首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hu K  Dou J  Yu F  He X  Yuan X  Wang Y  Liu C  Gu N 《Vaccine》2011,29(7):1455-1462
Herpes stromal keratitis (HSK) is a chronic inflammatory process caused by the infection of herpes simplex virus type 1 (HSV-1). Development of a HSV-1 vaccine is a priority because these infections are common and cannot be well prevented. It appears that the potential of nanocarriers in DNA vaccination will be required to augment the immune response to DNA vaccines. Therefore, in the study, nanoparticles Fe3O4 coated with glutamic acid, DNA vaccine pRSC-gD-IL-21 and polyethylenimine were prepared and immunized in the mice by ocular mucosal administration. The immune responses and protection efficiency against HSV-1 challenge were also tested. The results showed that the nanoparticles containing DNA vaccine pRSC-gD-IL-21 induced mice to generate higher levels of specific neutralizing antibody, sIgA in tears, and IFN-γ, IL-4 in serum, and to enhance the cytotoxicities of NK cells and splenocytes as well as splenocyte proliferative response to glycoprotein D compared with those of the control mice. More importantly, the mice immunized with the experimental vaccine showed less HSK degree than that of the control mice after HSV-1 challenge of the murine ocular mucosa. In conclusion, an ocular mucosal administration of nanoparticles containing DNA vaccine confers strong specific immune responses and effective inhibition of HSK in a HSV-1 infected murine model.  相似文献   

2.
The composition of current influenza protein vaccines has to be reconsidered every season to match the circulating influenza viruses, continuously changing antigenicity. Thus, influenza vaccines inducing a broad cross-reactive immune response would be a great advantage for protection against both seasonal and emerging influenza viruses. We have developed an alternative influenza vaccine based on DNA expressing selected influenza proteins of pandemic and seasonal origin. In the current study, we investigated the protection of a polyvalent influenza DNA vaccine approach in pigs. We immunised pigs intradermally with a combination of influenza DNA vaccine components based on the pandemic 1918 H1N1 (M and NP genes), pandemic 2009 H1N1pdm09 (HA and NA genes) and seasonal 2005 H3N2 genes (HA and NA genes) and investigated the protection against infection with virus both homologous and heterologous to the DNA vaccine components.  相似文献   

3.
目的 探讨含有单纯疱疹病毒Ⅱ型(HSV-2)糖蛋白D全基因序列的重组质粒作为DNA疫苗的可能性。方法 采用PCR方法获得HSV-2gD片段,构建含HSV-gD片段的重组质粒pcDNA3-gD。重组质粒作为DNA疫苗免疫小鼠,观察其对小鼠免疫效果及保护作用。结果 重组质粒pcCDNA3-gD免疫小鼠后可产生特异性抗体,可保护小鼠免受HSV-2的致死性攻击,存活率达75%。结论 重组质粒pcDNA3-gD可诱导小鼠产生特异性免疫反应,可以作为HSV的候选DNA疫苗。  相似文献   

4.
5.
Despite the lack of effective vaccines against parasitic diseases, the prospects of developing a vaccine against leishmaniasis are still high. With this objective, we have tested four DNA based candidate vaccines encoding to immunodominant leishmania antigens (LACKp24, TSA, LmSTI1 and CPa). These candidates have been previously reported as capable of eliciting at least partial protections in the BALB/c mice model of experimental cutaneous leishmaniasis. When tested under similar experimental conditions, all of them were able to induce similar partial protective effects, but none could induce a full protection. In order to improve the level of protection we have explored the approach of DNA based vaccination with different cocktails of plasmids encoding to the different immunodominant Leishmania antigens. A substantial increase of protection was achieved when the cocktail is composed of all of the four antigens; however, no full protection was achieved when mice were challenged with a high dose of parasite in their hind footpad. The full protection was only achieved after a challenge with a low parasitic dose in the dermis of the ear. It was difficult to determine clear protection correlates, other than the mixture of immunogens induced specific Th1 immune responses against each component. Therefore, such an association of antigens increased the number of targeted epitopes by the immune system with the prospects that the responses are at least additive if not synergistic. Even though, any extrapolation of this approach when applied to other animal or human models is rather hazardous, it undoubtedly increases the hopes of developing an effective leishmania vaccine.  相似文献   

6.
Repeated intra-vaginal inoculation of mice with inactivated type 2 herpes simplex virus induced cervical carcinoma in approximately 50% of mice. Prior immunization with subunit vaccine Ac NFU1(S-) BHK reduced the frequency of cervical carcinoma to 19%. Inoculation of mice with a control preparation of uninfected cell extract never induced preinvasive or invasive cervical cancer. There was evidence of an antibody response in every vaccinated and/or innoculated animal. Mice developing cervical cancer had a significantly higher antibody titre to type 2 herpes virus than mice not developing cancer. These results are in general accord with sero-epidemiological studies of preinvasive and invasive cervical carcinoma in human subjects and suggests that this experimental model may be appropriate for further investigation of prevention of human cervical cancer by vaccination.  相似文献   

7.
《Vaccine》2017,35(16):2069-2075
The Middle East respiratory syndrome coronavirus (MERS-CoV), is an emerging pathogen that continues to cause outbreaks in the Arabian peninsula and in travelers from this region, raising the concern that a global pandemic could occur. Here, we show that a DNA vaccine encoding the first 725 amino acids (S1) of MERS-CoV spike (S) protein induces antigen-specific humoral and cellular immune responses in mice. With three immunizations, high titers of neutralizing antibodies (up to 1: 104) were generated without adjuvant. DNA vaccination with the MERS-CoV S1 gene markedly increased the frequencies of antigen-specific CD4+ and CD8+ T cells secreting IFN-γ and other cytokines. Both pcDNA3.1-S1 DNA vaccine immunization and passive transfer of immune serum from pcDNA3.1-S1 vaccinated mice protected Ad5-hDPP4-transduced mice from MERS-CoV challenge. These results demonstrate that a DNA vaccine encoding MERS-CoV S1 protein induces strong protective immune responses against MERS-CoV infection.  相似文献   

8.
Protective immune responses in shrimp induced by DNA vaccines against white spot syndrome virus (WSSV) with intramuscular injection have been reported in recent reports. In this study, we investigated the utilities of attenuated Salmonella enterica serovar Typhimurium (Salmonella typhimurium) as a bactofection vehicle for the oral delivery of a DNA vaccine plasmid to crayfish (Cambarus clarkii). The DNA vaccine plasmid pcDNA3.1-VP28, encoding viral envelope protein VP28, was transformed to an attenuated S. typhimurium strain SV4089 and the resulting recombinant bacteria named SV/pcDNA3.1-VP28 were used to orally immunize crayfish with coated feed. Successful delivery of the DNA vaccine plasmid was shown by the isolation of recombinant bacteria SV/pcDNA3.1-VP28 from the vaccinated crayfish. The distribution analysis of plasmid pcDNA3.1-VP28 in different tissues revealed the effective release of DNA vaccine plasmid into crayfish. RT-PCR and immunoflurescence results confirmed the expression of protein VP28 in the vaccinated crayfish. Challenge experiments with WSSV at 7, 15, 25 days post-vaccination demonstrated significant protection in immunized crayfish with relative survival rate 83.3%, 66.7% and 56.7%, respectively. Studies on stability and safety of SV/pcDNA3.1-VP28 showed the recombinant bacteria could exist in crayfish at least 7 days but not more than 10 days and without any observable harm to the host. Our study here demonstrates, for the first time, the ability of attenuated Salmonella as a live vector to orally deliver a DNA vaccine against WSSV into the arthropod crayfish and provides a new way to design more practical strategies for the control of WSSV and other invertebrate pathogens.  相似文献   

9.
This study investigated risk factors for herpes simplex virus type 1 (HSV-1) infection in a population of university students in Germany and Spain. In addition, factors associated with the occurrence of oral lesions were studied. Serum samples were collected from 596 Spanish students from the Navarra Public University in Pamplona and 174 German students from the University of Bielefeld aged 17–41 years and tested by a HSV-1 type-specific immunoassay using monoclonal antibody-selected gG1 as antigen. Information on clinical manifestations and risk factors were obtained by a standardized questionnaire. The rate of HSV-1 infection was 55.3 and 27.4% of these infected students reported having had oral lesions within the last 12 months. Prevalence of HSV-1 infection did not differ between study sites, and did not vary according to gender or age. Students with coitus experience were more likely to be infected with HSV-1 (Odds ratio (OR), 1.88; 95%CI: 1.31–2.69), while other lifestyle factors were not associated with HSV-1 infection. Risk factors for the occurrence of oral lesions included HSV-1 seropositivity (OR: 6.90; 95%CI: 3.84–12.37) and a higher level of perceived stress, as measured by the Cohen scale of perceived stress (OR: 1.79; 95%CI: 1.15–2.78). Drinking alcohol was found to be a protective factor (OR: 0.59; 95%CI: 0.37–0.93). There was no difference in the clinical pattern and course of infection between the young adults in Germany and Spain. We conclude, that lifestyle factors appear to play an important role in the epidemiology and clinical manifestations of HSV-1.  相似文献   

10.
《Vaccine》2019,37(37):5607-5613
Paracoccidioidomycosis (PCM) is a systemic mycosis autochthonous to Latin America and endemic to Brazil, which has the majority of the PCM cases. PCM is acquired through the inhalation of propagules of fungi from genus Paracoccidioides spp. and mainly affects the lungs. We have previously shown that P. brasiliensis-infected mice treated with single-dose of recombinant 60-kDa-heat shock protein from P. brasiliensis (rPbHsp60) had a worsening infection in comparison to animals only infected. In this study, we investigate whether the treatment of infected mice with PB_HSP60 gene cloned into a plasmid (pVAX1-PB_HSP60) would result in efficient immune response and better control of the disease. The harmful impact of single-dose therapy with protein was not seen with plasmid preparations. Most importantly, three doses of pVAX1-PB_HSP60 and protein induced a beneficial effect in experimental PCM with a reduction in fungal load and lung injury when compared with infected mice treated with pVAX1 or PBS. The increase of the cytokines IFN-γ, TNF, and IL-17 and the decrease of IL-10 observed after treatment with three doses of pVAX1-PB_HSP60 appears to be responsible for the control of infection. These results open perspectives of the therapeutic use of Hsp60 in PCM.  相似文献   

11.
An experimental model was developed for studying ocular infections with herpes simplex virus (HSV) type 1 in vitamin A-deficient (-A) and pair-fed control (+A) rats. The severity and course of the disease was evaluated by clinical examination, slit lamp biomicroscopy and histopathologic observations. Experimental animals were in good health and were infected in the early stages of vitamin deficiency (either prior to or at the beginning of the weight plateau). In all trials the onset of herpetic keratitis was more rapid and the clinical disease more severe in -A rats compared to +A controls. Mean slit lamp scores (which assessed the severity of the corneal disease) increased from 3 to 10 d after infection and were higher (P less than 0.002) in -A rats at all time points and doses of virus tested. The inflammatory response in the cornea and uveal tract of -A rats was significantly higher than that of +A animals. Since ocular HSV disease is a common cause of blindness, the availability of a rat model should be valuable in studies of the role of nutritional factors in host susceptibility and response to viral challenge. Mild vitamin A deficiency increased the severity of experimental corneal HSV infections and resulted in a high incidence of epithelial ulceration and necrosis.  相似文献   

12.
Here we describe studies in the guinea pig model of genital herpes to evaluate a novel plasmid DNA (pDNA) vaccine encoding the HSV-2 glycoprotein D and UL46 and UL47 genes encoding tegument proteins VP11/12 and VP 13/14 (gD2/UL46/UL47), formulated with a cationic lipid-based adjuvant Vaxfectin®. Prophylactic immunization with Vaxfectin®-gD2/UL46/UL47 significantly reduced viral replication in the genital tract, provided complete protection against both primary and recurrent genital skin disease following intravaginal HSV-2 challenge, and significantly reduced latent HSV-2 DNA in the dorsal root ganglia compared to controls. We also examined the impact of therapeutic immunization of HSV-2 infected animals. Here, Vaxfectin®-gD2/UL46/UL47 immunization significantly reduced both the frequency of recurrent disease and viral shedding into the genital tract compared to controls. This novel adjuvanted pDNA vaccine has demonstrated both prophylactic and therapeutic efficacy in the guinea pig model of genital herpes and warrants further development.  相似文献   

13.
DNA vaccine for West Nile virus infection in fish crows (Corvus ossifragus)   总被引:4,自引:0,他引:4  
A DNA vaccine for West Nile virus (WNV) was evaluated to determine whether its use could protect fish crows (Corvus ossifragus) from fatal WNV infection. Captured adult crows were given 0.5 mg of the DNA vaccine either orally or by intramuscular (IM) inoculation; control crows were inoculated or orally exposed to a placebo. After 6 weeks, crows were challenged subcutaneously with 105 plaque-forming units of WNV (New York 1999 strain). None of the placebo inoculated-placebo challenged birds died. While none of the 9 IM vaccine-inoculated birds died, 5 of 10 placebo-inoculated and 4 of 8 orally vaccinated birds died within 15 days after challenge. Peak viremia titers in birds with fatal WNV infection were substantially higher than those in birds that survived infection. Although oral administration of a single DNA vaccine dose failed to elicit an immune response or protect crows from WNV infection, IM administration of a single dose prevented death and was associated with reduced viremia.  相似文献   

14.
Zheng Q  Fan D  Gao N  Chen H  Wang J  Ming Y  Li J  An J 《Vaccine》2011,29(4):763-771
Dengue is one of the most important mosquito-borne viral diseases. In past years, although considerable effort has been put into the development of a vaccine, there is currently no licensed dengue vaccine. In this study, we constructed DNA vaccines that carried the prM-E-NS1 genes of dengue virus serotype 1 (DV1) with or without the granulocyte-macrophage colony-stimulating factor (GM-CSF) gene, an attractive DNA vaccine adjuvant. Immunization with the plasmid pCAG-DV1/E/NS1, which expresses viral prM-E-NS1, or the bicistronic plasmid pCAG-DV1-GM, which co-expresses viral prM-E-NS1 and GM-CSF, resulted in long-term IgG response, high levels of splenocyte-secreted interferon-γ and interleukin-2, strong cytotoxic T lymphocyte activity and sufficient protection in the DV1-challenged mice. This suggested that both humoral and cellular immune responses were induced by the immunizations and that they played important roles in protection against the DV1 challenge. Interestingly, the magnitude, quality and protective capacity of the immune responses induced by immunization with pCAG-DV1/E/NS1 or pCAG-DV1-GM seemed stronger than those induced by pCAG-DV1/E (expressing viral prM-E alone). Taken together, we demonstrated that prM/E plus NS1 would be a suitable solution for the development of a DNA vaccine against DV.  相似文献   

15.
《Vaccine》2015,33(48):6757-6762
Toxoplasma gondii (T. gondii) is an obligate, intracellular, protozoan parasite that infects large variety of warm-blooded animals including humans, livestock, and marine mammals, and causes the disease toxoplasmosis. Although T. gondii infection rates differ significantly from country to country, it still has a high morbidity and mortality. In these circumstances, developing an effective vaccine against T. gondii is urgently needed for preventing and treating toxoplasmosis. The aim of this study was to construct a multi-epitopes DNA vaccine and evaluate the immune protective efficacy against acute toxoplasmosis in mice. Therefore, twelve T- and B-cell epitopes from SAG1, GRA2, GRA7 and ROP16 of T. gondii were predicted by bioinformatics analysis, and then a multi-epitopes DNA vaccine was constructed. Mice immunized with the multi-epitopes DNA vaccine gained higher levels of IgG titers and IgG2a subclass titers, significant production of gamma interferon (IFN-γ), percentage of T lymphocyte subsets, and longer survival times against the acute infection of T. gondii compared with those of mice administered with empty plasmid and those in control groups. Furthermore, a genetic adjuvant pEGFP-RANTES (pRANTES) could enhance the efficacy of the multi-epitopes DNA vaccine associating with humoral and cellular (Th1, CD8+ T cell) immune responses. Above all, the DNA vaccine and the genetic adjuvant revealed in this study might be new candidates for further vaccine development against T. gondii infection.  相似文献   

16.
Saini M  Hadas E  Volsky DJ  Potash MJ 《Vaccine》2007,25(52):8660-8663
EcoHIV/NL4-3 is a chimeric human immunodeficiency virus type 1 (HIV-1) that can productively infect mice. This study tests the utility of EcoHIV/NL4-3 infection to reveal protective immune responses to an HIV-1 vaccine. Immunocompetent mice were first immunized with VRC 4306 which encodes subtype B consensus sequences of gag, pol, and nef and then were infected by EcoHIV/NL4-3. Anti-Gag antibodies were sampled during immunization and infection. The extent of EcoHIV/NL4-3 infection in spleen cells and peritoneal macrophages was determined by quantitative real-time PCR (QPCR).

Although antibody titres were not significantly different in control and vaccinated groups, VRC 4306 immunization induced protective responses that significantly reduced virus burden in both lymphocyte and macrophage compartments. These results indicate that EcoHIV/NL4-3 infection can be controlled by HIV-1 vaccine-induced responses, introducing a small animal model to test vaccine efficacy against HIV-1 infection.  相似文献   


17.
Herpes B virus (Cercopithecine herpesvirus 1) is endemic in captive macaque populations and poses a serious threat to humans who work with macaques or their tissues. A vaccine that could prevent or limit B virus infection in macaques would lessen occupational risk. To that end, a DNA vaccine plasmid expressing the B virus glycoprotein B (gB) was constructed and tested for immunogenicity in mice and macaques. Intramuscular (IM) or intradermal (ID) immunization in mice elicited antibodies to gB that were relatively stable over time and predominately of the IgG2a isotype. Five juvenile macaques were immunized by either IM+ID (n=2) or IM (n=3) routes, with two booster immunizations at 10 and 30 weeks. All five animals developed antibodies to B virus gB, with detectable neutralizing activity in the IM+ID immunized animals. These results demonstrated that DNA immunization can be used to generate an immune response against a B virus glycoprotein in uninfected macaques.  相似文献   

18.
《Vaccine》2017,35(39):5303-5308
IntroductionImmunogenicity studies on pandemic influenza vaccine are necessary to inform rapid development and implementation of a vaccine during a pandemic. Thus, strategies for immunogenicity assessment are required.ObjectiveTo identify essential factors to consider when evaluating the immunogenicity of pandemic influenza vaccines using the experience in Japan with the influenza A(H1N1)pdm09 vaccine.MethodsWe conducted a search of observational studies using PubMed and IchushiWeb. Search terms included “influenza vaccine AND (immunogenicity OR immune response) AND Japan AND (2009 OR pdm09) NOT review,” and was limited to studies conducted in humans.ResultsA total of 33 articles were identified, of which 16 articles met the inclusion criteria. Immunogenicity of the commercially available influenza A(H1N1)pdm09 vaccine satisfied the international criteria for influenza vaccine immunogenicity in all study populations. The most remarkable immune response was observed in junior high school students, while the lowest immune response was observed in hematological malignancy patients. Similar to immunogenicity studies on seasonal influenza vaccines, factors such as patient background (e.g., age, underlying condition, pre-vaccination titer, body mass index, etc.) and study procedure (e.g., concurrent measurement of pre- and post-vaccination antibody titer, effects of infection during the study period) may have affected the assessment of immunogenicity to the influenza A(H1N1)pdm09 vaccine. In addition, prior vaccination with the seasonal influenza vaccine may inhibit antibody induction by the influenza A(H1N1)pdm09 vaccine.ConclusionsThis review discusses factors and strategies that must be considered and addressed during immunogenicity assessments of pandemic influenza vaccines, which may provide useful information for future influenza pandemics.  相似文献   

19.
The replication-defective herpes simplex virus 2 (HSV-2) dl5-29 mutant virus strain with deletions in the UL5 and UL29 genes has been shown to protect mice and guinea pigs against challenge with wild-type (wt) HSV-2 and to protect against ocular disease caused by HSV-1 infection. The dl5-29 strain is currently being prepared for clinical trials as a herpes vaccine candidate. As a possible approach to improve the efficacy of dl5-29 as a genital herpes vaccine, we replaced the UL41 gene encoding the virion host shutoff function (vhs) with the UL41 gene from HSV-1. While the HSV-2 UL41 and HSV-1 UL41 gene products have analogous functions, vhs-1 is 40-fold less active than vhs-2. Previously, it was shown that disruption of the UL41 gene can increase the efficacy of dl5-29 as a vaccine against HSV-2. These properties led us to hypothesize that replacement of vhs-2 by vhs-1 would decrease cytopathic effects in infected host cells, allowing longer survival of antigen-presenting cells and induction of stronger immune responses. The new recombinant dl5-29-41.1 virus shows nearly the same immunogenicity and protection against HSV-2 challenge as the parental dl5-29 virus or a triply deleted mutant virus, dl5-29-41, in the murine model of infection, and grows to higher titers than the parental strain in complementing cells, which is important for GMP production. The results have implications for the design of future HSV-2 vaccine candidates and mechanisms of induction of protective immunity against genital herpes.  相似文献   

20.
Boshra H  Lorenzo G  Rodriguez F  Brun A 《Vaccine》2011,29(27):4469-4475
Current vaccine candidates against Rift Valley fever virus (RVFV) incorporate the viral structural glycoproteins as antigens, since triggering antibody responses against them usually correlates with protection. Here, we have focused solely on the nucleoprotein of RVFV as a potential target for vaccine development. Previous studies in mouse models have already demonstrated that RVFV nucleoprotein can elicit partial protection when administered by means of a DNA vaccine or in recombinant, soluble, protein form. To determine whether this partially protective immune response could be augmented to a level comparable to DNA constructs encoding for RVFV glycoproteins, several targeting sequences were cloned adjacent to the RVFV nucleoprotein (N) gene. Immunization with a plasmid construct encoding for a ubiquitinated form of the viral nucleoprotein (pCMV-Ub-N) significantly increased the survival of IFNAR−/− mice following viral challenge to levels comparable with a recombinant DNA-vaccine encoding both RVFV glycoproteins. Mice immunized with pCMV-Ub-N also displayed higher levels of non-neutralizing anti-N antibodies and antigen-specific T-cell responses. This suggests a role for other cell mediated responses in protection against RVFV. These findings show the potential of RVFV N as a candidate antigen for vaccination, and present a new strategy in vaccine design against certain bunyaviruses, where glycoprotein variation may impede effective broad-based vaccination strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号