首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 观察中等强度跑台运动对去卵巢大鼠后肢骨骨矿物含量(BMC)和骨密度(BMD)的影响.方法 将60只3月龄未经产雌性SD大鼠按体重随机分为假手术、去卵巢静止、去卵巢运动Ⅰ、去卵巢运动Ⅱ、去卵巢运动Ⅲ和去卵巢运动Ⅳ 6个组.各运动组经1周的跑台适应训练后,按实验设计分别进行为期14周的正式跑台训练.实验结束时,腹主动脉取血处死大鼠,双能χ-射线骨密度仪检测右侧游离股骨和胫骨的BMC和BMD.结果 ①与假手术组相比,去卵巢静止组股骨近端和远端以及胫骨近端BMC和BMD显著下降,但股骨中段以及胫骨中段和远端BMC和BMD无显著变化.②与去卵巢静止组相比,去卵巢运动Ⅰ组股骨近端和远端BMC显著增加,股骨中段以及胫骨3个部位BMC均无显著变化;去卵巢运动Ⅱ组和Ⅲ组股骨和胫骨3个部位BMC 均无显著变化;去卵巢运动Ⅳ组股骨3个部位BMC均无显著变化,而胫骨3个部位BMC均显著下降.③与去卵巢静止组相比,去卵巢运动Ⅰ组股骨近端和远端以及胫骨近端BMD 显著增加, 而股骨中段和胫骨中段和远端BMD无显著变化;去卵巢运动Ⅱ组和Ⅲ组股骨和胫骨任何部位BMD均没有显著变化;去卵巢运动Ⅳ组股骨3个部位BMD无显著变化,而胫骨3个部位BMD却显著下降.结论 较低中等强度跑台运动能减缓去卵巢大鼠股骨近端和远端骨矿物含量和骨密度的下降;而较高中等强度跑台运动却能加速去卵巢大鼠胫骨近端骨矿物含量和骨密度的下降.  相似文献   

2.
Growing bones are most responsive to mechanical loading. We investigated bone mass acquisition patterns following a swimming or running exercise intervention of equal duration, in growing rats. We compared changes in bone mineral properties in female Sprague Dawley rats that were divided into three groups: sedentary controls (n = 10), runners (n = 8) and swimmers (n = 11). Runners and swimmers underwent a six week intervention, exercising five days per week, 30min per day. Running rats ran on an inclined treadmill at 0.33 m.s−1, while swimming rats swam in 250C water. Dual energy X-ray absorptiometry scans measuring bone mineral content (BMC), bone mineral density (BMD) and bone area at the femur, lumbar spine and whole body were recorded for all rats before and after the six week intervention. Bone and serum calcium and plasma parathyroid hormone (PTH) concentrations were measured at the end of the 6 weeks. Swimming rats had greater BMC and bone area changes at the femur and lumbar spine (p < 0.05) than the running rats and a greater whole body BMC and bone area to that of control rats (p < 0.05). There were no differences in bone gain between running and sedentary control rats. There was no significant difference in serum or bone calcium or PTH concentrations between the groups of rats. A swimming intervention is able to produce greater beneficial effects on the rat skeleton than no exercise at all, suggesting that the strains associated with swimming may engender a unique mechanical load on the bone.

Key points

  • A six week swimming intervention is able to produce greater osteogenic effects on the rat skeleton than no exercise.
  • A daily treadmill running intervention does not attenuate a rats propensity to run voluntarily at night.
Key words: Weight-bearing exercise, swimming, treadmill, DXA, bone mass, rats.  相似文献   

3.
The effect of treadmill running on the development of osteopenia was investigated in adult ovariectomized (OVX) rats compared with sedentary OVX and sedentary sham-operated rats. The rats were 3 months old with a mean weight of 214 g. OVX rats were fed a low calcium diet (0.01%), and the sham rats received the normal diet (1.1% calcium). The training consisted of treadmill running at a speed of 27 m/minute for 1 hour 5 out of 7 days during a period of 81/2 weeks. The weight gain was higher in the sedentary OVX (108 g) than in the training OVX (62 g) and sham-operated rats (61 g) (P<0.001). Comparing the two OVX groups, training had no significant effects on the development of femoral osteopenia as assessed by mechanical testing of the femoral shaft and neck, and by bone mass measurements by dual energy X-ray absorptiometry (DXA) or by ashing. Comparing all three groups bone mineral content (BMC) and bone mineral density (BMD) were reduced by more than 40% in both the OVX groups compared with the sham-operated rats (P<0.001). Ash weight and calcium content were reduced by approximately 40% in both OVX groups. Femoral volume and length were 10% higher in the sedentary OVX animals compared with the trained (P<0.05), indicating that the training had had a negative effect on the growth changes induced by ovariectomy. The fracture strength of the femoral shaft was reduced by 26% and 22% in the trained and sedentary OVX rats, respectively compared with the sham-operated group (P<0.001). The fracture strength of the femoral neck was reduced by 18% and 15% but due to one very weak neck in the sham group, this difference was not significant. The accuracy of BMC measured by DXA was high when compared with calcium content (r=0.98, P<0.001) and ash weight (r=0.96, P<0.001). DXA underestimated the BMC of the femur by 27% as compared with ash weight. BMC was also highly correlated to fracture strength of the shaft (r=0.85, P<0.001), but not to fracture strength of the neck. This study shows that high intensity training had no positive effect on the development of osteopenia in rats, and we have also validated and found DXA to be a precise and useful tool for experimental studies on osteoporosis in the rat.  相似文献   

4.
The bone response to physical exercise may be under control of the SNS. Using a running session in rats, we confirmed that exercise improved trabecular and cortical properties. SNS blockade by propranolol did not affect this response on cortical bone but surprisingly inhibited the trabecular response. This suggests that the SNS is involved in the trabecular response to exercise but not in the cortical response. INTRODUCTION: Animal studies have suggested that bone remodeling is under beta-adrenergic control through the sympathetic nervous system (SNS). However, the SNS contribution to bone response under mechanical loading remains unclear. The purpose of this study was to examine the preventive effect of exercise coupled with propranolol on cancellous and cortical bone compartments in ovariectomized rats. MATERIALS AND METHODS: Six-month-old female Wistar rats were ovariectomized (OVX, n = 44) or sham-operated (n = 24). OVX rats received subcutaneous injections of propranolol 0.1 mg/kg/day or vehicle and were submitted or not submitted to treadmill exercise (13 m/minute, 60 minutes/day, 5 days/week) for 10 weeks. Tibial and femoral BMD was analyzed longitudinally by DXA. At death, the left tibial metaphysis and L(4) vertebrae were removed, and microCT was performed to study trabecular and cortical bone structure. Histomorphometric analysis was performed on the right proximal tibia. RESULTS: After 10 weeks, BMD and trabecular strength decreased in OVX rats, whereas bone turnover rate and cortical porosity increased compared with the Sham group (p < 0.001). Either propranolol or exercise allowed preservation of bone architecture by increasing trabecular number (+50.35% versus OVX; p < 0.001) and thickness (+16.8% versus OVX; p < 0.001). An additive effect of propranolol and exercise was observed on cortical porosity but not on trabecular microarchitecture or cortical width. Biomechanical properties indicated a higher ultimate force in the OVX-propranolol-exercise group compared with the OVX group (+9.9%; p < 0.05), whereas propranolol and exercise alone did not have any significant effect on bone strength. CONCLUSIONS: Our data confirm a contribution of the SNS to the determinants of bone mass and quality and show a antagonistic effect of exercise and a beta-antagonist on trabecular bone structure.  相似文献   

5.
目的利用双能X线吸收法(DXA)探讨成年大鼠接受糖皮质激素后骨量变化的规律。方法 21只44周龄SD雌性大鼠分别假性去卵巢+未注射糖皮质激素(SHAM组)、摘除双侧卵巢(OVX组)或注射甲基强的松龙[2.5 mg/(kg·d)](PRED组),应用扇形束DXA(QDR-4500A)每4周测定一次全身骨密度(BMD)、骨矿含量(BMC)、骨骼面积(AREA);术后12周处死,测定离体腰椎、股骨、胫骨及其兴趣区的BMD、BMC、AREA。压缩试验测定第二腰椎最大载荷和弹性模量。结果 (1)术后8周开始OVX组体重显著重于同龄SHAM组(8周时,P0.05,12周时P0.01),术后4周开始PRED组体重显著轻于同龄SHAM组(P0.05);(2)术后12周OVX组整体BMC显著高于SHAM组(P0.05),术后8、12周OVX组整体BMC显著高于PRED组(P0.05);(3)术后12周OVX组离体第5、6腰椎BMD及第6腰椎BMC显著低于SHAM组和PRED组(P0.05),PRED组离体各腰椎BMD、BMC、AREA与SHAM组无明显差异;(4)术后12周与SHAM组比较,OVX组离体股骨(-7.42%)、股骨远端(-10.85%)和近端(-6.92%)、胫骨近端(-11.40%)BMD显著降低(P0.05),其中股骨、股骨远端、胫骨近端BMC也显著降低(P0.05);(5)术后12周与SHAM组比较,PRED组离体股骨及各区BMD、BMC、AREA无显著性差异,整体胫骨及各区BMD无显著性差异;(6)术后12周与SHAM组比较,OVX组及PRED组胫骨中远端骨量增加;(7)与SHAM组比较,OVX组最大载荷和弹性模量显著降低,PRED组最大载荷显著降低。结论成熟期大鼠接受甲基强的松龙后,皮质骨和松质骨骨量没有显著变化,DXA检查难以发现其骨丢失情况;力学性能改变提示糖皮质激素更多的是引起骨质量的改变而导致了力学性能的下降及骨折的发生。  相似文献   

6.

Background Context

Osteoporosis adversely affects disc degeneration cascades, and prophylactic alendronate (ALN) helps delay intervertebral disc degeneration (IDD) in ovariectomized (OVX) rats. However, there remains no information regarding whether ALN affects IDD with bone loss.

Purpose

This study aimed to observe the effects of ALN on degenerative discs with bone loss induced by OVX in rats.

Study Design

This study used controlled in vivo experiments in rodents.

Methods

Thirty female Sprague-Dawley rats were randomly assigned to undergo sham surgery (n=10) or OVX surgery (n=20); 3 months later, the OVX animals were injected with either ALN (OVX+ALN, 15?µg/kg/2w, n=10) or normal saline (OVX+vehicle treatment [V], n=10). At 3 months after the ALN intervention, van Gieson staining and immunohistochemistry were used to investigate histologic and metabolic changes in the discs. Bone mineral density (BMD), micro-computed tomography, and biomechanical tests were conducted to determine the biological properties of the vertebrae.

Results

The OVX+ALN group exhibited significantly reduced morphologic degenerative alterations in both the nucleus pulposus and annulus fibrosus, with a markedly lower IDD score than that of the OVX+V group. The OVX+ALN samples showed increased disc height and decreased cartilage end plate thickness and bony area compared with the OVX+V group. Compared with saline, ALN administration markedly inhibited the type I collagen, matrix metalloprotease (MMP)-1, and MMP-13 expression levels while increasing the type II collagen and aggrecan expression levels in the disc matrix. Compared with the OVX+V group, OVX+ALN vertebrae revealed significantly enhanced BMD with increased biomechanical strength, as well as increased percent bone volume and trabecular thickness.

Conclusions

ALN has favorable effects on disc degeneration with bone loss and helps to alleviate IDD while enhancing the biological and mechanical properties of vertebrae and end plates.  相似文献   

7.
There are safety concerns regarding administration of bisphosphonates to children. Little is known about the effects of bisphosphonates on bone matrix organization during bone modeling. The present study examined the effects of alendronate (ALN) on bone matrices formed by intramembranous ossification in the appendicular growing skeleton. ALN was administered to 1-week-old Sprague–Dawley rats at a dose of 0, 35, or 350 μg/kg/week for 4 or 8 weeks. The position of femoral diaphysis formed exclusively by intramembranous ossification was identified, and cross sections of cortical bone at this position were analyzed. Bone mineral density (BMD) and geometric parameters were evaluated using peripheral quantitative computed tomography. The preferential orientation degree of biological apatite (BAp) crystals in the bone longitudinal direction, which shows the degree of bone matrix anisotropy, was evaluated using microbeam X-ray diffraction analysis. We analyzed bone histomorphometrical parameters and performed bone nanomechanical tests to examine the material properties of newly developing cortical bone. The preferential orientation degree of BAp crystals significantly decreased in 35 μg/kg/week ALN-treated groups compared with vehicle-treated groups, although there were no significant differences in BMD between the two groups. The periosteal mineral apposition rate significantly increased in the 35 μg/kg/week ALN-treated group. We found a high negative correlation between bone matrix anisotropy and the regional periosteal mineral apposition rate (r = −0.862, P < 0.001). Nanomechanical tests revealed that 35 μg/kg/week ALN administration caused deterioration of the material properties of the bone microstructure. These new findings suggest that alendronate affects bone matrix organization and promotes bone formation with a less anisotropic microstructure during intramembranous ossification.  相似文献   

8.
This study investigated the effects of endurance running training on the bones of growing rats. Thirty-two male Wistar rats (7 weeks old) were assigned to a sedentary control group (CON, n = 10), a continuous endurance running group (CEN, n = 10), or an intermittent endurance running group (IEN, n = 12). After an 8-week training period, both exercise groups had significantly less body weight (BW) gain but higher aerobic capacity, shown by increased muscle citrate synthase (CS) activity. Bone area (BA), areal bone mineral density (aBMD), and bone mineral content (BMC) were measured by dual-energy Xray absorptiometry (DXA) in the total femur and sections of femora. Except for showing a significantly higher aBMD in total femora, the CON group was only slightly and nonsignificantly higher in other DXA measurements. In tissue weight measurements, the CON group showed a nonsignificantly higher tissue dry weight (P = 0.146), but a significantly lower tissue water content ratio (WCR, %) as compared to the exercise group. Despite having nonsignificantly lower long bone cross-sectional parameters, both exercise groups showed significantly better biomaterial properties, as measured by a three-point bending test. In extrinsic analysis, femora of the two exercise groups showed no difference in bending load and stiffness, but were significantly higher in post-yield bending energy and total ultimate bending energy (P < 0.05). Similar phenomena were revealed in tissue-level measurements; the CEN and IEN groups were significantly higher in ultimate toughness and post-yield toughness (P < 0.05). Higher post-yield energy shown by two exercise groups implied a change in bone matrix organization. In conclusion, this study demonstrated that two endurance treadmill training modes benefit bone, with subjects showing better tissue biomaterial properties without significantly increasing aBMD, BMC, or bone dimension. Further study would be valuable to investigate the effects of endurance running on other components of bone, such as organization of bone matrix and its relationship with bone biomaterial properties.  相似文献   

9.
MacKelvie KJ  Petit MA  Khan KM  Beck TJ  McKay HA 《BONE》2004,34(4):755-764
Exercise during growth has a positive influence on bone mineral accrual, yet little is known about how bone geometry and strength adapt to loading during growth. Our primary objective was to compare changes in proximal femur bone geometry and strength between 31 prepubertal (Tanner Stage 1) boys who participated in a school-based, high-impact circuit intervention (12 min, three times a week) for 20 months and 33 maturity-matched controls. Our secondary objective was to compare changes in total body (TB), proximal femur (PF), and lumbar spine (LS) bone mineral content (BMC) and bone area (BA) in these groups. We assessed geometric variables and bone strength at the narrow neck (NN), intertrochanteric (TR) region, and femoral shaft regions by applying the Hip Structure Analysis program to proximal femur dual energy X-ray absorptiometry scans (DXA, Hologic QDR 4500). Further, we assessed total body, lumbar spine, and proximal femur BMC and BA by DXA and derived total body lean mass and fat mass from total body scans. Intervention (10.2 +/- 0.5 years) and control boys (10.1 +/- 0.5 years) had similar baseline height (140.8 vs. 141.3 cm) and weight (36.9 vs. 35.4 kg), and average 20-month physical activity scores (Physical Activity Questionnaire for Children, PAQ-C) and calcium intakes (861 vs. 852 mg/day, food frequency questionnaire). Twenty-month height and weight changes were not significantly different between groups; lean mass changed more (P < 0.05) in intervention boys (22.8%) than control boys (18.6%). At the NN region, intervention boys had greater bone expansion on both the periosteal (+2.6%, P = 0.1) and endosteal (+2.7%, P = 0.2) surfaces, resulting in significantly greater changes in section modulus (bone bending strength) (+7.5%, P = 0.02, ANCOVA, adjusting for height change, final Tanner Stage, and baseline bone values). Changes at the intertrochanteric and femoral shaft regions were not significantly different between groups. Femoral neck (FN) BMC changes were significantly greater in intervention boys (+4.3%, P < 0.01); changes in BA and BMC for other regions were not significantly different between groups. In summary, a school-based, high-impact exercise intervention implemented three times a week for 12 min is an effective strategy for site-specific gains in bone strength at the narrow neck region of the proximal femur.  相似文献   

10.
We reported that genistein, a soybean isoflavone, prevents bone loss caused by estrogen deficiency, without undesirable effects on the uterus. In this study, we examined cooperative effects of genistein administration and running exercise on bone mass in ovariectomized (OVX) mice. Female mice aged 7 weeks were either sham-operated or OVX and divided into six groups: (1) sham; (2) OVX; (3) OVX, treated with genistein at a submaximal dose (0.4 mg/day) subcutaneously (G); (4) OVX, exercised on a treadmill daily for 30 minutes/day at 12 m/minute on a 10 degree uphill slope (Ex); (5) OVX, given genistein and exercised (ExG); and (6) OVX, treated with 17beta-estradiol (0.03 microg/day) in the same manner as genistein (E2). Four weeks after intervention, bone mass was estimated by dual-energy X-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT). Bone mineral density (BMD) of the whole femur measured by DXA was higher in both the G and the Ex groups than in the OVX group. Furthermore, BMD in the ExG group was significantly higher than that in the groups receiving either intervention alone. Bone area in distal region of the femur was significantly higher in Ex and ExG groups as compared with those in the OVX and G groups. pQCT analysis showed that the cross-sectional areas (CSAs) and periosteum perimeter at midshaft of the femur did not differ in the sham and OVX groups but were significantly higher in Ex and ExG groups. Histomorphometric analysis showed that bone formation rate/bone surface (BFR/BS) was significantly higher in both Ex and ExG groups as compared with that in non-exercised groups. The bone volume (BV/TV) in the distal femoral cancellous bone was lower in the OVX than that in the sham group, and it was restored completely in the ExG group, as in the E2 group. Thickness of the trabecular bone (Tb.Th) was higher in Ex and ExG groups than that in the OVX and G groups. These results indicate that the combined intervention of moderate exercise and the submaximal dose of genistein administration show a cooperative effect in preventing bone loss in OVX mice.  相似文献   

11.
Mechanical loading and estrogen play important roles in bone homeostasis. The aim of this study was to evaluate the effects of mechanical loading on trabecular bone in the proximal femur of ovariectomized rats. We hypothesized that mechanical loading suppresses bone resorption and increases bone formation, which differs from the suppressive effects of estrogen on both resorption and formation. Furthermore, we expected to find changes in trabecular architecture elicited by the effects of mechanical loading and estrogen deficiency. Sixty female Wistar rats, 12 weeks old, were assigned to either the sedentary groups sham surgery (SED), ovariectomy (SED+OVX), and ovariectomy with estrogen replacement (SED+OVX+E2) or to the exercise groups EX, EX+OVX, EX+OVX+E2. Following ovariectomy, 5 microg 17beta-estradiol was given once weekly to the estrogen replacement groups. Exercise consisted of running with a backpack (load +/-20% of body weight) for 15 minutes/day, 5 days/week, for 19 weeks. Dual-energy X-ray absorptiometry (DXA) scans were performed before (T0), during (T6), and after (T19) the exercise period to obtain bone mineral content (BMC) and bone mineral density (BMD) data. After the exercise program, all rats were killed and right and left femora were dissected and prepared for micro-CT scanning and histomorphometric analysis of the proximal femoral metaphysis. After 19 weeks, increases in BMC (P = 0.010) and BMD (P = 0.031) were significant. At T19, mechanical loading had a significant effect on BMC (P = 0.025) and BMD (P = 0.010), and an interaction between mechanical loading and estrogen (P = 0.023) was observed. Bone volume and trabecular number decreased significantly after ovariectomy, while trabecular separation, mineralizing surface, bone formation rate, osteoclast surface, degree of anisotropy, and structure model index increased significantly after ovariectomy (P < 0.05). Trabecular bone turnover and structural parameters in the proximal femur were not affected by exercise. Estrogen deficiency resulted in a less dense and more oriented trabecular bone structure with increased marrow cavity and a decreased number of trabeculae. In conclusion, mechanical loading has beneficial effects on BMC and BMD of the ovariectomized rat. This indicates that the load in the backpack was high enough to elicit an osteogenic response sufficient to compensate for the ovariectomy-induced bone loss. The results confirm that estrogen suppresses both bone resorption and bone formation in the proximal metaphysis in the femoral head of our rat-with-backpack model. The effects of mechanical loading on the trabecular bone of the femoral head were not significant. This study suggests that the effect of mechanical loading in the rat-with-backpack model mainly occurs at cortical bone sites.  相似文献   

12.
We examined the combined effects of elcatonin (ECT) and alendronate (ALN) on bone mass, architecture, and strength in ovariectomized (OVX) rats. Fifty female Sprague Dawley rats, aged 13 weeks, were divided into Sham, OVX, OVX+ECT, OVX+ALN, and OVX+ECT+ALN groups (n = 10). Immediately after ovariectomy, ECT was administered at a dose of 15 units (U)/kg three times a week, and ALN was administered daily at a dose of 2.0 µg/kg, subcutaneously for 12 weeks. The three-dimensional architecture of the bone in the distal femoral metaphysis was analyzed using a microfocus X-ray computed tomography system (µCT), and bone strength was measured using a material-testing machine. Trabe-cular bone volume (BV/TV) and number (Tb.N) were significantly greater in the OVX+ECT and OVX+ALN groups than in the OVX group. In the OVX+ECT+ALN group, BV/TV and Tb.N were significantly greater when compared with those in the OVX+ECT and OVX+ALN groups. Trabecular thickness (Tb.Th) was significantly greater in the OVX+ECT+ALN group than in the OVX+ALN group. With regard to bone strength, the compression strength in the femoral metaphysis was significantly lower in the OVX group than in the Sham group. The reduction of compression strength was slightly lower in the OVX+ECT and OVX+ALN groups. In the OVX+ECT+ALN group, the compression strength in the femoral metaphysis significantly increased when compared with the OVX and OVX+ECT groups. These results suggest that the combined treatment of ECT and ALN does not alter the individual effects of each drug and that it exerts an additive effect on trabecular architecture and bone strength in OVX rats.  相似文献   

13.
Regular activity has effects on bone size, shape, and density, resulting in an increase in mechanical strength. The mechanism of action that underlies this improvement in bone strength is mainly linked to an increase in bone formation. Zoledronic acid (Z), in contrast, may prevent bone strength changes in ovariectomized (OVX) rodents by its potent antiresorptive effects. Based on these assumptions we hypothesized that combined effects of exercise (E) and Z may produce higher benefits on bone changes resulting from estrogen deficiency than either intervention alone. At 6 months of age, 60 female Wistar rats were OVX or sham operated (SH) and divided into five groups: SH, OVX, OVX-E, OVX-Z, and OVX-ZE. OVX rats were treated with a single IV injection of Z (20 μg/kg) or vehicle and submitted or not to treadmill exercise (15 m/min, 60 min/day, 5 days/week) for 12 weeks. Whole-body BMD and bone turnover markers were analyzed longitudinally. At sacrifice, femurs were removed. BMD by DXA, three-point bending test, and μCT were performed to study biomechanical and trabecular structure parameters, respectively. After 12 weeks, bone volume fraction decreased in OVX rats, whereas bone turnover rate, trabecular spacing, and structure model index increased compared with those in the SH group (P < 0.05). Zoledronic acid prevented the ovariectomy-induced trabecular bone loss and its subsequent trabecular microarchitectural deterioration. Treadmill exercise running was shown to preserve the bone strength and to induce bone turnover changes in favor of bone formation. However, the combined effects of zoledronic acid and running exercise applied simultaneously did not produce any synergetic or additive effects.  相似文献   

14.
Summary Dual energy X-ray absorptiometry (DXA; Hologic QDR-1000W) in an ultrahigh-resolution mode, was used to examine the changes in tibial/fibula and vertebral L4 +L5 bone mineral content (BMC) and bone mineral density (BMD) in each 14-month-old female rat at 0, 9, and 16 weeks of study. Twenty rats were randomized by a stratified weight method into two groups, control and exercised. Exercise consisted of running on a flat-bed treadmill, 17 m/minute, 1 hour/day and 5 days/week. As compared with the control group, a significant increase in tibia/fibula BMC and vertebral BMD was apparent at 9 weeks after exercise training (P=0.014 by 2-way analysis of variance). The slope of the gain of the tibia/fibula BMC and BMD by 16 weeks of training was ninefold and fivefold higher than that of the control group (P<0.01 and P<0.05, respectively, by Mann-Whitney test). The correlation coefficient (r) between the final dry weight of excised bone and the final BMC of the intact rat was 0.843 and 0.71 for tibia/fibula and vertebrae, respectively. In summary, we found that in the aged rat, by 9 weeks, exercise increases BMC and BMD in the tibia, whereas in the vertebrae, only increases in the BMD were found. This study demonstrates that this precise and accurate DXA technique is useful in a longitudinal study of in vivo bone mineral changes in the rat over time by taking into account the individual variation between animals as well as changes between groups.  相似文献   

15.
邹瑞  冯兵  邱勇  陈一心 《实用骨科杂志》2010,16(11):825-828
目的研究鹿瓜多肽注射液对去卵巢大鼠骨骼生物力学性能的影响。方法 3个月龄清洁级雌性Wistar大鼠27只,随机分为假手术(sham group,SHAM)组、去势(ovariectomized,OVX)组、去势+鹿瓜多肽(cervus and cu-cumis polypeptide,CCP)组,每组9只。OVX+CCP组大鼠于术后第1天开始按0.6 mL/(kg.d)肌注鹿瓜多肽注射液,术后12周处死所有大鼠,取出股骨及腰椎标本,双能X线吸收仪测量各组大鼠股骨近端、股骨干及全腰椎的骨密度。应用INSTRON 3367电子拉伸试验机检测股骨近端、股骨干和L5的生物力学性能。结果 a)OVX组与SHAM组相比较,大鼠股骨和腰椎最大载荷无明显下降(P〉0.05),但极限强度明显下降(P〈0.01);与OVX组相比,OVX+CCP组的最大载荷无明显增加(P〉0.05),但极限强度显著高于去势组(P〈0.01);OVX+CCP组与SHAM组比,上述检测指标间无统计学差异(P〉0.05);b)与SHAM组相比,OVX组股骨近端、股骨干及全腰椎的骨密度明显降低(P〈0.01);与OVX组相比,OVX+CCP组各部位骨密度明显高于OVX组(P〈0.01);OVX+CCP组与SHAM组比,两者各部位骨密度无明显差异(P〉0.05)。结论鹿瓜多肽注射液能保护去势大鼠骨密度和骨骼内在生物力学性能。  相似文献   

16.
An orally active, highly potent analog of 1alpha,25-dihydroxyvitamin D3, 2MD, restores trabecular and cortical bone mass and strength by stimulating periosteal bone formation and decreasing trabecular bone resorption in OVX rats with established osteopenia. INTRODUCTION: The purposes of this study were to determine the effects of long-term treatment with 2-methylene-19-nor-(20S)-1alpha,25(OH)2D3 (2MD) on restoring bone mass and bone strength in ovariectomized (OVX) rats with established osteopenia and 2MD effects on bone formation and bone resorption on trabecular and cortical bone surfaces. MATERIALS AND METHODS: Sprague-Dawley female rats were sham-operated (sham) or OVX at 4 months of age. Beginning at 8 weeks after OVX, OVX rats were orally dosed with 2MD at 0.5, 1, 2.5, 5, or 10 ng/kg/day for 16 weeks. Serum calcium was measured at 6, 13, and 16 weeks after treatment, and bone mass and structure, bone formation, bone resorption, and bone strength were determined at the end of the study. RESULTS: Serum calcium did not change significantly with 2MD at 0.5 or 1 ng/kg/day, whereas it significantly increased at 2.5, 5, or 10 ng/kg/day. 2MD significantly and dose-dependently increased total body BMD, total BMC, and stiffness of femoral shaft (FS), maximal load and stiffness of femoral neck, and toughness of the fifth lumbar vertebral body (L5) at all doses compared with OVX controls. In 2MD-treated OVX rats, there was a dose-dependent increase in total BMD and total BMC of the distal femoral metaphysis (DFM), trabecular bone volume of L3, ultimate strength and stiffness of L5, and maximal load of FS compared with OVX controls at dosages>or=1 ng/kg/day. At dosages>2.5 ng/kg/day, most of the bone mass and bone strength related parameters were significantly higher in 2MD-treated OVX rats compared with sham controls. Bone histomorphometric analysis of L3 showed dose-dependent decreases in osteoclast number and osteoclast surface on trabecular bone surface and a dose-dependent increase in periosteal bone formation associated with 2MD treatment. CONCLUSIONS: 2MD not only restored both trabecular and cortical bone mass but also added bone to the osteopenic OVX rats beyond that of sham controls by stimulating bone formation on the periosteal surface and decreasing bone resorption on the trabecular surface. 2MD increased bone mass and strength at doses that did not induced hypercalcemia.  相似文献   

17.
The purpose of this study was to clarify the relationship between bone mineral content (BMC) and mechanical strength in beagle dog models, and to find whether the mechanical strength changed with changes in BMC. We used 17 beagle dogs to create an experimental osteoporotic model, dividing them into six groups, based on age and experimental period. Presence and absence of ovariectomy (OVX); and calcium content of the diet. BMC was determined by dual-energy quantitative computed tomography in the lumbar vertebrae, and the mechanical strength of cancellous bone harvested from the lumbar vertebral body and femoral neck was measured. OVX alone did not affect either BMC or mechanical strength. However, when the dogs were ovariectomized, and then given a reduced calcium diet, the mechanical strength of the femoral neck decreased in parallel with the cortical BMC of the lumbar vertebrae. The mechanical strength of the vertebral cancellous bone was not decreased when the BMC was reduced by 20%, but was decreased when BMC was reduced by 30%.  相似文献   

18.
目的探讨硬化蛋白抗体和跑台运动对老龄去势大鼠骨重建的影响。方法 8月龄雌性Wistar大鼠,按体质量随机分层分为5组:Sham组(假手术组)、OVX组(去卵巢组)、OVX+E组(去卵巢+运动组)、OVX+S组(去卵巢+硬化蛋白抗体组)、OVX+E+S组(去卵巢+运动+硬化蛋白抗体组)。在14w后取材进行相关指标测试。结果 1单纯性的运动锻炼能降低脂肪量,增加骨小梁数目,减少骨吸收标记物NTx水平,防止老龄去势大鼠全身、股骨骨密度发生下降。2单纯性的硬化蛋白抗体治疗能增加骨形成标志物OC,提高去势大鼠的皮质孔隙率、皮质骨体积和皮质骨厚度,提高骨密度。3运动与硬化蛋白抗体交互作用时,可以降低脂肪量,提高骨密度和皮质骨参数,增加骨量和骨强度,提高OC水平、降低NTx水平。结论适度的跑台运动可以防止老龄去势大鼠骨量丢失,改善去势大鼠骨健康。硬化蛋白抗体疗法可以增加皮质骨骨量和骨强度,预防去势大鼠绝经后对骨代谢的不良影响。硬化蛋白和运动表现出良好的协同作用,对老龄去势大鼠骨重建具有积极的作用。  相似文献   

19.
The ability of alprazolam to diminish cortisol response and favor ovarian function could make it useful in the prevention of osteopenia in athletes in selected cases. A sample of 45 female Wistar rats, all 93 days old and with a mean initial weight of 267 ± 17 g, were studied. Rats were exposed to a high-performance level of exercise and were divided into two groups—one group received an alprazolam supplement and one did not—and compared with controls to determine the effect of alprazolam on bone mass as measured by dual-energy X-ray absorptiometry (DKA). Exercise consisted of treadmill running on 5 out of 7 days during a period of 11 weeks. A steep grade treadmill inclination was used to stimulate high-intensity muscle activity. Final inclination was 17.5° and treadmill speed was 45 cm/second. Upon completion of the experiment, all the rats were killed and the femur and 5th lumbar vertebra were dissected and cleaned. Length, weight, bone mineral content (BMC), and density (BMD) of the whole right femur and 5th lumbar vertebra were measured. In the exercise only group (no alprazolam), the length, weight, BMC, BMD, and femur BMC/final rat weight ratio of the femur, and the vertebral weight, vertebral BMD and BMC, and vertebral BMC/final rat weight ratio were lower than in the control and the exercise-alprazolam groups (P < 0.0167 – < 0.0001). Alprazolam preserves bone mass in rats exposed to intense exercise. Received: 1 June 1998 / Accepted: 15 December 1998  相似文献   

20.
Previous reports using dual x-ray absorptiometry (DXA) suggest that up to 70% of adults with thalassemia major (Thal) have low bone mass. However, few studies have controlled for body size and pubertal delay, variables known to affect bone mass in this population. In this study, bone mineral content and areal density (BMC, aBMD) of the spine and whole body were assessed by DXA, and volumetric BMD and cortical geometries of the distal tibia by peripheral quantitative computed tomography (pQCT) in subjects with Thal (n = 25, 11 male, 10 to 30 years) and local controls (n=34, 15 male, 7 to 30 years). Z-scores for bone outcomes were calculated from reference data from a large sample of healthy children and young adults. Fasting blood and urine were collected, pubertal status determined by self-assessment and dietary intake and physical activity assessed by written questionnaires. Subjects with Thal were similar in age, but had lower height, weight and lean mass index Z-scores (all p < 0.001) compared to controls. DXA aBMD was significantly lower in Thal compared to controls at all sites. Adult Thal subjects (> 18 years, n = 11) had lower tibial trabecular vBMD (p = 0.03), cortical area, cortical BMC, cortical thickness, periosteal circumference and section modulus Z-scores (all p < 0.01) compared to controls. Cortical area, cortical BMC, cortical thickness, and periosteal circumference Z-scores (p = 0.02) were significantly lower in young Thal (≤ 18 years, n = 14) compared to controls. In separate multivariate models, tibial cortical area, BMC, and thickness and spine aBMD and whole body BMC Z-scores remained lower in Thal compared to controls after adjustment for gender, lean mass and/or growth deficits (all p < 0.01). Tanner stage was not predictive in these models. Osteocalcin, a marker of bone formation, was significantly reduced in Thal compared to controls after adjusting for age, puberty and whole body BMC (p=0.029). In summary, we have found evidence of skeletal deficits that cannot be dismissed as an artifact of small bone size or delayed maturity alone. Given that reduced bone density and strength are associated with increased risk of fracture, therapies focused on increasing bone formation and bone size in younger patients are worthy of further evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号