首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Retrograde labelling has been combined with immunohistochemistry to localize neurons containing GABA, glutamate, choline acetyltransferase, leu-enkephalin, neurotensin and substance P-like immunoreactivity in the projection pathways from the midbrain tegmental nuclei to the mammillary nuclei in the rat. Injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the medial mammillary nucleus resulted in retrogradely labelled neurons in the ventral tegmental nucleus of Gudden, whereas injections into the lateral mammillary nucleus resulted in large numbers of retrogradely labelled neurons in the ipsilateral dorsal tegmental nucleus of Gudden and in the laterodorsal tegmental nucleus. In the ventral tegmental nucleus, moderate to small numbers of retrogradely labelled neurons were also immunolabelled for GABA and approximately ten to 18 WGA-HRP-labelled neurons per section were immunoreactive for leu-enkephalin. In addition, small numbers of WGA-HRP-labelled neurons in the principal subnucleus of the ventral tegmental nucleus were immunoreactive for Glu whereas small numbers of retrogradely labelled neurons in the compact subnucleus of the central superior nucleus displayed neurotensin-like immunoreactivity. In the ventral subnucleus of the dorsal tegmental nucleus, moderate to small numbers of retrogradely labelled neurons were also GABA-immunoreactive and approximately ten to 14 WGA-HRP labelled neurons per section were immunoreactive for leu-enkephalin. The ventral subnucleus of the dorsal tegmental nucleus also contained small numbers of retrogradely labelled neurons that displayed either glutamate or substance P-like immunoreactivity. In addition, moderate to small numbers of WGA-HRP-labelled neurons (five to 20 per section) in the laterodorsal tegmental nucleus were immunoreactive for choline acetyltransferase. These results are compatible with the possibility that tegmentomammillary projection neurons use several different neurochemicals as neurotransmitter(s) and/or neuromodulator(s).  相似文献   

2.
The cholinergic neurons which originate in the mesopontine tegmentum and innervate the midbrain ventral tegmental area have been proposed to play a key role in intracranial self-stimulation reward. This mesopontine area also contains GABA neurons. Detailed information is still lacking, however, about the relationship of cholinergic and GABAergic neurons in this region to self-stimulation reward. Therefore, using double immunostaining for Fos as a marker of neuronal activity and choline acetyltransferase as a marker of cholinergic neurons, or for Fos and GABA, we investigated whether self-stimulation of the medial forebrain bundle induces Fos expression within cholinergic and GABAergic neurons in two regions of the mesopontine tegmentum, i.e., pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus. Self-stimulation of the medial forebrain bundle for 1 h induced a large increase in the number of cells expressing Fos in both the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, when compared to control brains. However, the self-stimulation-induced expression of Fos was restricted mostly to GABA-, but not choline acetyltransferase-, immunostained cells. We also examined, using microdialysis, whether self-stimulation increases acetylcholine efflux in the ventral tegmental area, a terminal region of the mesopontine tegmentum cholinergic pathway. One hour of self-stimulation significantly increased acetylcholine efflux from this terminal area.These results indicate that intracranial self-stimulation of the medial forebrain bundle may increase acetylcholine release without affecting expression of Fos in cholinergic neurons, while the same stimulation may induce Fos expression in GABAergic neurons of the mesopontine tegmentum. GABAergic as well as cholinergic neurons in this area appear to be activated by self-stimulation reward in the medial forebrain bundle.  相似文献   

3.
The role of GABA(A) receptors in the pedunculopontine tegmental nucleus in turning behaviour of rats was studied. Unilateral injection of the GABA(A) receptor agonist, muscimol (25-100 ng), into the pedunculopontine tegmental nucleus dose-dependently produced contraversive pivoting, namely tight head-to-tail turning marked by abnormal hindlimb backward stepping. This effect was GABA(A) receptor specific, since it was prevented by the GABA(A) receptor antagonist, bicuculline (50 ng), which alone did not elicit turning behaviour. Unilateral injection of a mixture of dopamine D(1) ((+/-)-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine-7,8-diol [SKF 38393], 5 microg) and D(2) (quinpirole, 10 microg) receptor agonists into the nucleus accumbens shell has been found to elicit contraversive pivoting, whilst unilateral injection of the acetylcholine receptor agonist (carbachol, 5 microg) into the same site is known to elicit contraversive circling, namely turning marked by normal stepping. The pivoting induced by a mixture of SKF 38393 (5 microg) and quinpirole (10 microg) injected into the nucleus accumbens shell was significantly inhibited by bicuculline (50 ng) injected into the pedunculopontine tegmental nucleus, whereas muscimol (25 ng) had no effect. Neither muscimol (25 ng) nor bicuculline (50 ng) modulated the contraversive circling induced by carbachol (5 microg) injected into the nucleus accumbens shell. It is therefore concluded that unilateral stimulation of GABA(A) receptors in the pedunculopontine tegmental nucleus can elicit contraversive pivoting and that the pedunculopontine tegmental nucleus is one of the output stations of the accumbens region that mediates shell-specific, dopaminergic pivoting, but not of the accumbens region that mediates shell-specific, cholinergic circling.  相似文献   

4.
We sought to determine whether pontomesencephalic cholinergic neurons which we have been shown previously to project to the substantia nigra and ventral tegmental area also contribute to the thalamic activation projection from the pedunculopontine and laterodorsal tegmental nuclei. Retrograde tracing, immunohistochemical localization of choline acetyltransferase and statistical methods were used to determine the full extent of the cholinergic projection from the pedunculopontine and laterodorsal tegmental nuclei to the thalamus. Progressively larger Fluoro-Gold injections in to the thalamus proportionally labeled increasing numbers of pontomesencephalic cholinergic cells both ipsi- and contralaterally in the pedunculopontine and laterodorsal tegmental nuclei. Multiple large thalamic injections left only a small fraction of the ipsilateral pontomesencephalic cholinergic group unlabeled. This small remainder did not correspond to the populations which project to the substantia nigra and ventral tegmental area, thereby indicating that substantia nigra- and ventral tegmental area-projecting cholinergic neurons must also project to the thalamus. We examined whether there existed any set of cholinergic neurons in the pedunculopontine and laterodorsal tegmental nuclei which did not innervate a thalamic target. The distribution of descending projections of the pedunculopontine and laterodorsal tegmental nuclei demonstrated that the unlabeled remainder cannot correspond to a purely descending group. We also show that substance P-positive cholinergic cells in the laterodorsal tegmental nucleus project to the thalamus. Further studies demonstrated that the small population of cholinergic cells left unlabeled from the thalamus were the smallest sized cholinergic cells, and included two groups of small, light-staining cholinergic cells located in the parabrachial area and central gray, adjacent to the main pedunculopontine and laterodorsal tegmental nuclei cholinergic groups. These small cells, in contrast to thalamic-projecting cholinergic cells, did not stain positively for reduced nicotinamide adenine dinucleotide phosphate-diaphorase. Taken together, these results indicated that all of the reduced nicotinamide adenine dinucleotide phosphate diaphorase-positive/choline acetyltransferase-positive neurons of the pedunculopontine/laterodorsal tegmental nuclei ascend to innervate some portion of the thalamus, in addition to the other targets they innervate. These findings indicate that the diverse physiological and behavioral effects attributed to the activity of pontomesencephalic cholinergic neurons should not be dissociated from their activating effects in the thalamus.  相似文献   

5.
Retrograde labelling was combined with immunohistochemistry to localize neurons containing choline acetyltransferase, gamma-aminobutyric acid (GABA), glutamate, serotonin, somatostatin, Leu-enkephalin, neurotensin, and substance P-immunoreactivity in neurons projecting to the supramammillary nucleus in the rat. Injections of wheat germ agglutinin conjugated to horseradish peroxidase (WGA-HRP) into the supramammillary nucleus resulted in retrogradely labelled neurons in the medial septal nucleus, the nuclei of the diagonal band of Broca, the infralimbic cortex, the medial and lateral preoptic nucleus, the subiculum, the laterodorsal tegmental nucleus, the compact subnucleus of the central superior nucleus and the dorsal raphe nucleus. In the medial septal nucleus and in the nuclei of the diagonal band of Broca, 80-85% of WGA-HRP- labelled neurons (30-40 per section) were also immunoreactive for choline acetyltransferase and small numbers of WGA-HRP-labelled neurons were immunoreactive for GABA, glutamate, neurotensin or substance P. In the medial preoptic nucleus, 85-90% of retrogradely labelled neurons (25-30 per section) were immunoreactive for somatostatin and a few WGA-HRP-labelled neurons displayed neurotensin-immunoreactivity. In the rostroventral part of the subiculum, small numbers of retrogradely labelled neurons were also immunoreactive for neurotensin or for glutamate. In the laterodorsal tegmental nucleus, 90% of WGA-HRP-labelled neurons (20-25 per section) were immunoreactive for choline acetyltransferase and small numbers of retrogradely labelled neurons also displayed substance P immunoreactivity. In the compact subnucleus of the central superior nucleus, 50-60% of retrogradely labelled neurons (15-20 per section) were also immunolabelled for GABA and approximately 30-40% of WGA-HRP-labelled neurons (10-12 per section) were immunoreactive for Leu-enkephalin. The compact subnucleus of the central superior nucleus also contained small numbers of retrogradely labelled neurons that displayed neurotensin immunoreactivity. In the dorsal raphe nucleus, 80-85% of WGA-HRP- labelled neurons (30-40 per section) were also immunoreactive for serotonin and small numbers of retrogradely labelled neurons displayed neurotensin or glutamate immunoreactivity. These results suggest that the multiple neurochemicals contained in ascending and descending projections to the SuM participate in complex interactions in the transmission process of SuM neurons.  相似文献   

6.
The ventral part of the cat oral pontine reticular nucleus (vRPO) is the site in which microinjections of small dose and volume of cholinergic agonists produce long-lasting rapid eye movement sleep with short latency. The present study determined the precise location and proportions of the cholinergic brainstem neuronal population that projects to the vRPO using a double-labeling method that combines the neuronal tracer horseradish peroxidase–wheat germ agglutinin with choline acetyltransferase immunocytochemistry in cats. Our results show that 88.9% of the double-labeled neurons in the brainstem were located, noticeably bilaterally, in the cholinergic structures of the pontine tegmentum. These neurons occupied not only the pedunculopontine and laterodorsal tegmental nuclei, which have been described to project to other pontine tegmentum structures, but also the locus ceruleus complex principally the locus ceruleus and peri-, and the parabrachial nuclei. Most double-labeled neurons were found in the pedunculopontine tegmental nucleus and locus ceruleus complex and, much less abundantly, in the laterodorsal tegmental nucleus and the parabrachial nuclei. The proportions of these neurons among all choline acetyltransferase positive neurons within each structure were highest in the locus ceruleus complex, followed in descending order by the pedunculopontine and laterodorsal tegmental nuclei and then, the parabrachial nuclei. The remaining 11.1% of double-labeled neurons were found bilaterally in other cholinergic brainstem structures: around the oculomotor, facial and masticatory nuclei, the caudal pontine tegmentum and the praepositus hypoglossi nucleus. The disperse origins of the cholinergic neurons projecting to the vRPO, in addition to the abundant noncholinergic afferents to this nucleus may indicate that cholinergic stimulation is not the only or even the most decisive event in the generation of REM sleep.  相似文献   

7.
Microinjections of the gamma-aminobutyric acid (GABA) receptor antagonist bicuculline into the medial area of the nucleus tractus solitarii of the rat enhanced the depressor and bradycardiac responses to aortic nerve stimulation whereas the glycine receptor antagonist strychnine did not affect them. The GABA receptor agonist muscimol and the GABA uptake inhibitor nipecotic acid reduced the responses to aortic nerve stimulation. These results provide evidence suggesting GABA receptor-mediated modulation of the aortic baroreceptor reflex in the nucleus tractus solitarii of the rat.  相似文献   

8.
In the present study, we attempted to develop a new animal model of Alzheimer's disease. Injections of a nerve growth factor (NGF)-diphtheria toxin conjugate into the cerebral cortex resulted in a marked ipsilateral reduction of cholinergic neurons in the horizontal limb of the diagonal band and basal magnocellular nucleus of rats. No effects could be seen in the cholinergic neurons located in the laterodorsal tegmental nucleus intrinsic cortical cholinergic neurons, and catecholaminergic locus coeruleus neurons. Injections of the conjugate into the caudoputamen failed to cause changes in the striatal cholinergic neurons. Since our method could selectively reduce cholinergic neurons in the basal forebrain without damage to the non-cholinergic neurons or passing fibers in this nucleus, this animal model method seems to be very useful in analyzing the pathogenesis of Alzheimer's disease or in examining the function of acetylcholine in the cholinergic neurons of the basal forebrain.  相似文献   

9.
Information to the cerebellum enters via many afferent sources collectively known as precerebellar nuclei. We investigated the distribution of cholinergic terminal-like structures in the mouse precerebellar nuclei by immunohistochemistry for vesicular acetylcholine transporter (VAChT). VAChT is involved in acetylcholine transport into synaptic vesicles and is regarded as a reliable marker for cholinergic terminals and preterminal axons. In adult male mice, brains were perfusion-fixed. Polyclonal antibodies for VAChT, immunoglobulin G-peroxidase and diaminobenzidine were used for immunostaining. In the mouse brain, immunoreactivity was seen in almost all major cholinergic cell groups including brainstem motoneurons. In precerebellar nuclei, the signal could be detected as diffusely beaded terminal-like structures. It was seen heaviest in the pontine nuclei and moderate in the pontine reticulotegmental nucleus; however, it was seen less in the medial solitary nucleus, red nucleus, lateral reticular nucleus, inferior olivary nucleus, external cuneate nucleus and vestibular nuclear complex. In particular, VAChT-immunoreactive varicose fibers were so dense in the pontine nuclei that detailed distribution was studied using three-dimensional reconstruction of the pontine nuclei. VAChT-like immunoreactivity clustered predominantly in the medial and ventral regions suggesting a unique regional difference of the cholinergic input. Electron microscopic observation in the pontine nuclei disclosed ultrastructural features of VAChT-immunoreactive varicosities. The labeled bouton makes a symmetrical synapse with unlabeled dendrites and contains pleomorphic synaptic vesicles. To clarify the neurons of origin of VAChT-immunoreactive terminals, VAChT immunostaining combined with wheat germ agglutinin-conjugated horseradish peroxidase retrograde labeling was conducted by injecting a retrograde tracer into the right pontine nuclei. Double-labeled neurons were seen bilaterally in the laterodorsal tegmental nucleus and pedunculopontine tegmental nucleus. It is assumed that mesopontine cholinergic neurons negatively regulate neocortico-ponto-cerebellar projections at the level of pontine nuclei.  相似文献   

10.
The thalamus of the spiny rat Proechimys guyannensis (casiragua), a common rodent of the Amazon basin, was investigated with immunohistochemistry, using as markers GABA and glutamic acid decarboxylase, and calcium binding proteins. As in all mammals, GABAergic neurons containing also parvalbumin filled the reticular nucleus, and GABAergic cells were seen in the dorsal lateral geniculate nucleus. At variance with the laboratory rat, GABAergic and parvalbumin-containing neurons were also seen in the laterodorsal and anterodorsal nuclei, in which the two markers were co-distributed. Calbindin-immunopositive cells were widely distributed in dorsal thalamic domains, except for the intralaminar nuclei, and prevailed in the laterodorsal nucleus. The distribution of calretinin-immunopositive neurons was more restricted, and they were especially concentrated in the laterodorsal and midline nuclei.At variance with the laboratory rat, in which systemic pilocarpine administration induces status epilepticus and results in chronic limbic epilepsy, pilocarpine elicited in casiragua an acute seizure that was not followed by spontaneous seizures up to 1 month, when changes were evaluated in the thalamus using also image analysis. Parvalbumin immunostaining in reticular nucleus neurons and in the dorsal thalamus neuropil, and the number of parvalbumin-positive and GABAergic cells in the laterodorsal and anterodorsal nuclei, exhibited an increase with respect to controls. Calbindin immunostaining was also enhanced, whereas calretinin immunostaining was mostly reduced, but was preserved in midline neurons. The findings show, after an acute seizure induced in an animal model of anti-convulsant mechanisms, regional long-term neurochemical alterations that could reflect functional changes in inhibitory and excitatory thalamic neurons.  相似文献   

11.
We previously showed that the GABAergic nucleus zona incerta (ZI) suppresses vibrissae-evoked responses in the posterior medial (POm) thalamus of the rodent somatosensory system. We proposed that this inhibitory incertothalamic pathway regulates POm responses during different behavioral states. Here we tested the hypothesis that this pathway is modulated by the ascending brain stem cholinergic system, which regulates sleep-wake cycles and states of vigilance. We demonstrate that cholinergic inputs facilitate POm responses to vibrissae stimulation. Activation of the cholinergic system by stimulation of brain stem cholinergic nuclei (laterodorsal tegmental and the pedunculopontine tegmental) or by tail pinch significantly increased the magnitude of POm responses to vibrissae stimulation. Microiontophoresis of the muscarinic receptor agonist carbachol enhanced POm responses to vibrissae stimulation. Application of carbachol to an in vitro slice preparation reduced the frequency but not the amplitude of miniature inhibitory postsynaptic currents, indicating a presynaptic site of action for carbachol. We conclude that the cholinergic system facilitates POm responses by suppressing GABAergic inputs from ZI. We propose the state-dependent gating hypothesis, which asserts that differing behavioral states, regulated by the brain stem cholinergic system, modulate the flow of information through POm.  相似文献   

12.
Food intake is significantly increased following administration of mu-selective opioid agonists into the ventral tegmental area (VTA) region acting through multiple local opioid receptor subtypes. Since GABA receptor agonists in the VTA region are capable of eliciting feeding, the present study investigated whether feeding elicited by the mu-selective opioid agonist [D-Ala(2), NMe(4), Gly-ol(5)]-enkephalin (DAMGO) in the VTA region was altered by pretreatment into the same site with equimolar doses of either GABA(A) (bicuculline) or GABA(B) (saclofen) antagonists, and further, whether pretreatment with either general opioid or selective GABA receptor antagonists decreased feeding elicited by GABA(A) (muscimol) or GABA(B) (baclofen) agonists in the VTA region. DAMGO-induced feeding in the VTA region was dose-dependently decreased following pretreatment with either GABA(A) or GABA(B) antagonists in the absence of significant alterations in food intake by the antagonists per se. However, the presence of short-lived seizures following bicuculline in the VTA region suggests that this ingestive effect was caused by nonspecific actions. In contrast, GABA(B) receptors are involved in the full expression of mu-opioid agonist-induced feeding in this region since saclofen failed to elicit either seizure activity or a conditioned taste aversion. Pretreatment with naltrexone in the VTA region reduced intake elicited by baclofen, but not muscimol. Finally, baclofen-induced feeding was significantly reduced by saclofen, but not bicuculline, pretreatment in the VTA region. Therefore, possible coregulation between GABA(B) and opioid receptors in the VTA region, as suggested by immunocytochemical evidence, is supported by these behavioral effects upon ingestion.  相似文献   

13.
The afferent input to the basal forebrain cholinergic neurons from the pontomesencephalic tegmentum was examined by retrograde transport of wheatgerm agglutinin-horseradish peroxidase in combination with immunohistochemistry. Multiple tyrosine hydroxylase-, dopamine-beta-hydroxylase-, serotonin- and choline acetyltransferase-immunoreactive fibres were observed in the vicinity of the choline acetyltransferase-immunoreactive cell bodies within the globus pallidus, substantia innominata and magnocellular preoptic nucleus. Micro-injections of horseradish peroxidase-conjugated wheatgerm agglutinin into this area of cholinergic perikarya led to retrograde labelling of a large population of neurons within the pontomesencephalic tegmentum, which included cells in the ventral tegmental area, substantia nigra, retrorubral field, raphe nuclei, reticular formation, pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, parabrachial nuclei and locus coeruleus nucleus. Of the total population of retrogradely labelled neurons, a significant (approximately 25%) proportion were tyrosine hydroxylase-immunoreactive and found in the ventral tegmental area (A10), the substantia nigra (A9), the retrorubral field (A8), the raphe nuclei (dorsalis, linearis and interfascicularis) and the locus coeruleus nucleus (A6), Another important contingent (approximately 10%) was represented by serotonin neurons of the dorsal raphe nucleus (B7), the central superior nucleus (B8) and ventral tegmentum (B9). A small proportion (less than 1%) was represented by cholinergic neurons of the pedunculopontine (Ch5) and laterodorsal (Ch6) tegmental nuclei. These results demonstrate that pontomesencephalic monoamine neurons project in large numbers up to the basal forebrain cholinergic neurons and may represent a major component of the ventral tegmental pathway that forms the extra-thalamic relay from the brainstem through the basal forebrain to the cerebral cortex.  相似文献   

14.
The projections of brainstem core neurons to relay and associational thalamic nuclei were studied in the cat and macaque monkey by combining the retrograde transport of wheat germ agglutinin conjugated with horseradish peroxidase with choline acetyltransferase immunohistochemistry. All major sensory (medial geniculate, lateral geniculate, ventrobasal), motor (ventroanterior, ventrolateral, ventromedial), associational (mediodorsal, pulvinar, lateral posterior) and limbic (anteromedial, anteroventral) thalamic nuclei of the cat were found to receive projections from cholinergic neurons located in the peribrachial area of the pedunculopontine nucleus and in the laterodorsal tegmental nucleus as well as from non-cholinergic neurons in the rostral (perirubral) part of the central tegmental mesencephalic field. Specific relay nuclei receive less than 10% of their brainstem afferents from non-cholinergic neurons located at rostral midbrain levels and receive 85-96% of their brainstem innervation from a region at midbrain-pontine junction where the cholinergic peribrachial area and laterodorsal tegmental nucleus are maximally developed. Of the total number of horseradish peroxidase-positive brainstem neurons seen after injections in various specific relay nuclei, the double-labeled (horseradish peroxidase + choline acetyltransferase) neurons represent approximately 70-85%. Three to eight times more numerous horseradish peroxidase-labeled brainstem cells were found after injections in associational (mediodorsal and pulvinar-lateral posterior complex) and diffusely cortically-projecting (ventromedial) thalamic nuclei of cat than after injections in specific relay nuclei. The striking retrograde cell labeling observed after injections in nuclei with associative functions and widespread cortical projections was due to massive afferentation from non-cholinergic parts of the midbrain and pontine reticular formation, on both ipsi- and contralateral sides. After wheat germ agglutinin-horseradish peroxidase injections in the associative pulvinar-lateral posterior complex and mediodorsal nucleus of Macaca sylvana, 45-50% of horseradish peroxidase-positive brainstem peribrachial neurons were also choline acetyltransferase-positive. While cells in the medial part of the cholinergic peribrachial area were found to project especially towards the pulvinar-lateral posterior nuclear complex in monkey, the retrograde cell labeling seen after the mediodorsal injection was mostly confined to the lateral part of both dorsal and ventral aspects of the peribrachial area.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
We have previously shown that the GABAergic nucleus zona incerta (ZI) suppresses vibrissae-evoked responses in the posterior medial (POm) thalamus of the rodent somatosensory system. We proposed that this inhibitory incerto-thalamic pathway regulates POm responses during different behavioral states. Here we tested the hypothesis that the cholinergic reticular activating system, implicated in regulating states of arousal, modulates ZI activity. We show that stimulation of brain stem cholinergic nuclei (laterodorsal tegmental and pedunculopontine tegmental) results in suppression of spontaneous firing of ZI neurons. Iontophoretic application of the cholinergic agonist carbachol to ZI neurons suppresses both their spontaneous firing and their vibrissae-evoked responses. We also found that carbachol application to an in vitro slice preparation suppresses spontaneous firing of neurons in the ventral sector of ZI (ZIv). Finally, we demonstrate that the majority of ZIv neurons contain parvalbumin and project to POm. Based on these results, we present the state-dependent gating hypothesis, which states that differing behavioral states-regulated by the brain stem cholinergic system-modulate ZI activity, thereby regulating the response properties of higher-order nuclei such as POm.  相似文献   

16.
The ability of GABA(A) receptors in the ventral pallidum to modulate shell-specific behavior was studied. Injections of the non-selective acetylcholine receptor agonist, carbachol (5 microg), into the shell of the nucleus accumbens elicited contraversive circling, namely turning marked by normal stepping; in contrast, injections of a mixture of dopamine D(1) (SKF 38393, 5 microg) and D(2) (quinpirole, 10 microg) receptor agonists into this brain structure elicited contraversive pivoting, namely turning marked by abnormal hindlimb stepping. Unilateral injections of the GABA(A) receptor agonist muscimol (10, 25 and 50 ng) into the ventral pallidum dose-dependently mimicked shell-specific circling, especially when given at a level +8.6mm anterior to the interaural line; this effect was GABA(A) receptor specific, because it was prevented by the GABA(A) receptor antagonist bicuculline (150 ng). Unilateral pallidal injections of a dose of muscimol that was ineffective per se (10 ng) abolished contraversive pivoting elicited by shell injections of dopamine receptor agonists; instead, it elicited moderate ipsiversive pivoting. Pallidal injections of bicuculline (150 ng) replaced the contraversive pivoting elicited by dopamine receptor agonist with ipsiversive circling. In contrast, unilateral pallidal injections of 10 ng muscimol (anterior +8.6mm level) suppressed the contraversive circling elicited by shell injections of carbachol; instead, it elicited moderate ipsiversive pivoting. Pallidal injections of bicuculline (150 ng) produced short-lasting ipsiversive circling that was followed by contraversive pivoting.We conclude that the ventromedial portion of the ventral pallidum contains GABA(A) receptors that are crucial for the transmission of information from the shell of the nucleus accumbens via the ventral pallidum towards other brain structures; this holds especially for information about shell-specific circling elicited by carbachol. The same portion of the ventral pallidum also contains GABA(A) receptors that control the transfer of information from the nucleus accumbens towards structures outside the ventral pallidum; this holds especially for information about shell-specific pivoting elicited by dopaminergic agonists.  相似文献   

17.
Glycine and γ-aminobutyric acid (GABA) are localized and released by the same interneurons in the spinal cord. Although the effects of glycine and GABA on analgesia are well known, little is known about the effect of GABA in strychnine-induced hyperalgesia. To investigate the effect of GABA and the role of the glycine receptor in thermal hyperalgesia, we designed an experiment involving the injection of muscimol (a GABA(A) receptor agonist), baclofen (a GABA(B) receptor agonist) or glycine with strychnine (strychnine sensitive glycine receptor antagonist). Glycine, muscimol, or baclofen with strychnine was injected into the cisterna magna or lumbar subarachnoidal spaces of mice. The effects of treatment on strychnine-induced heat hyperalgesia were observed using the pain threshold index via the hot plate test. The dosages of experimental drugs and strychnine we chose had no effects on motor behavior in conscious mice. Intracisternal or intrathecal administration of strychnine produced thermal hyperalgesia in mice. Glycine antagonize the effects of strychnine, whereas, muscimol or baclofen does not. Our results indicate that glycine has anti-thermal hyperalgesic properties in vivo; and GABA receptor agonists may lack the binding abilities of glycine receptor antagonists with their sites in the central nervous system.  相似文献   

18.
The pars compacta and pars dissipata of the pedunculopontine nucleus contain cholinergic cell group Ch5, and the laterodorsal tegmental nucleus contains cholinergic cell group Ch6. The pedunculopontine nucleus has been implicated in a variety of functions, including mediation of rapid eye movement sleep and in extrapyramidal motor function, although the role of cholinergic and non-cholinergic neurons is unclear. Quantitative neuroanatomical techniques were used to map the distribution of cholinergic neurons in the mesopontine nuclei of the adult human brain. In addition, the number and distribution of comparably sized non-cholinergic neurons at selected anatomical levels were compared. An antibody raised against human choline acetyltransferase was used to stain immunohistochemically the mesopontine neurons in six brains, ranging in age from 28 to 60 years. The rostrocaudal length of the Cb5/Ch6 cell complex was approximately 10 mm. The estimated total number of cells was similar for all brains, and varied by less than 7%. The estimated average number of cholinergic cells in the combined pedunculopontine and laterodorsal tegmental nuclei was approximately 20,000, with 30% of the cells in the pedunculopontine nucleus pars compacta, 57% in the pedunculopontine nucleus pars dissipata and 13% in the laterodorsal tegmental nucleus. There was no correlation between cell number and age. Within areas of mesopontine tegmentum occupied by the Ch5 cholinergic neurons, there were often more noncholinergic neurons than comparably sized cholinergic neurons. The present study provides detailed maps of the distribution and number of mesopontine cholinergic neurons in the normal human brain. Many non-cholinergic neurons are intermixed with the cholinergic pedunculopontine neurons. One region of the pedunculopontine nucleus pars dissipata containing few cholinergic neurons, located adjacent to the ventral border of the pedunculopontine nucleus pars compacta, may correspond to the midbrain-extrapyramidal area as defined previously in rodent and in non-human primate. These data will be useful for quantitative neuropathological studies concerning the role of both cholinergic and non-cholinergic mesopontine neurons in diseases proposed to affect these neurons, including Parkinson's disease, schizophrenia and progressive supranuclear palsy.  相似文献   

19.
We used an antibody to choline acetyltransferase (ChAT) to label cholinergic cells in guinea pig brainstem. ChAT-immunoreactive (IR) cells comprise several prominent groups, including the pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, and parabigeminal nucleus, as well as the cranial nerve somatic motor and parasympathetic nuclei. Additional concentrations are present in the parabrachial nuclei and superior colliculus. Among auditory nuclei, the majority of ChAT-IR cells are in the superior olive, particularly in and around the lateral superior olive, the ventral nucleus of the trapezoid body and the superior paraolivary nucleus. A discrete group of ChAT-IR cells is located in the sagulum, and additional cells are scattered in the nucleus of the brachium of the inferior colliculus. A group of ChAT-IR cells lies dorsal to the dorsal nucleus of the lateral lemniscus. A few ChAT-IR cells are found in the cochlear nucleus and the ventral nucleus of the lateral lemniscus. The distribution of cholinergic cells in guinea pigs is largely similar to that of other species; differences occur mainly in cell groups that have few ChAT-IR cells. The results provide a basis for further studies to characterize the connections of these cholinergic groups.  相似文献   

20.
We examined the regions projecting to the supramammillary nucleus of the rat with retrograde transport of WGA-HRP and WGA, and anterograde transport of Phaseolus vulgaris leucoagglutinin. The supramammillary nucleus receives major descending afferents from the infralimbic cortex, the dorsal peduncular cortex, the nucleus of the diagonal band of Broca, the medial and lateral preoptic nuclei, bilaterally. The major ascending afferents come from the pars compacta of the nucleus centralis superior, the ventral tegmental nucleus, and the laterodorsal tegmental nucleus. The supramammillary nucleus also receives a few (but distinct) fibers from the anterior and lateral hypothalamic nuclei, the ventral premammillary nucleus, the interpeduncular nucleus, the cuneiform nucleus, the dorsal raphe nucleus, the incertus nucleus, and the C3 region including the prepositus hypoglossi nucleus. All descending fibers run through the medial forebrain bundle. Almost all ascending fibers from the pars compacta of the nucleus centralis superior and the laterodorsal tegmental nucleus run through the mammillary peduncle, and terminate throughout the supramammillary nucleus. A few fibers from the laterodorsal tegmental nucleus and the C3 region run through the fasciculus longitudinalis dorsalis and terminate in the dorsal part of the supramammillary nucleus including the supramammillary decussation.Abbreviations a anterior commissure - AC accumbens nucleus - AR arcuate nucleus - BS bed nucleus of the stria terminalis - C3 C3 adrenergic region - CA interstitial nucleus of Cajal - CC pars compacta of the nucleus centralis superior - CS nucleus centralis superior - CU cuneiform nucleus - CX cingulate cortex - DB nucleus of the diagonal band of Broca - DH dorsomedial hypothalamic nucleus - ds decussation of the superior cerebellar peduncle - DX dorsal peduncular cortex - f fornix - fld fasciculus longitudinalis dorsalis - flm fasciculus longitudinalis medialis - IN incertus nucleus - IX infralimbic cortex - LC nucleus of the locus ceruleus - le lemniscus medialis - LH lateral hypothalamic nucleus - LM lateral mammillary nucleus - LO lateral preoptic nucleus - LS lateral septal nucleus - LT laterodorsal tegmental nucleus - mfb medial forebrain bundle - MM medial mammillary nucleus - MO medial preoptic nucleus - mp mammillary peduncle - mt mammillothalamic tract - MV medial vestibular nucleus - PD dorsal premammillary nucleus - PH prepositus hypoglossi nucleus - PV ventral premammillary nucleus - RD dorsal raphe nucleus - rf fasciculus retroflexus - SUM supramammillary nucleus - sx supramammillary decussation - T tenia tecta - TD dorsal tegmental nucleus - TM tuberomammillary nucleus - TV ventral tegmental nucleus - VT ventral tegmental area of Tsai  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号