首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prion encephalopathies include fatal diseases of the central nervous system of men and animals characterized by nerve cell loss, glial proliferation and deposition of amyloid fibrils into the brain. During these diseases a cellular glycoprotein (the prion protein, PrP(C)) is converted, through a not yet completely clear mechanism, in an altered isoform (the prion scrapie, PrP(Sc)) that accumulates within the brain tissue by virtue of its resistance to the intracellular catabolism. PrP(Sc) is believed to be responsible for the neuronal loss that is observed in the prion disease. The PrP 106-126, a synthetic peptide that has been obtained from the amyloidogenic portion of the prion protein, represents a suitable model for studying the pathogenic role of the PrP(Sc), retaining, in vitro, some characteristics of the entire protein, such as the capability to aggregate in fibrils, and the neurotoxicity. In this work we present the results we have recently obtained regarding the action of the PrP 106-126 in different cellular models. We report that the PrP 106-126 induces proliferation of cortical astrocytes, as well as degeneration of primary cultures of cortical neurons or of neuroectodermal stable cell lines (GH(3) cells). In particular, these two opposite effects are mediated by the same attitude of the peptide to interact with the L-type calcium channels: in the astrocytes, the activity of these channels seems to be activated by PrP 106-126, while, in the cortical neurons and in the GH(3) cells, the same treatment causes a blockade of these channels causing a toxic effect.  相似文献   

2.
Prion diseases are neurodegenerative disorders that are characterized by the presence of the misfolded prion protein (PrP). Neurotoxicity in these diseases may result from prion‐induced modulation of ion channel function, changes in neuronal excitability, and consequent disruption of cellular homeostasis. We therefore examined PrP effects on a suite of potassium (K+) conductances that govern excitability of basal forebrain neurons. Our study examined the effects of a PrP fragment [PrP(106–126), 50 nM] on rat neurons using the patch clamp technique. In this paradigm, PrP(106–126) peptide, but not the “scrambled” sequence of PrP(106–126), evoked a reduction of whole‐cell outward currents in a voltage range between –30 and +30 mV. Reduction of whole‐cell outward currents was significantly attenuated in Ca2+‐free external media and also in the presence of iberiotoxin, a blocker of calcium‐activated potassium conductance. PrP(106–126) application also evoked a depression of the delayed rectifier (IK) and transient outward (IA) potassium currents. By using single cell RT‐PCR, we identified the presence of two neuronal chemical phenotypes, GABAergic and cholinergic, in cells from which we recorded. Furthermore, cholinergic and GABAergic neurons were shown to express Kv4.2 channels. Our data establish that the central region of PrP, defined by the PrP(106–126) peptide used at nanomolar concentrations, induces a reduction of specific K+ channel conductances in basal forebrain neurons. These findings suggest novel links between PrP signalling partners inferred from genetic experiments, K+ channels, and PrP‐mediated neurotoxicity. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Prion diseases or transmissible spongiform encephalopathies, are neurodegenerative disorders that are genetic, sporadic, or infectious. The pathogenetic event common to all prion disorders is the conformational transformation of the cellular prion protein (PrP^C) to the scrapie form (PrP^Sc), that deposits in the brain parenchyma and induces neuronal death. Infectious prion disorders are caused by exogenously introduced PrP^Sc that acts as a template in the conversion of endogenous PrP^C to nascent PrP^Sc, and subsequently the process becomes autocatalytic. To understand the process of cellular uptake of PrP^Sc and its mechanism of cellular toxicity, previous studies have used a PrP fragment spanning residues 106-126 (PrP^Tx) that is toxic to primary neurons in culture, and mimics PrP^Sc in its biophysical properties [9,11,14]. Several possible mechanisms of cell death by PrP^Tx have been proposed [2,3,10,11,18], but the existing data are unclear. To identify the biochemical pathways of neurotoxicity by this fragment, we have isolated mutant neuroblastoma and NT-2 cells that are resistant to toxicity by PrP^Tx. We show that these cells bind and internalize PrP^Tx in a temperature dependent fashion, and the peptide accumulates in intracellular compartments, probably lysosomes, where it has an unusually long half-life. The PrP^Tx-resistant phenotype of the cells reported in this study could result from aberrant binding or internalization of the peptide, or due to an abnormality in the downstream pathway(s) of neuronal toxicity. The PrP^Tx-resistant cells are therefore a useful tool for evaluating the cellular and biochemical pathways that lead to cell death by this peptide, and will provide insight into the mechanism(s) of neurotoxicity by PrP^Sc.  相似文献   

4.
A synthetic peptide corresponding to the 106-126 amyloidogenic region of the cellular human prion protein (PrP(c)) is useful for in vitro study of prion-induced neuronal cell death. The aim of the present work was to examine the implication of the cellular prion protein in the toxicity mechanism induced by PrP 106-126. The effect of PrP 106-126 was investigated both on human neuroblastoma SH-SY5Y cells and on SH-SY5Y overexpressing murine cellular prions (wtPrP). We show by metabolic assay tests and ATP assays that PrP(c) expression does not modulate the toxicity of the prion peptide. Moreover, we investigated the effect of this peptide on an established non neuronal model, rabbit kidney epithelial A74 cells that express a doxycycline-inducible murine PrP(c) gene. We show for the first time that the prion peptide 106-126 does not exert any toxic effect on this cell line in the presence or absence of doxycycline. Our results show that the PrP 106-126-induced cell alteration is independent of PrP(c) expression. Rather, it seems to act via an interaction with lipidic components of the plasma membrane as strengthened by our results showing the differential susceptibility of neuronal and non neuronal cell lines that significantly differ by their membrane fatty acid composition.  相似文献   

5.
The prion diseases are transmissible neurodegenerative pathologies characterized by the accumulation of altered forms of the prion protein (PrP), termed PrPSc, in the brain. Previous studies have shown that a synthetic peptide homologous to residues 106–126 of PrP (PrP 106–126) maintains many characteristics of PrPSc, i.e., the ability to form amyloid fibrils and to induce apoptosis in neurons. We have investigated the intracellular mechanisms involved in the cellular degeneration induced by PrP 106–126, using the GH3 cells as a model of excitable cells. When assayed in serum-deprived conditions (48 hr), PrP 106–126 (50 μM) induced cell death time-dependently, and this process showed the characteristics of the apoptosis. This effect was specific because a peptide with a scrambled sequence of PrP 106–126 was not effective. Then we performed microfluorimetric analysis of single cells to monitor intracellular calcium concentrations and showed that PrP 106–126 caused a complete blockade of the increase in the cytosolic calcium levels induced by K+ (40 mM) depolarization. Conversely, the scrambled peptide was ineffective. The L-type voltage-sensitive calcium channel blocker nicardipine (1 μM) also induced apoptosis in GH3 cells, suggesting that the blockade of Ca2+ entry through this class of calcium channels may cause GH3 apoptotic cell death. We thus analyzed, by means of electrophysiological studies, whether Prp 106–126 modulate L-type calcium channels activity and demonstrated that the apoptotic effect of PrP 106–126 was due to a dose-dependent inactivation of the L-type calcium channels. These data demonstrate that the prion protein fragment 106–126 induces a GH3 apoptotic cell death inducing a selective inhibition of the activity of the L-type voltage-sensitive calcium channels. J. Neurosci. Res. 54:341–352, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Using the lipid bilayer technique, we have found that age-related derivatives, PrP[106-126] (L-Asp108) and PrP[106-126] (L-iso-Asp108), of the prion protein fragment 106-126 (PrP[106-126] (Asn108)) form heterogeneous ion channels. The deamidated isoforms, PrP[106-126] (L-Asp108) and PrP[106-126] (L-iso-Asp108), showed no enhanced propensity to form heterogeneous channels compared with PrP[106-126] (Asn108). One of the PrP[106-126] (L-Asp108)- and PrP[106-126] (L-iso-Asp108)-formed channels had three kinetic modes. The current-voltage (I-V) relationship of this channel, which had a reversal potential, E(rev), between -40 and -10 mV close to the equilibrium potential for K+ (E(K)-35 mV), exhibited a sigmoidal shape. The value of the maximal slope conductance (g(max)) was 62.5 pS at positive potentials between 0 and 140 mV. The probability (P(o)) and the frequency (F(o)) of the channel being open had inverted and bell-shaped curves, respectively, with a peak at membrane potential (V(m)) between -80 and +80 mV. The mean open and closed times (T(o) and T(c)) had inverted bell-shaped curves. The biophysical properties of PrP[106-126] (L-Asp108)- and PrP[106-126] (L-iso-Asp108)-formed channels and their response to Cu(2+) were similar to those of channels formed with PrP[106-126] (Asn108). Cu(2+) shifted the kinetics of the channel from being in the open state to a "burst state" in which rapid channel activities were separated by long durations of inactivity. The action of Cu(2+) on the open channel activity was both time-dependent and voltage-dependent. The fact that Cu(2+) induced changes in the kinetics of this channel with no changes in the conductance of the channel indicated that Cu(2+) binds at the mouth of the channel. Consistently with the hydrophilic and structural properties of PrP[106-126], the Cu(2+)-induced changes in the kinetic parameters of this channel suggest that the Cu(2+) binding site could be located at M(109) and H(111) of this prion fragment.  相似文献   

7.
8.
Prion diseases are neurodegenerative pathologies characterized by the accumulation, in the brain, of altered forms of the prion protein (PrP), named PrP(Sc). A synthetic peptide homologous to residues 106-126 of PrP (PrP106-126) was reported to maintain the neurodegenerative characteristics of PrP(Sc). We investigated the intracellular mechanisms involved in PrP106-126-dependent degeneration of primary cultures of cerebellar granule neurons. Prolonged exposure of such neurons to PrP106-126 induced apoptotic cell death. The L-type voltage-sensitive calcium channel blocker nicardipine reproduced this effect, suggesting that blockade of Ca(2+) entry through this class of calcium channels may be responsible for the granule cell degeneration. Microfluorometric analysis showed that PrP106-126 caused a reduction in cytosolic calcium levels, elicited by depolarizing K(+) concentrations in these neurons. Electrophysiological studies demonstrated that PrP106-126 and nicardipine selectively reduce the L-type calcium channel current. These data demonstrate that PrP106-126 alters the activity of L-type voltage-sensitive calcium channels in rat cerebellar granule cells and suggest that this phenomenon is related to the cell death induced by the peptide.  相似文献   

9.
A quarter of a century ago, we proposed an innovative approach to study the pathogenesis of prion disease, one of the most intriguing biomedical problems that remains unresolved. The synthesis of a peptide homologous to residues 106‐126 of the human prion protein (PrP106‐126), a sequence present in the PrP amyloid protein of Gerstmann–Sträussler–Scheinker syndrome patients, provided a tractable tool for investigating the mechanisms of neurotoxicity. Together with several other discoveries at the beginning of the 1990s, PrP106‐126 contributed to underpin the role of amyloid in the pathogenesis of protein‐misfolding neurodegenerative disorders. Later, the role of oligomers on one hand and of prion‐like spreading of pathology on the other further clarified mechanisms shared by different neurodegenerative conditions. Our original report on PrP106‐126 neurotoxicity also highlighted a role for programmed cell death in CNS diseases. In this review, we analyse the prion research context in which PrP106‐126 first appeared and the advances in our understanding of prion disease pathogenesis and therapeutic perspectives 25 years later.  相似文献   

10.
The inflammatory response in prion diseases is dominated by microglial activation. As macrophages of the central nervous system, the phagocytic capacity of microglia is well recognized, and it is possible that microglia are involved in the removal and processing of amyloid fibrils, thus preventing their harmful effect. We have analyzed the effects of a synthetic peptide of the human prion protein, PrP(106-126), which can form fibrils, and the pathogenic form of prion protein, PrPsc, on phagocytosis in microglia isolated from neonatal rat brain cultures. To some extent, fibrillar PrP(106-126) is internalized and processed. However, both synthetic prion peptide PrP(106-126) in a fibrillar form and pathogenic prion protein PrPsc severely hamper the phagocytic activity as measured by the uptake of beads by microglia. At a concentration that does not induce microglial death, PrP(106-126) reduced the number of beads internalized and altered their cytoplasmic distribution. This effect was not due to decreased binding of beads to the cell surface, nor restricted to specific classes of receptors. Although the PrP(106-126) did not prevent F-actin and Rac1 accumulation at sites of particle engulfment, it appeared to interfere with a later step of the internalization process.  相似文献   

11.
Corticosterone (CORT), the predominant glucocorticoid of rats which is secreted during stress, increases hippocampal neuronal vulnerability to excitotoxins, hypoxia-ischemia, and hypoglycemia in an energy-dependent manner. A mechanism for this endangerment could be the CORT-induced impairment of hippocampal neuronal calcium regulation. We have shown that CORT causes an energy-dependent prolonged elevation of cytosolic free calcium ([Ca2+]i) in response to kainic acid stimulation in cultured hippocampal neurons. That study utilized the calcium-sensitive dye fluo-3, which is unsuitable for determination of basal [Ca2+]i. The present study circumvents that limitation by using the dye fura-2 AM. We have replicated the previous demonstration that CORT potentiates the [Ca2+]i response to KA; we have also observed thta CORT elevates basal [Ca2+]i concentrations. Furthermore, we have observed that the mechanism for this CORT impairment of calcium regulation involves a reduction in stimulus-induced calcium efflux. Energy-dependent disruptions in neuronal calcium regulation, such as induced by CORT, have been associated with subsequent neurotoxicity. Thus, the CORT-induced impairment of hippocampal neuronal calcium regulation could be the mechanism for the neuronal vulnerability and toxicity evident following CORT treatment and stress.  相似文献   

12.
Prion diseases are transmissible neurodegenerative disorders that are invariably fatal in humans and animals. Although the nature of the infectious agent and pathogenic mechanisms of prion diseases are not clear, it has been reported that prion diseases may be associated with aberrant metabolism of cellular prion protein (PrP(C)). In various reports, it has been postulated that PrP(C) may be involved in one or more of the following: neurotransmitter metabolism, cell adhesion, signal transduction, copper metabolism, antioxidant activity or programmed cell death. Despite suggestive results supporting each of these mechanisms, the physiological function(s) of PrP(C) is not known. To investigate whether PrP(C) can prevent apoptotic cell death in prion diseases, we established the cell lines stably expressing PrP(C) from PrP knockout (PrP(-/-)) neuronal cells and examined the role of PrP(C) under apoptosis and/or serum-deprived condition. We found that PrP(-/-) cells were vulnerable to apoptotic cell death and that this vulnerability was rescued by the expression of PrP(C). The expression levels of apoptosis-related proteins including p53, Bax, caspase-3, poly(ADP-ribose) polymerase (PARP) and cytochrome c were significantly increased in PrP(-/-) cells. In addition, Ca(2+) levels of mitochondria were increased, whereas mitochondrial membrane potentials were decreased in PrP(-/-) cells. These results strongly suggest that PrP(C) may play a central role as an effective anti-apoptotic protein through caspase-dependent apoptotic pathways in mitochondria, supporting the concept that disruption of PrP(C) and consequent reduction of anti-apoptotic capacity of PrP(C) may be one of the pathogenic mechanisms of prion diseases.  相似文献   

13.
Prion diseases are neurodegenerative pathologies characterized by the accumulation in the brain of a protease-resistant form of the prion protein (PrP(c)), named PrP(Sc). A synthetic peptide homologous to residues 106-126 of PrP (PrP106-126) maintains many PrP(Sc) characteristics. We investigated the intracellular signaling responsible for the PrP106-126-dependent cell death of SH-SY5Y, a cell line derived from a human neuroblastoma. In this cell line, PrP106-126 induced apoptotic cell death and caused activation of caspase-3, although the blockade of this enzyme did not inhibit cell death. The p38 MAP kinase blockers, SB203580 and PD169316, prevented the apoptotic cell death evoked by PrP106-126 and Western blot analysis revealed that the exposure of the cells to the peptide induced p38 phosphorylation. Taken together, our data suggest that the p38 MAP kinase pathway can mediate the SH-SY5Y cell death induced by PrP106-126.  相似文献   

14.
Turnbull S  Tabner BJ  Brown DR  Allsop D 《Neuroreport》2003,14(13):1743-1745
The accumulation of protein aggregates in the brain is a central feature of several different neurodegenerative diseases. We have recently shown that Abeta and alpha-synuclein, associated with Alzheimer's disease, Parkinson's disease and related disorders, can both induce the formation of hydroxyl radicals following incubation in solution, upon addition of Fe(II). PrP106-126, a model peptide for the study of prion protein-mediated cell death, shares the same property. In this study we show that quinacrine (an anti-malarial drug and inhibitor of prion replication) acts as an effective antioxidant, readily scavenging hydroxyl radicals formed from hydrogen peroxide via the Fenton reaction or generated during incubation of the PrP106-126 peptide. Furthermore, the toxicity of PrP106-126 to cultured cells was significantly inhibited by quinacrine.  相似文献   

15.
Chronic stress causes changes in neuroplasticity that are accompanied by structural changes in the neocortex and hippocampus. In this study, parameters of oxidative stress and apoptosis were investigated in different areas of rat brains subjected to chronic stress (on the model of experimental neurosis). It was found that this chronic stress induced a decline in the locomotor, exploratory, and emotionality parameters of rats subjected to 14 days of neurotization. A decrease in the concentration of the products of oxidative stress accompanied by an increase in the level of oxidized proteins was found in the neocortex of animals subjected to stress. At the same time, the content of non-protein thiols remained unchanged. Stress resulted in an increase in NO metabolites and a decrease in the activity of caspase-3 in the neocortex and hippocampus Thus, structure-functional changes induced by chronic stress may be related to disturbances in free radical homeostasis of the rat brain which were accompanied by an increase in the content of modified proteins and nitric oxide synthesis. However, caspase-3-dependent proapoptotic mechanisms were not involved in this process.  相似文献   

16.
17.
18.
A synthetic peptide homologous to region 106-126 of the prion protein (PrP) is toxic to cells expressing PrP, but not to PrP knockout neurons, arguing for a specific role of PrP in mediating the peptide's activity. Whether this is related to a gain of toxicity or a loss of function of PrP is not clear. We explored the possibility that PrP106-126 triggered formation of PrP(Sc) or other neurotoxic PrP species. We found that PrP106-126 did not induce detergent-insoluble and protease-resistant PrP, nor did it alter its membrane topology or cellular distribution. We also found that neurons expressing endogenous or higher level of either wild-type PrP or a nine-octapeptide insertional mutant were equally susceptible to PrP106-126, and that sub-physiological PrP expression was sufficient to restore vulnerability to the peptide. These results indicate that PrP106-126 interferes with a PrP function that requires only low protein levels, and is not impaired by a pathogenic insertion in the octapeptide region.  相似文献   

19.
Summary. Carboxyl-terminal fragments (CTs) of the amyloid precursor protein have been shown to be highly neurotoxic and are though to contribute to the neuropathology of Alzheimer’s disease. We compared the effects of expressing CT99 in the human neuroblastoma MC65 with the effects of hydrogen peroxide on the parental SK-N-MC cells. CT99 and hydrogen peroxide generated a different pattern of free radicals and their toxic effects were differentially protected by a battery of antioxidants. Hydrogen peroxide caused a cell cycle arrest at phase S and apoptosis mediated through caspase-3 activation in a pattern similar to that described for amyloid-β neurotoxicity. However, CT99 apoptosis appeared to be mediated through an unidentified mitochondrial pathway. Both oxidative injury types induced heme oxygenase-1 expression as a neuroprotective response. Overall we found a coincidence in the nonespecific stress oxidative effects of CT99 and hydrogen peroxide, but clear differences on their respective potencies and pathways of neurotoxicity.  相似文献   

20.
Visual selective attention operates through top–down mechanisms of signal enhancement and suppression, mediated by α‐band oscillations. The effects of such top–down signals on local processing in primary visual cortex (V1) remain poorly understood. In this work, we characterize the interplay between large‐scale interactions and local activity changes in V1 that orchestrates selective attention, using Granger‐causality and phase‐amplitude coupling (PAC) analysis of EEG source signals. The task required participants to either attend to or ignore oriented gratings. Results from time‐varying, directed connectivity analysis revealed frequency‐specific effects of attentional selection: bottom–up γ‐band influences from visual areas increased rapidly in response to attended stimuli while distributed top–down α‐band influences originated from parietal cortex in response to ignored stimuli. Importantly, the results revealed a critical interplay between top–down parietal signals and α–γ PAC in visual areas. Parietal α‐band influences disrupted the α–γ coupling in visual cortex, which in turn reduced the amount of γ‐band outflow from visual areas. Our results are a first demonstration of how directed interactions affect cross‐frequency coupling in downstream areas depending on task demands. These findings suggest that parietal cortex realizes selective attention by disrupting cross‐frequency coupling at target regions, which prevents them from propagating task‐irrelevant information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号