首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foot‐and‐mouth disease (FMD) virus affects livestock worldwide. There are seven different serotypes, each with a diversity of topotypes, genetic lineages and strains. Some lineages have different properties that may contribute to sporadic spread beyond their recognized endemic areas. The objective of this study was to review the most significant FMD epidemiological events that took place worldwide between 2007 and 2014. Severe epidemics were caused by FMD virus (FMDV) lineage O/Asia/Mya‐98 in Japan and South Korea in 2010, both previously free of disease. In India, where FMD is endemic, the most important event was the re‐emergence of lineage O/ME‐SA/Ind‐2001 in 2008. Notably, this lineage, normally restricted to India, Bangladesh, Nepal and Bhutan, was also found in Saudi Arabia and Libya in 2013 and has caused several outbreaks in Tunisia and Algeria in 2014–2015. In January 2011, FMDV‐positive wild boars were found in Bulgaria, where the disease last occurred in 1996, followed by 12 outbreaks in livestock infected with FMDV O/ME‐SA/PanAsia2. In 2012, FMDV SAT2 caused outbreaks in Egypt and the Palestinian Autonomous Territories. Another significant event was the emergence of FMDV Asia1 Sindh‐08 in the Middle East. In South America, one outbreak of FMDV serotype O, topotype Euro‐SA was reported in Paraguay in 2011, which was recognized as FMD‐free with vaccination at the time. Lessons learned from past events, point out the need for an integrated strategy that comprises coordinated global and regional efforts for FMDV control and surveillance. Specific local characteristics related to host, environment and virus that condition FMD occurrence should be carefully considered and incorporated to adapt appropriate strategies into local plans. In this review, we compiled relevant epidemiological FMD events to provide a global overview of the current situation. We further discussed current challenges present in different FMD areas.  相似文献   

2.
The Kachia Grazing Reserve (KGR) is located in Kaduna state in north‐western Nigeria and consists of 6 contiguous blocks housing 744 defined households (HH), all engaged in livestock keeping. It is considered as a homogenous epidemiological unit and a defined study area. In 2012, all cattle and sheep of 40 selected HH were sampled to determine sero‐prevalence of antibodies to foot‐and‐mouth disease virus (FMDV) and of FMDV. The overall sero‐prevalence of antibodies to the non‐structural 3ABC protein (NSP‐3ABC ELISA) was 28.9% (380/1,315) (30.6% cattle; 16.3% sheep), and in 4.5% (62/1,380) (5% cattle; 0.6% sheep) of the examined sera FMD viral RNA could be detected by real‐time RT‐PCR (rRT‐PCR). Additionally, in 2012 and 2014 serum, epithelium and probang samples were collected from cattle in reported FMD outbreaks and the causative FMDVs were molecularly characterized. Approximately half (28/59) of the outbreak sera reacted positive in NSP‐3ABC ELISA, and 88% (52/59) of the outbreak sera contained detectable viral RNA. Overall, antibodies against five FMDV serotypes (O, A, SAT1, SAT2 and SAT3) were detected by solid phase competitive ELISA with combinations of two or more serotypes being common. Of the 21 FMDVs that could be isolated 19 were sequenced and 18 were confirmed as SAT2 (lineage VII) while one was characterized as serotype O (EA‐3 topotype). Phylogenetic analysis revealed a close relationship between Nigerian FMDV strains and strains in this region and even with strains in North‐Africa. Our findings indicate that FMD constitutes an endemic health problem to cattle rearing in the agro‐pastoralist community in the KGR and that the KGR is not a closed epidemiological unit. Insight into the local FMDV epidemiology and in the circulating FMDV serotypes/strains is of support to the relevant authorities in Nigeria when considering the need for an FMD control policy to improve animal production in grazing reserves.  相似文献   

3.
Foot‐and‐mouth disease (FMD) is endemic in Eritrea and in most parts of Africa. To be able to control FMD using vaccination, information on the occurrence of various foot‐and‐mouth disease serotypes in Eritrea is needed. In this cross‐sectional study, 212 sera samples were collected from FMD infected and recovered animals in Eritrea. These samples were tested for the presence of antibodies against FMD non‐structural proteins (NSP) and neutralizing antibodies against six of the seven (all but SAT 3) serotypes of FMD virus (FMDV). Of these, 67.0% tested positive to non‐structural protein antibodies in the FMD NS ELISA. By virus neutralization, FMDV serotype O antibodies were shown to be the most dominant (approximately 50%). Virus neutralization test results indicate that infection with serotype C and SAT 1 might have occurred, although there are no reports of isolation of these two serotypes. Because the samples were not randomly selected, further random serological surveillance in all age group animals is necessary both to estimate the prevalence of FMD in the country and to confirm the serological results with serotype C and SAT 1.  相似文献   

4.
Little information is available about the natural cycle of foot‐and‐mouth disease (FMD) in the absence of control measures such as vaccination. Cameroon presents a unique opportunity for epidemiological studies because FMD vaccination is not practiced. We carried out a prospective study including serological, antigenic and genetic aspects of FMD virus (FMDV) infections among different livestock production systems in the Far North of Cameroon to gain insight into the natural ecology of the virus. We found serological evidence of FMDV infection in over 75% of the animals sampled with no significant differences of prevalence observed among the sampled groups (i.e. market, sedentary, transboundary trade and mobile). We also found antibodies reactive to five of the seven FMDV serotypes (A, O, SAT1, SAT2 and SAT3) among the animals sampled. Finally, we were able to genetically characterize viruses obtained from clinical and subclinical FMD infections in Cameroon. Serotype O viruses grouped into two topotypes (West and East Africa). SAT2 viruses grouped with viruses from Central and Northern Africa, notably within the sublineage causing the large epidemic in Northern Africa in 2012, suggesting a common origin for these viruses. This research will guide future interventions for the control of FMD such as improved diagnostics, guidance for vaccine formulation and epidemiological understanding in support of the progressive control of FMD in Cameroon.  相似文献   

5.
Continuous surveillance for foot‐and‐mouth disease (FMD) in endemic settings such as West Africa is imperative to support improved local and regional control plans, with the long‐term goal of regional eradication. This paper describes the genetic characterization of FMD viruses (FMDV) obtained from outbreaks in Nigeria (n = 45) and Cameroon (n = 15) during 2016 and from archival samples (n = 3) retrieved from a 2014 outbreak in Nigeria. These viruses were analysed in the context of previously published FMDV sequences from the region. Four FMDV serotypes: O, A, SAT1 and SAT2, were detected. Phylogenetic analyses of the VP1 coding sequences indicate the continuity of FMDV serotype O East Africa‐3 (O/EA‐3), serotype A AFRICA genotype G‐IV (A/AFRICA/G‐IV) and serotype South African Territories (SAT) 2 lineage VII (SAT2/VII). The FMDV SAT1 topotype X (SAT1/X), which emerged in Nigeria in 2015, continued to be associated with outbreaks in the region during 2016, and SAT1 is reported for the first time from Cameroon. Additionally, a re‐emergence or re‐introduction of the serotype O West Africa (O/WA) topotype in Nigeria is described herein. Our findings indicate a consistent, pan‐serotypic relationship between FMDV strains detected in Cameroon and Nigeria. Additionally, FMDV strains from West Africa obtained in this study were genetically related to those occurring in East and North Africa. These phylogenetic relationships suggest that animal movements (pastoralism and/or trade) are important factors for virus spread across the African continent. These data provide critical baselines which are a necessary component of Stages 0 and 1 of the Progressive Control Pathway of FMD (PCP‐FMD). Specifically, characterizing the existing virus strains (risk) provides the basis for the comprehensive risk‐based control plan which is the requisite criteria for Nigeria's transition to Stage 2 of PCP‐FMD, and for coordinated regional control of FMD.  相似文献   

6.
7.
8.
Foot‐and‐mouth disease (FMD) is endemic in Kenya where four serotypes (O, A, SAT 1 and SAT 2) of the virus are currently in circulation. Within 2010 and 2011, the National Laboratory recorded an increase in the number of FMD outbreaks caused by serotype O virus. The characteristics of these viruses were determined to ascertain whether these were independent outbreaks or one single strain spreading throughout the country. The sequences of the complete VP1‐coding region were analysed from viruses sampled within different areas of Kenya during 2010 and 2011. The results indicated that the 2010 to 2011 outbreaks in Kenya were caused by four independent strains. By comparison with earlier type O isolates from Eastern Africa, it was apparent that the outbreaks were caused by viruses from three different lineages of topotype EA‐2 and a fourth virus strain belonging to topotype EA‐4. The topotypes EA‐1 and EA‐3 were not detected from these outbreaks. Implications of these results for FMD control in Eastern Africa are discussed.  相似文献   

9.
Foot‐and‐mouth disease (FMD) is endemic in Bangladesh and is predominantly due to FMDV serotype O. In 2012, FMD outbreaks were identified in five different districts of Bangladesh. Of 56 symptomatic cattle epithelial tissue samples, diagnostic PCR assay based on 5′‐URT detected 38 FMDV infections. Viral genotyping targeting VP1‐encoding region confirmed emergence of two distinct serotypes, A and O with an abundance of serotype A in Chittagong and Gazipur districts and serotype O in Pabna and Faridpur. Only single lineage of both A and O was retrieved from samples of five different regions. Sequencing and phylogenetic analysis of VP1 sequences revealed that serotype O sequences were closely related to the Ind 2001 sublineage of Middle East–South Asia (ME‐SA) topotype that was previously circulating in Bangladesh, and serotype A sequences belonging to the genotype VII that was dominant in India during the last decade. The results suggest that extensive cross‐border animal movement from neighbouring countries is the most likely source of FMDV serotypes in Bangladesh.  相似文献   

10.
Control of foot‐and‐mouth disease (FMD) in Uganda by ring vaccination largely depends on costly trivalent vaccines, and use of monovalent vaccines could improve the cost effectiveness. This, however, requires application of highly specific diagnostic tests. This study investigated outbreaks of FMD in seven Ugandan districts, during 2011, using the PrioCHECK® FMDV NS ELISA, solid‐phase blocking ELISAs (SPBEs) and virus neutralization tests (VNTs), together with virological analyses for characterization of the responsible viruses. Two hundred and eighteen (218) cattle and 23 goat sera as well as 82 oropharyngeal fluid/epithelial tissue samples were collected. Some 50% of the cattle and 17% of the goat sera were positive by the PrioCHECK® FMDV NS ELISA, while SPBEs identified titres ≥80 for antibodies against serotype O FMD virus (FMDV) in 51% of the anti‐NSP positive cattle sera. However, 35% of the anti‐NSP positive cattle sera had SPBE titres ≥80 against multiple serotypes, primarily against serotypes O, SAT 1 and SAT 3. Comparison of SPBEs and VNTs for the detection of antibodies against serotypes O, SAT 1 and SAT 3 in 72 NSP positive cattle sera showed comparable results against serotype O (= 0.181), while VNTs detected significantly fewer samples positive for antibodies against SAT 1 and SAT 3 than the SPBEs (< 0.001). Detection of antibodies against serotype O was consistent with the isolation of serotype O FMDVs from 13 samples. Four of these viruses were sequenced and belonged to two distinct lineages within the East Africa‐2 (EA‐2) topotype, each differing from the currently used vaccine strain (EA‐1 topotype). The relationships of these lineages to other serotype O viruses in the Eastern Africa region are discussed. To enhance the control of FMD in Uganda, there is need to improve the specificity of the SAT‐SPBEs, perform vaccine matching and implement improved regional FMD control.  相似文献   

11.
Foot‐and‐mouth disease (FMD) remains a major economic concern for the livestock productivity in many developing countries and a continued threat to countries that are disease free because of its potential devastating impact on agricultural, food chain and tourism sectors. FMD virus (FMDV) is recognized as having seven serotypes: O, A, C, Asia 1, South African Territories (SAT) 1, 2, 3 and multiple subtypes within each serotype. FMD outbreaks due to SAT 2 have been reported in many African countries. The development of a rapid and easily performed test for FMD detection is critical for controlling FMD outbreaks and containing its spread. The present project developed a lateral flow immunochromatographic (LFI) strip test for the rapid detection of FMDV SAT 2. A panel of monoclonal antibodies (mAbs) against FMDV serotype SAT 2 was produced and characterized. One mAb (#10) was selected as the capture mAb because it reacted to all 23 SAT 2 isolates archived at the National Center for Foreign Animal Disease. The LFI strip test was developed using biotin‐conjugated mAb #10, and the colloid gold‐conjugated FMDV serotype‐independent mAb as the detection mAb. A generic Rapid Assay Device (gRAD) with one test line and a control line was used for the test. The LFI strip test detected all 23 tested SAT 2 isolates and recent outbreak strains. The results indicated that the diagnostic specificity and sensitivity of the LFI strip test were greater than the double antibody sandwich (DAS) DAS ELISA. The ability of the LFI strip test to produce rapid diagnostic results will be useful for early on‐site diagnosis during FMD outbreaks.  相似文献   

12.
Foot‐and‐mouth disease (FMD) inflicts severe economic losses within infected countries and is arguably the most important trade‐restricting livestock disease in the world. In southern Africa, infected African buffaloes (Syncerus caffer) are the major reservoir of the South African Territories (SAT) types of the virus. With the progressive expansion of transfrontier conservation areas (TFCAs), the risk of FMD outbreaks is expected to increase due to a higher probability of buffalo/livestock contacts. To investigate the dynamics of FMD within and around the Great Limpopo TFCA (GLTFCA), 5 herds of buffaloes were sampled in June 2010 to characterize circulating viruses in South Africa and Zimbabwe. Three SAT‐2 and three SAT‐3 viral strains were isolated in both countries, including one that was genetically linked with a recent SAT‐2 outbreak in Mozambique in 2011. In addition, two groups of unvaccinated cattle (= 192) were serologically monitored for 1 year at the wildlife/livestock interface of Gonarezhou National Park (GNP) in Zimbabwe between April 2009 and January 2010, using the liquid‐phase blocking ELISA (LPBE) and a test for antibodies directed against non‐structural proteins (NSP). Neither clinical signs nor vaccination of cattle were reported during the study, yet a high proportion of the monitored cattle showed antibody responses against SAT‐3 and SAT‐1. Antibodies against NSP were also detected in 10% of the monitored cattle. The results of this study suggest that cattle grazing in areas adjacent to the GLTFCA can be infected by buffalo or other infected livestock and that cattle trade movements can act as efficient disseminators of FMD viruses to areas several hundred kilometres from the virus source. Current methods of surveillance of FMD at the GLTFCA interface seem insufficient to control for FMD emergence and dissemination and require urgent reassessment and regional coordination.  相似文献   

13.
14.
The Southern African Territories (SAT)‐type foot‐and‐mouth disease viruses (FMDV) are endemic to the greater Kruger National Park (KNP) area in South Africa, where they are maintained through persistent infections in African buffalo. The occurrence of FMDV within the Greater KNP area constitutes a continual threat to the livestock industry. To expand on knowledge of FMDV diversity, the genetic and antigenic relatedness of SAT2‐type viruses isolated from cattle during a FMD outbreak in Mpumalanga Province in 2013 and 2014 were investigated. Cattle from twelve diptanks tested positive on polymerase chain reaction (PCR), and molecular epidemiological relationships of the viruses were determined by VP1 sequencing. Phylogenetic analysis of the SAT2 viruses from the FMD outbreak in Mpumalanga in 2013/2014 revealed their genetic relatedness to other SAT2 isolates from topotype I (South Africa, Zimbabwe and Mozambique), albeit genetically distinct from previous South African outbreak viruses (2011 and 2012) from the same topotype. The fifteen SAT2 field isolates clustered into a novel genotype with ≥98.7% nucleotide identity. High neutralization antibody titres were observed for four 2013/2014 outbreak viruses tested against the SAT2 reference antisera representative of viruses isolated from cattle and buffalo from South Africa (topotype I) and Zimbabwe (topotype II). Comparison of the antigenic relationship (r1 values) of the outbreak viruses with reference antisera indicated a good vaccine match with 90% of r1 values > 0.3. The r1 values for the 2013/2014 outbreak viruses were 0.4 and above for the three South African vaccine/reference strains. These results confirm the presence of genetic and antigenic variability in SAT2 viruses and suggest the emergence of new variants at the wildlife–livestock interface in South Africa. Continuous characterization of field viruses should be performed to identify new virus strains as epidemiological surveillance to improve vaccination efforts.  相似文献   

15.
Foot‐and‐mouth disease (FMD) endemic regions contain three‐quarters of the world's FMD susceptible livestock and most of the world's poor livestock keepers. Yet FMD impact on smallholders in these regions is poorly understood. Diseases of low mortality can exert a large impact if incidence is high. Modelling and field studies commonly find high FMD incidence in endemic countries. Sero‐surveys typically find a third of young cattle are sero‐positive, however, the proportion of sero‐positive animals that developed disease, and resulting impact, are unknown. The few smallholder FMD impact studies that have been performed assessed different aspects of impact, using different approaches. They find that FMD impact can be high (>10% of annual household income). However, impact is highly variable, being a function of FMD incidence and dependency on activities affected by FMD. FMD restricts investment in productive but less FMD‐resilient farming methods, however, other barriers to efficient production may exist, reducing the benefits of FMD control. Applying control measures is costly and can have wide‐reaching negative impacts; veterinary‐cordon‐fences may damage wildlife populations, and livestock movement restrictions and trade bans damage farmer profits and the wider economy. When control measures are ineffective, farmers, society and wildlife may experience the burden of control without reducing disease burden. Foot‐and‐mouth disease control has benefitted smallholders in South America and elsewhere. Success takes decades of regional cooperation with effective veterinary services and widespread farmer participation. However, both the likelihood of success and the full cost of control measures must be considered. Controlling FMD in smallholder systems is challenging, particularly when movement restrictions are hard to enforce. In parts of Africa this is compounded by endemically infected wildlife and limited vaccine performance. This paper reviews FMD impact on smallholders in endemic countries. Significant evidence gaps exist and guidance on the design of FMD impact studies is provided.  相似文献   

16.
In Niger, the epidemiological situation regarding foot‐and‐mouth disease is unclear as many outbreaks are unreported. This study aimed (i) to identify Foot‐and‐mouth disease virus (FMDV ) strains currently circulating in cattle herds, and (ii) to identify risk factors associated with Foot‐and‐mouth disease (FMD )‐seropositive animals in clinical outbreaks. Epithelial tissues (n  = 25) and sera (n  = 227) were collected from cattle in eight districts of the south‐western part of Niger. Testing of clinical material revealed the presence of FMDV serotype O that was characterized within the O/WEST AFRICA topotype. The antigenic relationship between one of the FMDV isolates from Niger (O/NGR /4/2015) and three reference vaccine strains was determined by the two‐dimensional virus neutralization test (2dmVNT ), revealing a close antigenic match between the field isolate from Niger and three FMDV serotype O vaccine strains. Serological analyses using a non‐structural protein (NSP ) test provided evidence for previous FMDV infection in 70% (158/227) of the sera tested. Multivariate logistic regression analysis revealed that only the herd composition (presence of both cattle and small ruminants) was significantly associated with FMDV seropositivity as defined by NSP ‐positive results (p ‐value = .006). Of these positive sera, subsequent testing by liquid‐phase blocking ELISA (LPBE ) showed that 86% (136/158) were positive for one (or more) of four FMDV serotypes (A, O, Southern African Territories (SAT ) 1 and SAT 2). This study provides epidemiological information about FMD in the south‐western part of Niger and highlights the complex transboundary nature of FMD in Africa. These findings may help to develop effective control and preventive strategies for FMD in Niger as well, as other countries in West Africa.  相似文献   

17.
Foot‐and‐mouth disease (FMD) is endemic in India and causes severe economic loss. Status of FMD in the country for five fiscal years is presented. Outbreaks were more in number in 2007–2008 than 2010–2011. Three serotypes of FMD virus (O, A and Asia1) are prevalent. Serotype O was responsible for 80% of the confirmed outbreaks/cases, whereas Asia1 and A caused 12% and 8%, respectively. Geographical region‐wise assessment indicated varying prevalence rate in different regions viz; 43% in Eastern region, 31.5% in Southern region, 11.6% in North‐eastern region, 5% Central region, 4.4% Western region and 4% in Northern region. Highest number of outbreaks/cases was recorded in the month of September and lowest in June. Emergence and re‐emergence of different genotypes/lineages within the serotypes were evident in real‐time investigation carried out from time to time. Continues antigenic divergence in serotype A resulted in change in the vaccine strain in 2009. As on date, all genetic diversity within the serotypes is well tolerated by the vaccine strains. Unrestricted animal movements in the country play a major role in the spread of FMD.  相似文献   

18.
Uganda had an unusually large number of foot‐and‐mouth disease (FMD) outbreaks in 2006, and all clinical reports were in cattle. A serological investigation was carried out to confirm circulating antibodies against foot‐and‐mouth disease virus (FMDV) by ELISA for antibodies against non‐structural proteins and structural proteins. Three hundred and forty‐nine cattle sera were collected from seven districts in Uganda, and 65% of these were found positive for antibodies against the non‐structural proteins of FMDV. A subset of these samples were analysed for serotype specificity of the identified antibodies. High prevalences of antibodies against non‐structural proteins and structural proteins of FMDV serotype O were demonstrated in herds with typical visible clinical signs of FMD, while prevalences were low in herds without clinical signs of FMD. Antibody titres were higher against serotype O than against serotypes SAT 1, SAT 2 and SAT 3 in the sera investigated for serotype‐specific antibodies. Only FMDV serotype O virus was isolated from one probang sample. This study shows that the majority of the FMD outbreaks in 2006 in the region studied were caused by FMDV serotype O; however, there was also evidence of antibodies to both SAT 1 and SAT 3 in one outbreak in a herd inside Queen Elizabeth national park area.  相似文献   

19.
In East Africa, the foot‐and‐mouth disease (FMD) virus (FMDV) isolates have over time included serotypes O, A, C, Southern African Territories (SAT) 1 and SAT 2, mainly from livestock. SAT 3 has only been isolated in a few cases and only in African buffalos (Syncerus caffer). To investigate the presence of antibodies against FMDV serotypes in wildlife in Uganda, serological studies were performed on buffalo serum samples collected between 2001 and 2003. Thirty‐eight samples from African buffalos collected from Lake Mburo, Kidepo Valley, Murchison Falls and Queen Elizabeth National Parks were screened using Ceditest® FMDV NS to detect antibodies against FMDV non‐structural proteins (NSP). The seroprevalence of antibodies against non‐structural proteins was 74%. To characterize FMDV antibodies, samples were selected and titrated using serotype‐specific solid phase blocking enzyme linked immunosorbent assay (ELISAs). High titres of antibodies (≥1 : 160) against FMDV serotypes SAT 1, SAT 2 and SAT 3 were identified. This study suggests that African buffalos in the different national parks in Uganda may play an important role in the epidemiology of SAT serotypes of FMDV.  相似文献   

20.
Foot‐and‐mouth disease (FMD ) is endemic in Bangladesh, and the implementation of a control programme for this disease is at an early stage, according to the FAO ‐ and OIE ‐proposed Progressive Control Pathway for FMD (PCP ‐FMD ) Roadmap. To develop an effective control programme, understanding of foot‐and‐mouth disease virus (FMDV ) serotypes, even subtypes within the serotypes is essential. The present investigation aims at viral VP 1 coding region sequence‐based analysis of FMD samples collected from 34 FMD outbreaks during 2012–2016 in Bangladesh. Foot‐and‐mouth disease virus (FMDV ) serotype O was responsible for 82% of the outbreaks in Bangladesh, showing its dominance over serotype A and Asia1. The VP 1 phylogeny revealed the emergence of two novel sublineages of serotype O, named as Ind2001BD 1 and Ind2001BD 2, within the Ind2001 lineage along with the circulation of Ind2001d sublineage in Bangladesh, which was further supported by the multidimensional scaling with distinct clusters for each sublineage. The novel sublineages had evident genetic variability with other established sublineages within Ind2001 lineage. Ten mutations with three or more amino acid variations were detected within B‐C loop, G‐H loop and C‐terminal region of the VP 1 protein of FMDV serotype O viruses isolated exclusively from Bangladesh. Furthermore, two amino acid substitutions at positions 197 and 198 within the VP 1 C‐terminal region are unique to the novel sublineages. The existence of widespread genetic variations among circulatory FMDV serotype O viruses makes the FMD control programme complex in Bangladesh. Adequate epidemiological data, disease reporting, animal movement control, appropriate vaccination and above all stringent policies of the government are necessary to combat FMD in Bangladesh.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号