共查询到20条相似文献,搜索用时 15 毫秒
1.
Piao L Lee H Li HY Park CK Cho IH Piao ZG Jung SJ Choi SY Lee SJ Park K Kim JS Oh SB 《Journal of neuroscience research》2006,83(7):1373-1380
We investigated the mechanosensitivity of voltage-gated K+ channel (VGPC) currents by using whole-cell patch clamp recording in rat trigeminal ganglion (TG) neurons. On the basis of biophysical and pharmacological properties, two types of VGPC currents were isolated. One was transient (I(K,A)), the other sustained (I(K,V)). Hypotonic stimulation (200 mOsm) markedly increased both I(K,A) and I(K,V) without affecting their activation and inactivation kinetics. Gadolinium, a well-known blocker of mechanosensitive channels, failed to block the enhancement of I(K,A) and I(K,V) induced by hypotonic stimulation. During hypotonic stimulation, cytochalasin D, an actin-based cytoskeletal disruptor, further increased I(K,A) and I(K,V), whereas phalloidin, an actin-based cytoskeletal stabilizer, reduced I(K,A) and I(K,V). Confocal imaging with Texas red-phalloidin showed that actin-based cytoskeleton was disrupted by hypotonic stimulation, which was similar to the effect of cytochalasin D. Our results suggest that both I(K,A) and I(K,V) are mechanosensitive and that actin-based cytoskeleton is likely to regulate the mechanosensitivity of VGPC currents in TG neurons. 相似文献
2.
Höltje M Brunk I Grosse J Beyer E Veh RW Bergmann M Grosse G Ahnert-Hilger G 《Journal of neuroscience research》2007,85(1):19-33
The discharge behavior of neurons depends on a variable expression and sorting pattern of voltage-dependent potassium (Kv) channels that changes during development. The rodent retina represents a neuronal network whose main functions develop after birth. To obtain information about neuronal maturation we analyzed the expression of subunits of the Kv1 subfamily in the rat retina during postnatal development using immunocytochemistry and immunoelectron microscopy. At postnatal day 5 (P5) all the alpha-subunits of Kv1.1-Kv1.6 channels were found to be expressed in the ganglion cell layer (GCL), most of them already at P1 or P3. Their expression upregulates postnatally and the pattern and distribution change in an isoform-specific manner. Additionally Kv1 channels are found in the outer and inner plexiform layer (OPL, IPL) and in the inner nuclear layer (INL) at different postnatal stages. In adult retina the Kv 1.3 channel localizes to the inner and outer segments of cones. In contrast, Kv1.4 is highly expressed in the outer retina at P8. In adult retina Kv1.4 occurs in rod inner segments (RIS) near the connecting cilium where it colocalizes with synapse associated protein SAP 97. By using confocal laser scanning microscopy we showed a differential localization of Kv1.1-1.6 to cholinergic amacrine and rod bipolar cells of the INL of the adult retina. 相似文献
3.
Coexpression of auxiliary subunits KChIP and DPPL in potassium channel Kv4‐positive nociceptors and pain‐modulating spinal interneurons 下载免费PDF全文
Chia‐Yi Huang Po‐Hau Du Jung‐Hui Yang Meei‐Ling Tsaur 《The Journal of comparative neurology》2016,524(4):846-873
Subthreshold A‐type K+ currents (ISAs) have been recorded from the somata of nociceptors and spinal lamina II excitatory interneurons, which sense and modulate pain, respectively. Kv4 channels are responsible for the somatodendritic ISAs. Accumulative evidence suggests that neuronal Kv4 channels are ternary complexes including pore‐forming Kv4 subunits and two types of auxiliary subunits: K+ channel‐interacting proteins (KChIPs) and dipeptidyl peptidase‐like proteins (DPPLs). Previous reports have shown Kv4.3 in a subset of nonpeptidergic nociceptors and Kv4.2/Kv4.3 in certain spinal lamina II excitatory interneurons. However, whether and which KChIP and DPPL are coexpressed with Kv4 in these ISA‐expressing pain‐related neurons is unknown. In this study we mapped the protein distribution of KChIP1, KChIP2, KChIP3, DPP6, and DPP10 in adult rat dorsal root ganglion (DRG) and spinal cord by immunohistochemistry. In the DRG, we found colocalization of KChIP1, KChIP2, and DPP10 in the somatic surface and cytoplasm of Kv4.3(+) nociceptors. KChIP3 appears in most Aβ and Aδ sensory neurons as well as a small population of peptidergic nociceptors, whereas DPP6 is absent in sensory neurons. In the spinal cord, KChIP1 is coexpressed with Kv4.3 in the cell bodies of a subset of lamina II excitatory interneurons, while KChIP1, KChIP2, and DPP6 are colocalized with Kv4.2 and Kv4.3 in their dendrites. Within the dorsal horn, besides KChIP3 in the inner lamina II and lamina III, we detected DPP10 in most projection neurons, which transmit pain signal to brain. The results suggest the existence of Kv4/KChIP/DPPL ternary complexes in ISA‐expressing nociceptors and pain‐modulating spinal interneurons. J. Comp. Neurol. 524:846–873, 2016. © 2015 Wiley Periodicals, Inc. 相似文献
4.
5.
6.
Immunohistochemical localization of candidates for vesicular glutamate transporters in the rat brain 总被引:26,自引:0,他引:26
Vesicular glutamate transporter 1 (VGluT1) is one of the best markers for glutamatergic neurons, because it accumulates transmitter glutamate into synaptic vesicles. Differentiation-associated Na(+)-dependent inorganic phosphate cotransporter (DNPI) shows 82% amino acid identity to VGluT1, and is another candidate for vesicular glutamate transporters. Here, we report the immunocytochemical localization of DNPI and compare it with that of VGluT1 in the adult rat brain. Both DNPI and VGluT1 immunoreactivities were found mostly in neuropil, presumably in axon terminals, throughout the brain. In the telencephalic regions, intense DNPI immunoreactivity was observed in the glomeruli of the olfactory bulb, layer IV of the neocortex, granular layer of the dentate gyrus, presubiculum, and postsubiculum. In contrast, VGluT1 immunoreactivity was intense in the olfactory tubercle, layers I-III of the neocortex, piriform cortex, entorhinal cortex, hippocampus, dentate gyrus, and subiculum. In the thalamic nuclei, DNPI-immunoreactive terminal-like profiles were much larger than VGluT1-immunoreactive ones, suggesting that DNPI immunoreactivity was subcortical in origin. DNPI immunoreactivity was much more intense than VGluT1 immunoreactivity in many brainstem and spinal cord regions, except the pontine nuclei, interpeduncular nucleus, cochlear nuclei, and external cuneate nucleus. In the molecular layer of the cerebellar cortex, climbing-like fibers showed intense DNPI immunoreactivity, whereas neuropil contained dense VGluT1-immnoreactive deposits. Both DNPI and VGluT1 immunoreactivities were observed as mossy fiber terminal-like profiles in the cerebellar granular layer. DNPI and VGluT1 immunoreactivities appeared associated with synaptic vesicles in the axon terminals forming asymmetric synapses in several regions examined electron microscopically. The present results indicate that DNPI and VGluT1 are used by different neural components in most, if not all, brain regions, suggesting the complementary functions of DNPI and VGluT1. 相似文献
7.
Fernández-Alacid L Watanabe M Molnár E Wickman K Luján R 《The European journal of neuroscience》2011,34(11):1724-1736
G protein-gated inwardly-rectifying K(+) (GIRK/family 3 of inwardly-rectifying K(+) ) channels are coupled to neurotransmitter action and can play important roles in modulating neuronal excitability. We investigated the temporal and spatial expression of GIRK1, GIRK2 and GIRK3 subunits in the developing and adult brain of mice and rats using biochemical, immunohistochemical and immunoelectron microscopic techniques. At all ages analysed, the overall distribution patterns of GIRK1-3 were very similar, with high expression levels in the neocortex, cerebellum, hippocampus and thalamus. Focusing on the hippocampus, histoblotting and immunohistochemistry showed that GIRK1-3 protein levels increased with age, and this was accompanied by a shift in the subcellular localization of the subunits. Early in development (postnatal day 5), GIRK subunits were predominantly localized to the endoplasmic reticulum in the pyramidal cells, but by postnatal day 60 they were mostly found along the plasma membrane. During development, GIRK1 and GIRK2 were found primarily at postsynaptic sites, whereas GIRK3 was predominantly detected at presynaptic sites. In addition, GIRK1 and GIRK2 expression on the spine plasma membrane showed identical proximal-to-distal gradients that differed from GIRK3 distribution. Furthermore, although GIRK1 was never found within the postsynaptic density (PSD), the level of GIRK2 in the PSD progressively increased and GIRK3 did not change in the PSD during development. Together, these findings shed new light on the developmental regulation and subcellular diversity of neuronal GIRK channels, and support the contention that distinct subpopulations of GIRK channels exert separable influences on neuronal excitability. The ability to selectively target specific subpopulations of GIRK channels may prove effective in the treatment of disorders of excitability. 相似文献
8.
Andr E. P. Bastos Pedro F. Costa Suzy Varderidou‐Minasian Maarten Altelaar Pedro A. Lima 《The European journal of neuroscience》2019,49(11):1418-1435
The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage‐gated sodium (Na+) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside‐out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed “fed neurones” and “fasted neurones”, respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher “window current” amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane‐enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information. 相似文献
9.
Philippe Alix Kumar Venkatesan Jacqueline Scuvée‐Moreau Laurent Massotte Mai‐Linh Nguyen Trung Charlotte A. Cornil Vincent Seutin 《The European journal of neuroscience》2014,39(2):186-196
Most serotonergic neurons display a prominent medium‐duration afterhyperpolarization (mAHP), which is mediated by small‐conductance Ca2+‐activated K+ (SK) channels. Recent ex vivo and in vivo experiments have suggested that SK channel blockade increases the firing rate and/or bursting in these neurons. The purpose of this study was therefore to characterize the source of Ca2+ which activates the mAHP channels in serotonergic neurons. In voltage‐clamp experiments, an outward current was recorded at ?60 mV after a depolarizing pulse to +100 mV. A supramaximal concentration of the SK channel blockers apamin or (‐)‐bicuculline methiodide blocked this outward current. This current was also sensitive to the broad Ca2+ channel blocker Co2+ and was partially blocked by both ω‐conotoxin and mibefradil, which are blockers of N‐type and T‐type Ca2+ channels, respectively. Neither blockers of other voltage‐gated Ca2+ channels nor DBHQ, an inhibitor of Ca2+‐induced Ca2+ release, had any effect on the SK current. In current‐clamp experiments, mAHPs following action potentials were only blocked by ω‐conotoxin and were unaffected by mibefradil. This was observed in slices from both juvenile and adult rats. Finally, when these neurons were induced to fire in an in vivo‐like pacemaker rate, only ω‐conotoxin was able to increase their firing rate (by ~30%), an effect identical to the one previously reported for apamin. Our results demonstrate that N‐type Ca2+ channels are the only source of Ca2+ which activates the SK channels underlying the mAHP. T‐type Ca2+ channels may also activate SK channels under different circumstances. 相似文献
10.
Khan KM Drescher MJ Hatfield JS Ramakrishnan NA Drescher DG 《Journal of neuroscience research》2007,85(13):3000-3012
Alpha(1)-, beta(1)-, and beta(2)-adrenergic receptors (ARs), which mediate responses to adrenergic input, have been immunohistochemically identified within the organ of Corti and spiral ganglion with polyclonal antibodies of established specificity. Alpha(1)-AR was immunolocalized to sites overlapping supranuclear regions of inner hair cells as well as to nerve fibers approaching the base of inner hair cells, most evident in the basal cochlear turn. A similar preponderance across cochlear turns for alpha(1)-AR in afferent cell bodies in the spiral ganglion pointed to type I afferent dendrites as a possible neural source of alpha(1)-AR beneath the inner hair cell. Foci of immunoreactivity for alpha(1)-AR, putatively neural, were found overlapping supranuclear and basal sites of outer hair cells for all turns. Beta(1)- and beta(2)-ARs were immunolocalized to sites overlapping apical and basal poles of the inner and outer hair cells, putatively neural in part, with immunoreactive nerve fibers observed passing through the habenula perforata. Beta(1)- and beta(2)-ARs were also detected in the cell bodies of Deiters' and Hensen's cells. Within the spiral ganglion, beta(1)- and beta(2)-ARs were immunolocalized to afferent cell bodies, with highest expression in the basal cochlear turn, constituting one possible neural source of receptors within the organ of Corti, specifically on type I afferent dendrites. Beta(1)- and beta(2)-ARs in Hensen's and Deiters' cells would couple to Galphas, known to be present specifically in the supporting cells. Overall, adrenergic modulation of neural/supporting cell function within the organ of Corti represents a newly considered mechanism for modifying afferent signaling. 相似文献
11.
Ling Chen Weiyan Cai Lei Chen Rong Zhou Kishio Furuya Masahiro Sokabe 《Hippocampus》2010,20(4):499-512
We recently have found that an acute application of the neurosteroid pregnenolone sulfate (PREGS) at 50 μM to rat hippocampal slices induces a long‐lasting potentiation (LLPPREGS) via a sustained ERK2/CREB activation at perforant‐path/granule‐cell synapses in the dentate gyrus. This study is a follow up to investigate whether the expression of LLPPREGS influences subsequent frequency‐dependent synaptic plasticity. Conditioning electric stimuli (CS) at 0.1–200 Hz were given to the perforant‐path of rat hippocampal slices expressing LLPPREGS to induce long‐term potentiation (LTP) and long‐term depression (LTD). The largest LTP was induced at about 20 Hz‐CS, which is normally a subthreshold frequency, and the largest LTD at 0.5 Hz‐CS, resulting in a leftward‐shift of the LTP/LTD‐frequency curve. Furthermore, the level of LTP at 100 Hz‐CS was significantly attenuated to give band‐pass filter characteristics of LTP induction with a center frequency of about 20 Hz. The LTP induced by 20 Hz‐CS (termed 20 Hz‐LTP) was found to be postsynaptic origin and dependent on L‐type voltage‐gated calcium channel (L‐VGCC) but not on N‐methyl‐D ‐aspartate receptor (NMDAr). Moreover, the induction of 20 Hz‐LTP required a sustained activation of ERK2 that had been triggered by PREGS. In conclusion, the transient elevation of PREGS is suggested to induce a modulatory metaplasticity through a sustained activation of ERK2 in an L‐VGCC dependent manner. © 2009 Wiley‐Liss, Inc. 相似文献
12.
Distribution and neurochemical characterization of neurons expressing GIRK channels in the rat brain
Saenz del Burgo L Cortes R Mengod G Zarate J Echevarria E Salles J 《The Journal of comparative neurology》2008,510(6):581-606
G-protein inwardly rectifying potassium (GIRK) channels mediate the synaptic actions of numerous neurotransmitters in the mammalian brain and play an important role in the regulation of neuronal excitability in most brain regions through activation of various G-protein-coupled receptors such as the serotonin 5-HT(1A) receptor. In this report we describe the localization of GIRK1, GIRK2, and GIRK3 subunits and 5-HT(1A) receptor in the rat brain, as assessed by immunohistochemistry and in situ hybridization. We also analyze the co-expression of GIRK subunits with the 5-HT(1A) receptor and cell markers of glutamatergic, gamma-aminobutyric acid (GABA)ergic, cholinergic, and serotonergic neurons in different brain areas by double-label in situ hybridization. The three GIRK subunits are widely distributed throughout the brain, with an overlapping expression in cerebral cortex, hippocampus, paraventricular nucleus, supraoptic nucleus, thalamic nuclei, pontine nuclei, and granular layer of the cerebellum. Double-labeling experiments show that GIRK subunits are present in most of the 5-HT(1A) receptor-expressing cells in hippocampus, cerebral cortex, septum, and dorsal raphe nucleus. Similarly, GIRK mRNA subunits are found in glutamatergic and GABAergic neurons in hippocampus, cerebral cortex, and thalamus, in cholinergic cells in the nucleus of vertical limb of the diagonal band, and in serotonergic cells in the dorsal raphe nucleus. These results provide a deeper knowledge of the distribution of GIRK channels in different cell subtypes in the rat brain and might help to elucidate their physiological roles and to evaluate their potential involvement in human diseases. 相似文献
13.
The effects of carbocyclic thromboxane A(2) (cTXA(2); 10(-6) mol L(-1)) on membrane potential and cytosolic Ca(2+) concentration were measured with the whole-cell patch-clamp or the fura-2 method, respectively, at rat myenteric ganglia. cTXA(2) caused a hyperpolarization of myenteric neurones from -19.3 +/- 2.5 to -29.3 +/- 2.3 mV. In addition, the eicosanoid potentiated the carbachol-induced depolarization from 4.2 +/- 1.0 mV under control conditions to 11.1 +/- 1.1 mV in the presence of the cTXA(2) (n = 9). The hyperpolarization was abolished by internal application of CsCl (140 mmol L(-1)), a non-selective blocker of K(+) channels, or EGTA (11 mmol L(-1)in the pipette solution), a chelator of intracellular Ca(2+). A similar inhibition was observed in the presence of charybdotoxin (10(-7) mol L(-1)). Fura-2 imaging experiments revealed a cTXA(2)-evoked increase in the intracellular Ca(2+) concentration as indicated by a rise in the fura-2 ratio signal. This response was mediated by a release of Ca(2+) from intracellular stores as sarcoplasmic-endoplasmic reticulum Ca(2+)-ATPase blockade with cyclopiazonic acid (5 x 10(-5) mol L(-1)) completely abolished the response to cTXA(2). A similar inhibition was observed after blockade of phospholipase C with U-73122 (10(-5) mol L(-1)). These results suggest an activation of Ca(2+)-activated K(+) channels by cTXA(2) after stimulation of phospholipase C. 相似文献
14.
N. M. C. McNamara S. Averill G. P. Wilkin J. O. Dolly J. V. Priestley 《The European journal of neuroscience》1996,8(4):688-699
A highly specific monoclonal antibody and pre-embedding immunocytochemistry were employed to examine the distribution of the K+ channel a subunit Kv 1.2 in the rat cerebellum. At the light microscopic level, the heaviest immunoreactivity was seen in the basket cell pinceau at the base of Purkinje cells, with lighter staining of basket and Golgi cell bodies and a punctate pattern in the granule cell and molecular layers. Electron microscopy was performed to identify the ultrastructural location of Kv 1.2 α subunit in these labelled structures. This revealed that the labelling of the pinceau was confined to the preterminal axonal plexus, the area immediately around the Purkinje axon initial segment being relatively devoid of staining. Basket cell parent axons were not immunostained, but gave rise to heavily stained fine processes. Immunoreactivity was also seen in myelinated axons in the granule cell layer and in the medial cerebellar nucleus, the staining being most concentrated at the juxtaparanodal regions of the axons. An unusual pattern of staining was seen in some mossy fibre terminals, with staining restricted to fine protuberances of mossy fibre glomeruli. Structures contacted by these protuberances included adjoining glial processes. Immunostaining was absent from Purkinje cell bodies, dendrites, their axon initial segments and their terminals in the medial cerebellar nucleus. In this study, the a subunit Kv 1.2 was localized to a number of different cell types in the cerebellum. Each neuronal type displays a distinct subcellular distribution of the subunit. 相似文献
15.
Mathieu M Mensah-Nyagan AG Vallarino M Do-Régo JL Beaujean D Vaudry D Luu-The V Pelletier G Vaudry H 《The Journal of comparative neurology》2001,438(2):123-135
The localization of the enzymes responsible for the biosynthesis of neurosteroids in the brain of dipnoans has not yet been determined. In the present study, we investigated the immunohistochemical distribution of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) and 5 alpha-reductase (5 alpha-R) in the brain and pituitary of the African lungfish Protopterus annectens by using antibodies raised against type I human 3 beta-HSD and type I human 5 alpha-R. The 3 beta-HSD and 5 alpha-R immunoreactivities were detected in cell bodies and fibers located in the same areas of the lungfish brain, namely, in the pallium, thalamus, hypothalamus, tectum, and periaqueductal gray. Identification of astrocytes, oligodendrocytes, and neurons with antisera against glial fibrillary acidic protein, galactocerebroside and neurofilaments revealed that, in the lungfish brain, 3 beta-HSD immunolabeling is expressed exclusively by neurons, whereas the 5 alpha-R-immunoreactive material is contained in both neurons and glial cells. In the pituitary gland, 3 beta-HSD- and 5 alpha-R-like immunoreactivity was localized in both the pars distalis and the pars intermedia. The present study provides the first immunocytochemical mapping of two key steroidogenic enzymes in the brain and pituitary of a lungfish. These data strongly suggest that neurosteroid biosynthesis occurs in the brain of fishes, as previously shown for amphibians, birds, and mammals. 相似文献
16.
Bøttger P Tracz Z Heuck A Nissen P Romero-Ramos M Lykke-Hartmann K 《The Journal of comparative neurology》2011,519(2):376-404
The Na(+)/K(+)-ATPase1 alpha subunit 3 (ATP1α(3)) is one of many essential components that maintain the sodium and potassium gradients across the plasma membrane in animal cells. Mutations in the ATP1A3 gene cause rapid-onset of dystonia parkinsonism (RDP), a rare movement disorder characterized by sudden onset of dystonic spasms and slowness of movement. To achieve a better understanding of the pathophysiology of the disease, we used immunohistochemical approaches to describe the regional and cellular distribution of ATP1α(3) in the adult mouse brain. Our results show that localization of ATP1α(3) is restricted to neurons, and it is expressed mostly in projections (fibers and punctuates), but cell body expression is also observed. We found high expression of ATP1α(3) in GABAergic neurons in all nuclei of the basal ganglia (striatum, globus pallidus, subthalamic nucleus, and substantia nigra), which is a key circuitry in the fine movement control. Several thalamic nuclei structures harboring connections to and from the cortex expressed high levels of the ATP1α(3) isoform. Other structures with high expression of ATP1α(3) included cerebellum, red nucleus, and several areas of the pons (reticulotegmental nucleus of pons). We also found high expression of ATP1α(3) in projections and cell bodies in hippocampus; most of these ATP1α(3)-positive cell bodies showed colocalization to GABAergic neurons. ATP1α(3) expression was not significant in the dopaminergic cells of substantia nigra. In conclusion, and based on our data, ATP1α(3) is widely expressed in neuronal populations but mainly in GABAergic neurons in areas and nuclei related to movement control, in agreement with RDP symptoms. 相似文献
17.
It has been shown that rapid eye movement (REM) sleep deprivation increases Na-K ATPase activity. Based on kinetic study, it was proposed that increased activity was due to enhanced turnover of enzyme molecules. To test this, anti-alpha1 Na-K ATPase monoclonal antibody (mAb 9A7) was used to label Na-K ATPase molecules. These labeled enzymes were quantified on neuronal membrane by two methods: histochemically on neurons in tissue sections from different brain areas, and by Western blot analysis in control and REM sleep-deprived rat brains. The specific enzyme activity was also estimated and found to be increased, as in previous studies. The results confirmed our hypothesis that after REM sleep deprivation, increased Na-K ATPase activity was at least partly due to increased turnover of Na-K ATPase molecules in the rat brain. 相似文献
18.
The distribution of the γ-aminobutyric acid (GABA)A receptor/benzodizepine receptor/CI− channel complex in the rat brain was examined immunohistochemically using the specific antibody against purified GABAA receptor complex. The immunization of white albino rabbit with purified GABAA receptor complex resulted in the formation of specific antibody as indicated by the immunoprecipitation test. Immunohistochemical examinations using the antiserum on rat brain slices by the peroxidase-antiperoxidase method revealed the presence of the following immunoreactive sites which coincided with a previous report using antibody againstl-glutamic acid decar☐ylase; ventromedial nucleus of hypothalamus, red nucleus, globus pallidus, zona compacta and zona reticulata of substantia nigra, layers of Purkinje cells and granular cells of cerebellum, layers III–V of cerebral cortex and stratum radiatum of hippocampus. These results strongly suggest that immunohistochemical application of the antibody against the purified GABAA receptor complex is a useful tool for identifying GABAergic neurons having GABAA receptor complex-mediated synapses. 相似文献
19.
Shin‐ichi Sekizawa Jesse P. Joad Kent E. Pinkerton Ann C. Bonham 《The European journal of neuroscience》2010,31(4):673-684
Extended exposure to secondhand smoke (SHS) in infants and young children increases the incidence of cough, wheeze, airway hyper‐reactivity and the prevalence and earlier onset of asthma. The adverse effects may result from environmentally‐induced plasticity in the neural network regulating cough and airway function. Using whole‐cell patch‐clamp recordings in brainstem slices containing anatomically identified second‐order lung afferent neurons in the nucleus tractus solitarius (NTS), we determined the effects of extended SHS exposure in young guinea pigs for a duration equivalent to human childhood on the intrinsic excitability of NTS neurons. SHS exposure resulted in marked decreases in the intrinsic excitability of a subset of lung afferent second‐order NTS neurons. The neurons exhibited a decreased spiking capacity, prolonged action potential duration, reduced afterhyperpolarization, decrease in peak and steady‐state outward currents, and membrane depolarization. SHS exposure effects were mimicked by low concentrations of the K+ channel blockers 4‐aminopyridine and/or tetraethyl ammonium. The data suggest that SHS exposure downregulates K+ channel function in a subset of NTS neurons, resulting in reduced cell excitability. The changes may help to explain the exaggerated neural reflex responses in children exposed to SHS. 相似文献
20.
Voltage gated K+ channels (Kv) are a diverse group of channels important in determining neuronal excitability. The Kv superfamily is divided into 12 subfamilies (Kv1-12) and members of the Kv3 subfamily are highly abundant in the CNS, with each Kv3 gene (Kv3.1-Kv3.4) exhibiting a unique expression pattern. Since the localisation of Kv subunits is important in defining the roles they play in neuronal function, we have used immunohistochemistry to determine the distribution of the Kv3.3 subunit in the medulla oblongata and spinal cord of rats. Kv3.3 subunit immunoreactivity (Kv3.3-IR) was widespread but present only in specific cell populations where it could be detected in somata, dendrites and synaptic terminals. Labelled neurones were observed in the spinal cord in laminae IV and V, in the region of the central canal and in the ventral horn. In the medulla oblongata, labelled cell bodies were numerous in the spinal trigeminal, cuneate and gracilis nuclei whilst rarer in the lateral reticular nucleus, hypoglossal nucleus and raphe nucleus. Regions containing autonomic efferent neurones were predominantly devoid of labelling with only occasional labelled neurones being observed. Dual immunohistochemistry revealed that some Kv3.3-IR neurones in the ventral medullary reticular nucleus, spinal trigeminal nucleus, dorsal horn, ventral horn and central canal region were also immunoreactive for the Kv3.1b subunit. The presence of Kv3.3 subunits in terminals was confirmed by co-localisation of Kv3.3-IR with the synaptic vesicle protein SV2, the vesicular glutamate transporter VGluT2 and the glycine transporter GlyT2. Co-localisation of Kv3.3-IR was not observed with VGluT1, tyrosine hydroxylase, serotonin or choline acetyl transferase. Electron microscopy confirmed the presence of Kv3.3-IR in terminals and somatic membranes in ventral horn neurones, but not motoneurones. This study provides evidence supporting a role for Kv3.3 subunits in regulating neuronal excitability and in the modulation of excitatory and inhibitory synaptic transmission in the medulla oblongata and spinal cord. 相似文献