area 23 (layer III). Anterograde label from the entorhinal cortex injections was typically concentrated in layer I of 29a–c, though the very caudal entorhinal cortex appeared to provide more widespread retrosplenial projections. In this study, neither the amygdala nor the perirhinal cortex were found to have appreciable projections to the retrosplenial cortex, although injections in either medial temporal region revealed efferent fibers that pass very close or even within this cortical area. Finally, light projections to area 30V, which is adjacent to the calcarine sulcus, were seen in those cases with rostral subiculum and entorhinal injections. The results reveal a particular affinity between the hippocampal formation and the retrosplenial cortex, and so distinguish areas 29 and 30 from area 23 within the posterior cingulate region. The findings also suggest further functional differences within retrosplenial subregions as area 29 received the large majority of efferents from the subiculum. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
The superior temporal gyrus (STG) may be involved in the pathophysiology of obsessive-compulsive disorder (OCD). Moreover, the anterior STG has rich interconnections with the orbitofrontal cortex and the amygdala, and plays a role in visuospatial processing, which is impaired in patients with OCD. This study was designed to examine the morphological abnormalities of the anterior STG and their relationships with visuospatial function and clinical symptom in patients with OCD. We measured gray matter volumes of the anterior STG [rostral STG and planum polare (PP)] by three-dimensional (3D) magnetic resonance imaging in age- and sex-matched groups, which consisted of 22 patients with OCD and 22 normal volunteers. Visuospatial function and clinical symptom were assessed using the Rey-Osterrieth Complex Figure (ROCF) test, the Yale-Brown Obsessive Compulsive Scale, and the Maudsley Obsessive Compulsive Inventory. We found significant volume reductions in bilateral PPs, but there were no significant correlations between brain volumes and the ROCF copy score, immediate or delayed recall score, and clinical symptom in patients with OCD. These results suggest that volume reduction of the anterior STG, especially the PP, may be related to the pathophysiology of OCD, but further research may be needed to explore a relationship of the PP volume change with cognitive impairment observed in patients with OCD.  相似文献   

11.
We studied developmental changes in the expression of non-phosphorylated neurofilament protein (NNF) (a marker of the structural maturation of pyramidal neurones) in the dorsolateral frontal cortex of marmoset monkeys, between embryonic day 130 and adulthood. Our focus was on cortical fields that send strong projections to extrastriate cortex, including the dorsal and ventral subdivisions of area 8A, area 46 and area 6d. For comparison, we also investigated the maturation of prefrontal area 9, which has few or no connections with visual areas. The timing of expression of NNF immunostaining in early life can be described as the result of the interaction of two developmental gradients. First, there is an anteroposterior gradient of maturation in the frontal lobe, whereby neurones in caudal areas express NNF earlier than those in rostral areas. Second, there is a laminar gradient, whereby the first NNF-immunoreactive neurones emerge in layer V, followed by those in progressively more superficial parts of layer III. Following a peak in density of NNF-immunopositive cell numbers in layer V at 2-3 months of age, there is a gradual decline towards adulthood. In contrast, the density of immunopositive cells in layer III continues to increase throughout the first postnatal year in area 6d and until late adolescence (> 1.5 years of age) in prefrontal areas. The present results support the view that the maturation of visual cognitive functions involves relatively late processes linked to structural changes in frontal cortical areas.  相似文献   

12.
The origin and termination of fibers to the mediodorsal thalamic nucleus, especially those to the medial, magnocellular part of the nucleus (MDm), have been studied using anterograde and retrograde axonal tracing methods, as well as electrophysiological recording. The results indicate that in addition to its well-known connections to and from the prefrontal cortex, MDm receives fibers from many parts of the basal forebrain, including the ventral pallidum and other parts of the substantia innominata, the amygdaloid complex, the primary olfactory cortex, entorhinal and perirhinal cortex, and the cortex at the pole of the temporal lobe. Lighter projections arise in the subiculum, the ventral insula, and the superior and inferior temporal gyri. The cells that project to MDm tend to be large, polymorphic neurons. Throughout most of the basal forebrain they are diffusely distributed through several nuclei or cortical layers, without obvious relation to nuclear or laminar boundaries. The major exception to this is in the ventral pallidum, where there is a dense concentration of cells that project to MDm. The lateral part of the mediodorsal nucleus (MDl) receives few if any fibers from the basal forebrain and temporal lobe, but is innervated by several brainstem structures, especially the superior colliculus, the substantia nigra, the medial vestibular nucleus, and the midbrain tegmental fields. In MDm, the fibers are distributed in irregular patches. Three-dimensional analysis indicates that these patches are often clustered into separate bands or columns at different anteroposterior levels. In addition, the strongest projections from the three major regions that innervate MDm are organized in a complex three-dimensional pattern. First, the fibers from the amygdaloid nuclei terminate most heavily (but not exclusively) in the rostral third of MDm. The parvicellular accessory basal amygdaloid nucleus and the amygdalohippocampal area project principally to the dorsal part of the nucleus. The parvicellular basal nucleus and the periamygdaloid cortex project to the ventromedial quadrant of MDm; and the magnocellular basal nucleus, the magnocellular accessory basal nucleus, and the lateral nucleus all project to the ventrolateral quadrant. Second, the substantia innominata projects preferentially to the caudal part of MDm. The medial part of the substantia innominata, especially the ventral pallidum, innervates the dorsomedial quadrant, while more caudal and lateral areas of this region project ventrolaterally. Third, the projections arising from the entorhinal and other temporal cortical areas terminate primarily in the mid-rostrocaudal level of MDm.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
During the past decade, work with monkeys has helped identify the structures in the medial temporal lobe that are important for memory: the hippocampal region (including the hippocampus proper, the dentate gyrus, and the subicular complex) and adjacent cortical areas that are anatomically linked to the hippocampus, i.e., the entorhinal, perirhinal, and parahippocampal cortices. One idea that has emerged from this work is that the severity of memory impairment might increase as more components of the medial temporal lobe are damaged. We have evaluated this idea directly by examining behavioral data from 30 monkeys (ten normal monkeys and 20 monkeys with bilateral lesions involving structures within the medial temporal lobe) that have completed testing on our standard memory battery during the last 10 years. The main finding was that the severity of memory impairment depended on the locus and extent of damage to the medial temporal lobe. Specifically, damage limited to the hippocampal region produced a mild memory impairment. More severe memory impairment was produced when the damage was increased to include the adjacent entorhinal and parahippocampal cortices (the H+ lesion). Finally, memory impairment was even more severe when the H+ lesion was extended forward to include the anterior entorhinal cortex and the perirhinal cortex (H++ lesion). Taken together, these findings suggest that, whereas damage to the hippocampal region produces measurable memory impairment, a substantial part of the severe memory impairment produced by large medial temporal lobe lesions in humans and monkeys can be attributed to damage to entorhinal, perirhinal, and parahippocampal cortices adjacent to the hippocampal region. © 1994 Wiley-Liss, Inc.  相似文献   

14.
Aim. This case report provides insight into the function of the anterior prefrontal cortex (aPFC), specifically Brodmann Area 10 (BA10), and its interconnectivity. Method. We present a 10‐year‐old patient with lesional epilepsy and ictal onset, localised to BA10 in the aPFC. Results. Thirty‐four seizures were recorded. All seizures involved a demonstration of elation with laughter that was associated with a variety of different patterns of complex motor behaviour that included performing specific celebratory movements and acting out a Michael Jackson dance move. Electrographically, the seizures were all stereotyped and arose from the right frontal region, followed by a distinct left temporal ictal rhythm that corresponded with the onset of the behaviours. The lesion in the right aPFC was identified as a mixed lesion with both dysembryoplastic neuroepithelial tumour cells and type II cortical dysplasia. Conclusion. The electrographic analysis and unique seizure semiology suggest a connection between the aPFC and the contralateral temporal lobe. This neural pathway appears to be involved in the activation of previously formed procedural memories, creating an intensely positive emotional experience.  相似文献   

15.
The afferent connections of the substantia innominata and the magnocellular nuclei within it (the nucleus of the horizontal limb of the diagonal band, NHDB, and the nucleus basalis of Meynert, NBM) have been studied with anterograde and retrograde axonal tracing techniques. Prominent inputs arise in the amygdaloid complex, restricted areas of the cerebral cortex, parts of the thalamus and hypothalamus, and nuclei of the lower brainstem. Autoradiographic tracing experiments indicate that the amygdaloid fibers are distributed throughout the NHDB and the NBM, and to a lesser extent to the ventral pallidum. Relatively few fibers innervate the more medially located nucleus of the vertical limb of the diagonal band (NVDB) and the medial septal nucleus. Visualization of the amygdalofugal fibers with the tracer PHA-L (Phaseolus vulgaris leuco-agglutinin) shows that they have varicosities resembling boutons en passant along their length in the substantia innominata. Retrograde tracing experiments using WGA-HRP indicate that the cells of origin of the projection from the amygdala are concentrated in the parvicellular basal nucleus, the caudal part of the magnocellular basal nucleus, the magnocellular accessory basal nucleus, and the central nucleus. Relatively few fibers to the substantia innominata arise in the rostrodorsal part of the magnocellular basal nucleus, or in the lateral or parvicellular accessory basal nuclei. Cortical cells projecting to the substantia innominata were retrogradely labeled in the orbitofrontal cortex (including areas 11-14 and 25), the rostral insula (especially the agranular area), the rostroventral temporal cortex (including areas 35, 36, and parts of TG and TE), and the piriform and entorhinal cortices. The projections from the orbital and rostral temporal cortex were confirmed with anterograde tracers. Projections to the substantia innominata were not found from the more lateral, dorsal or caudal parts of the cerebral cortex, although fibers from temporal area TA may pass through the dendritic field of the most caudal cells of the NBM. Diencephalic cells projecting to the substantia innominata are distributed diffusely throughout the preoptic area and hypothalamus, with higher concentration in the lateral preoptic area and in the pre-, supra-, and tubero-mammillary nuclei. Cells are also found in the midline thalamic nuclei and in the region between the peripeduncular and subparafascicular nuclei.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
17.
Amygdalo-cortical projections in the monkey (Macaca fascicularis)   总被引:10,自引:0,他引:10  
Amygdalo-cortical projections were analyzed in the macaque monkey (Macaca fascicularis) in a series of experiments in which 3H-amino acids were injected into each of the major divisions of the amygdaloid complex and the anterogradely transported label was demonstrated autoradiographically. Projections to widespread regions of frontal, insular, temporal, and occipital cortices have been observed. The heaviest projections to frontal cortex terminated in medial and orbital regions which included areas 24, 25, and 32 on the medial surface and areas 14, 13a, and 12 on the orbital surface. Lighter projections were also seen in areas 45, 46, 6, 9, and 10. The heaviest projection to the insula terminated in the agranular insular cortex with a decreasing gradient of innervation to the more caudally placed dysgranular and granular insular areas. The projection to this region continues around the dorsal limiting sulcus to terminate in the somatosensory fields 3, 1-2, and SII. Essentially all major divisions of the temporal neocortex receive a projection from the amygdaloid complex with the most prominent projections ending in the cortex of the temporal pole (area TG) and the perirhinal cortex. The entire rostrocaudal extent of the inferotemporal cortex (areas TE and TEO) is also in receipt of an amygdaloid projection. While the rostral superior temporal gyrus (area TA) is heavily labeled in several of the experiments (with light labeling continuing into AI and adjacent auditory association regions) there was little indication of labeling in the caudal reaches of area TA. There was a surprisingly strong projection to prestriate regions of the occipital lobe and, in at least one case, clear-cut labeling in areas OB and 17. Labeling in the parietal cortex was primarily observed in the depths of the intraparietal sulcus. In all cortical fields, label was heaviest at the border between layers I and II and in some regions layers V and VI also had above background levels of silver grains.  相似文献   

18.
We investigated the cortical afferents of the retrosplenial cortex and the adjacent posterior cingulate cortex (area 23) in the macaque monkey by using the retrograde tracers Fast blue and Diamidino yellow. We quantitatively analyzed the distribution of labeled neurons throughout the cortical mantle. Injections involving the retrosplenial cortex resulted in labeled neurons within the retrosplenial cortex and in areas 23 and 31 (approximately 78% of the total labeled cells). In the remainder of the cortex, the heaviest projections originated in the hippocampal formation, including the entorhinal cortex, subiculum, presubiculum, and parasubiculum. The parahippocampal and perirhinal cortices also contained many labeled neurons, as did the prefrontal cortex, mainly in areas 46, 9, 10, and 11, and the occipital cortex, mainly area V2. Injections in area 23 also resulted in numerous labeled cells in the posterior cingulate and retrosplenial regions (approximately 67% of total labeled cells). As in the retrosplenial cortex, injections of area 23 led to many labeled neurons in the frontal cortex, although most of these cells were in areas 9 and 46. Larger numbers of retrogradely labeled cells were also distributed more widely in the posterior parietal cortex, including areas 7a, 7m, LIP, and DP. There were some labeled cells in the parahippocampal cortex. These connections are consistent with the retrosplenial cortex acting as an interface between the working memory functions in the prefrontal areas and the long-term memory encoding in the medial temporal lobe. The posterior cingulate cortex, in contrast, may be more highly associated with visuospatial functions.  相似文献   

19.
Although frontal lobe interconnections of the primary (area 4 or M1) and supplementary (area 6m or M2) motor cortices are well understood, how frontal granular (or prefrontal) cortex influences these and other motor cortices is not. Using fluorescent dyes in rhesus monkeys, we investigated the distribution of frontal lobe inputs to M1, M2, and the cingulate motor cortex (area 24c or M3, and area 23c). M1 received input from M2, lateral area 6, areas 4C and PrCO, and granular area 12. M2 received input from these same areas as well as M1; granular areas 45, 8, 9, and 46; and the lateral part of the orbitofrontal cortex. Input from the ventral part of lateral area 6, area PrCO, and frontal granular cortex targeted only the ventral portion of M1, and primarily the rostral portion of M2. In contrast, M3 and area 23c received input from M1, M2; lateral area 6 and area 4C; granular areas 8, 12, 9, 46, 10, and 32; as well as orbitofrontal cortex. Only M3 received input from the ventral part of lateral area 6 and areas PrCO, 45, 12vl, and the posterior part of the orbitofrontal cortex. This diversity of frontal lobe inputs, and the heavy component of prefrontal input to the cingulate motor cortex, suggests a hierarchy among the motor cortices studied. M1 receives the least diverse frontal lobe input, and its origin is largely from other agranular motor areas. M2 receives more diverse input, arising primarily from agranular motor and prefrontal association cortices. M3 and area 23c receive both diverse and widespread frontal lobe input, which includes agranular motor, prefrontal association, and frontal limbic cortices. These connectivity patterns suggest that frontal association and frontal limbic areas have direct and preferential access to that part of the corticospinal projection which arises from the cingulate motor cortex. © 1993 Wiley-Liss,Inc.  相似文献   

20.
Perceived boundaries without physical differences between shape and background are called illusory contours (ICs). ICs and real contours (RCs) activate the early processing stages of the macaque visual pathway and the occipitotemporal areas of the human visual system in a similar way. However, it is not known how these contours are processed further in the highest visual areas. We tested how the responses of inferior temporal cortical (IT) neurons of macaque monkeys change in relationship to figures with RCs or ICs. The same set of figures [coloured pictures, ICs and silhouettes (SILs)] was presented to awake, fixating rhesus monkeys while the single-cell activity was recorded in the anterior part of the IT. Most of the neurons responsive to RCs were also responsive to the same shapes presented as ICs. The average net firing rates, however, were significantly lower for the illusory stimuli than for the stimuli in the RC conditions, and the latency of the responses was significantly longer for the ICs than for the RCs. The shape selectivity was found to be different for coloured stimuli and ICs, and similar for SILs and ICs, suggesting the invariance of selectivity to shapes having the same contour but lacking internal surface information. These results suggest different modes of processing of RCs and ICs in the IT, which might explain the differences in their perception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号