首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vaccine》2017,35(50):6990-7000
Adenovirus (Ad) is thought to be one of the most promising platforms for a malaria vaccine targeted against its liver stages, because of its ability to induce a strong T-cell response against a transgene. However, a further improvement of this platform is needed in order to elicit another arm of the immunity, i.e. humoral response, against malaria.In order to augment immunogenicity and protective efficacy of Ad-based malaria vaccine, we inserted B-cell, as well as CD4+ T-cell, epitopes of Plasmodium falciparum circumsporozoite protein (PfCSP) into the capsid protein, Hexon, and the core protein, VII (pVII), of Ad, respectively, in addition to the PfCSP transgene. Insertion of PfCSP-derived B cell epitope to Hexon significantly enhanced the epitope-specific antibody response compared to AdPfCSP, an Ad vaccine expressing only PfCSP transgene. PfCSP-derived CD4+ T-cell epitope insertion into pVII augmented not only PfCSP-specific CD4+ T-cell response but also anti-PfCSP antibody response. Finally, mice immunized with AdPfCSP having both Hexon and pVII modifications were more protected than AdPfCSP or Hexon-modified AdPfCSP against challenge with transgenic rodent malaria parasites expressing the PfCSP.Overall, this study has demonstrated that Hexon and pVII-modified AdPfCSP vaccine is a promising malaria vaccine which induces strong PfCSP-specific humoral, CD4+ T-cell, and CD8+ T-cell responses and protects against infection with transgenic malaria parasites expressing the PfCSP.  相似文献   

2.
《Vaccine》1999,17(7-8):623-632
In influenza and malaria, CD8+ T cells play an important role in protective immunity in mice. An immunization strategy consisting of DNA priming followed by boosting with recombinant modified vaccinia virus Ankara (MVA) induces complete protection, associated with high levels of CD8+ T cells, against Plasmodium berghei sporozoite challenge in mice. Intradermal delivery of DNA with a gene gun requires smaller amounts of DNA than intramuscular injection, in order to induce similar levels of immune responses. The present study compares both routes for the induction of specific CD8+ T cell responses and protection using different prime–boost immunization regimes in the influenza and the malaria models. In the DNA/MVA regime, equally high CD8+ T cell responses and levels of protection are achieved using ten times less DNA when delivered with a gene gun compared to intramuscular injection.  相似文献   

3.
Optimal protection against malaria may require induction of high levels of protective antibody and CD8(+) and CD4(+) T cell responses. In humans, malaria DNA vaccines elicit CD8(+) cytotoxic T cells (CTL) and IFNgamma responses as measured by short-term (ex vivo) ELISPOT assays, and recombinant proteins elicit antibodies and excellent T cell responses, but no CD8(+) CTL or CD8(+) IFNgamma-producing cells as measured by ex vivo ELISPOT. Priming with DNA and boosting with recombinant pox virus elicits much better T cell responses than DNA alone, but not antibody responses. In an attempt to elicit antibodies and enhanced T cell responses, we administered RTS,S/AS02A, a partially protective Plasmodium falciparum recombinant circumsporozoite protein (CSP) vaccine in adjuvant, to volunteers previously immunized with a P. falciparum CSP DNA vaccine (VCL-2510) and to na?ve volunteers. This vaccine regimen was well tolerated and safe. The volunteers who received RTS,S/AS02A alone had, as expected, antibody and CD4(+) T cell responses, but no CD8(+) T cell responses. Volunteers who received PfCSP DNA followed by RTS,S/AS02A had antibody and CD8(+) and CD4(+) T cell responses (Wang et al., submitted). Sequential immunization with DNA and recombinant protein, also called heterologous prime-boost, led to enhanced immune responses as compared to DNA or recombinant protein alone, suggesting that it might provide enhanced protective immunity.  相似文献   

4.
Meraldi V  Romero JF  Kensil C  Corradin G 《Vaccine》2005,23(21):2801-2812
Stable protective immunity can be achieved against malaria by the injection of radiation-attenuated sporozoites (gamma-spz) and is mediated by IFN-gamma producing CD8+ T cells targeting the pre-erythrocytic stages. An efficient malaria vaccine should mimic this immunity. We compared the immune response specific for the circumsporozoite protein (CSP) of Plasmodium berghei (P. berghei), an important target of this protective response, elicited in mice immunized with the long synthetic polypeptide (LSP) PbCS 242-310, representing the C-terminus of the CSP of P. berghei, with the adjuvant QS-21 or injected with gamma-spz. The ex vivo evaluation of the CD8+ T cell response by IFN-gamma ELISPOT assay revealed that the injection of LSP with QS-21 induced, compared to gamma-spz, a similar frequency of peptide-specific lymphocytes in the spleen but a eight-fold increase in the draining lymph-nodes. A very high frequency of CD8+ T cells, specific for the sequence PbCS 245-253, a H-2Kd-restricted CTL epitope, was obtained in the liver and spleen of mice immunized with the two regimens. Even though the frequency of H-2Kd PbCS 245-253 multimer+, CD8+ T cells was higher in gamma-spz immunized mice, the frequency of IFN-gamma producing CD8+ T cells was comparable. The phenotype of the CD8+ T cell responses was characterized with the help H-2Kd PbCS 245-253 multimer and most of the CSP-specific CD8+ T cells represented an intermediate subset between effector and central memory with CD44(high), CD45RB(high), CD62L(low) and CD122(high). The number of memory CD8+ T cells decreased after the last LSP immunization but could be boosted to higher level with live spz. The unique combination of LSP PbCS 242-310 and the adjuvant QS-21 induced an immune response that was comparable in terms of quality to the one generated with gamma-spz. This confirmed the potential of LSP as malaria vaccine candidates as well as for the study of the repertoire of targets of protective immunity in the gamma-spz vaccine model.  相似文献   

5.
Individuals living in malaria endemic areas are subject to repeated infections yet fail to develop sterilizing immunity, however, immunization of mice with attenuated sporozoites or subunit vaccines has shown the ability to protect mice against a sporozoite challenge. We recently reported that mice primed with dendritic cells coated with the dominant circumsporozoite CD8 T cell epitope from Plasmodium berghei followed by a boost with recombinant Listeria monocytogenes expressing the same epitope exhibited sterile immunity against a sporozoite challenge for more than one year. In this report we show those mice do not contain protective antibodies and that depletion of CD4 T cells in the immunized mice did not affect sterile immunity. In contrast, CD8 T cell depletion eliminated protection. Thus, protective immunity generated by this immunization approach is entirely memory CD8 T cell-dependent. We also show here that mice initially protected by circumsporozoite-specific memory CD8 T cells develop sterilizing sporozoite-specific antibodies after repeated asymptomatic challenges with physiologic numbers of viable sporozoites. Therefore, initial protection by a CD8 T cell-targeted liver stage subunit vaccine allows the generation of enhanced sterilizing immune responses from repeated exposure to Plasmodium parasites.  相似文献   

6.
《Vaccine》2018,36(11):1414-1422
DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-TEXO capable of stimulating HER2-specific CD8+ T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdVHuRt expressing HuRt fusion protein composed of NH2-HER21-407 (Hu) and COOH-neu408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-TEXO using polyclonal CD4+ T-cells uptaking exosomes released by AdVHuRt-transfected dendritic cells. We found that the HuRt-TEXO vaccine stimulates enhanced CD4+ T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-TEXO vaccine. By using PE-H-2Kd/HER223-71 tetramer, we determined that HuRt-TEXO stimulates stronger HER2-specific CD8+ T-cell responses eradicating 90% of HER2-specific target cells, while HER2-TEXO-induced CD8+ T-cell responses only eliminating 53% targets. Furthermore, HuRt-TEXO, but not HER2-TEXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10A2/HER2 melanoma. HuRt-TEXO-stimulated HER2-specific CD8+ T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-TEXO, circumventing HER2 tolerance, may provide a new therapeutic alternative for patients with trastuzumab-resistant HER2+ breast tumor.  相似文献   

7.
Epitopes of the circumsporozoite (CS) protein of Plasmodium falciparum, the most pathogenic species of the malaria parasite, have been shown to elicit protective immunity in experimental animals and human volunteers. The mechanisms of immunity include parasite-neutralizing antibodies that can inhibit parasite motility in the skin at the site of infection and in the bloodstream during transit to the hepatocyte host cell and also block interaction with host cell receptors on hepatocytes. In addition, specific CD4+ and CD8+ cellular mechanisms target the intracellular hepatic forms, thus preventing release of erythrocytic stage parasites from the infected hepatocyte and the ensuing blood stage cycle responsible for clinical disease. An innovative method for producing particle vaccines, layer-by-layer (LbL) fabrication of polypeptide films on solid CaCO3 cores, was used to produce synthetic malaria vaccines containing a tri-epitope CS peptide T1BT* comprising the antibody epitope of the CS repeat region (B) and two T-cell epitopes, the highly conserved T1 epitope and the universal epitope T*. Mice immunized with microparticles loaded with T1BT* peptide developed parasite-neutralizing antibodies and malaria-specific T-cell responses including cytotoxic effector T-cells. Protection from liver stage infection following challenge with live sporozoites from infected mosquitoes correlated with neutralizing antibody levels. Although some immunized mice with low or undetectable neutralizing antibodies were also protected, depletion of T-cells prior to challenge resulted in the majority of mice remaining resistant to challenge. In addition, mice immunized with microparticles bearing only T-cell epitopes were not protected, demonstrating that cellular immunity alone was not sufficient for protective immunity. Although the microparticles without adjuvant were immunogenic and protective, a simple modification with the lipopeptide TLR2 agonist Pam3Cys increased the potency and efficacy of the LbL vaccine candidate. This study demonstrates the potential of LbL particles as promising malaria vaccine candidates using the T1BT* epitopes from the P. falciparum CS protein.  相似文献   

8.
《Vaccine》2023,41(38):5494-5498
Development of next-generation vaccines against Plasmodium falciparum (Pf) is a priority. Many malaria vaccines target the pre-erythrocytic sporozoite (SPZ) and liver stages. These include subunit vaccines based on the Pf circumsporozoite protein (CSP) and attenuated PfSPZ vaccines. However, these strategies require 3–4 doses and have not achieved optimal efficacy against field-transmitted malaria. Prime-and-trap is a recently developed two-step heterologous vaccine strategy that combines priming with DNA encoding CSP followed by a single dose of attenuated SPZ. This strategy aims to induce CD8+ T cells that can eliminate parasites in the liver. Prior data has demonstrated that prime-and-trap with P. yoelii CSP and PySPZ was immunogenic and protective in mice. Here we report preliminary data on the immunogenicity of PfCSP prime and PfSPZ trap vaccine in rhesus macaques. This vaccine induced PfCSP-specific antibodies and T cell responses in all animals. However, response magnitude differed between individuals, suggesting further study is required.  相似文献   

9.
We characterized the immunogenicity of the hybrid Ty-virus-like carrying the CD8(+) T cell epitope (SYVPSAEQI) of the circumsporozoite (CS) protein of Plasmodium yoelii (TyCS-VLP), a rodent malaria parasite. Balb/c mice were immunized with hybrid TyCS-VLP, and their CS-specific CD8(+) T cell response was quantitatively evaluated with the ELISPOT assay, based on the enumeration of epitope specific gamma-interferon secreting CD8(+) T cell. A single immunization with the TyCS-VLP by a variety of routes and doses indicated that the maximal response occurred in mice, which were immunized with 50 micrograms of these particles, administered via intramuscular. Combined immunization of mice with this TyCS-VLP followed by recombinant vaccinia virus expressing the entire P. yoelii CS protein (VacPyCS) or irradiated sporozoites, induced high levels of IFN-gamma-producing cells. The immunization regime, priming with TyCS-VLP and boosting with VacPyCS generated a potent protective immune response, which strongly inhibited P. yoelii liver stages development and protected 62% of the mice against a subsequent live P. yoelii sporozoite challenge.  相似文献   

10.
Hung CF  Calizo R  Tsai YC  He L  Wu TC 《Vaccine》2007,25(1):127-135
Mesothelin is highly expressed in a majority of ovarian cancer cells and is expressed at low levels in normal cells. Therefore, mesothelin represents a potential target antigen for ovarian cancer vaccine development. DNA vaccines employing single-chain trimers (SCT) have been shown to bypass antigen processing and presentation and result in significant enhancement of DNA vaccine potency. In the current study, we created a DNA vaccine employing an SCT targeting human mesothelin and characterized the ensuing antigen-specific CD8+ T cell-mediated immune responses and anti-tumor effects against human mesothelin-expressing tumors in HLA-A2 transgenic mice. Our results showed that vaccination with DNA employing an SCT of HLA-A2 linked to human mesothelin epitope aa540-549 (pcDNA3-Hmeso540-beta2m-A2) generated strong human mesothelin peptide (aa540-549)-specific CD8+ T cell immune responses in HLA-A2 transgenic mice. Vaccination with pcDNA3-Hmeso540-beta2m-A2 prevented the growth of HLA-A2 positive human mesothelin-expressing tumor cell lines in HLA-A2 transgenic mice in contrast to vaccination with DNA encoding SCT linked to OVA CTL epitope. Thus, the employment of SCT of HLA-A2 linked to the human mesothelin epitope aa540-549 represents a potential opportunity for the clinical translation of DNA vaccines against human mesothelin-expressing tumors, particularly ovarian cancer cells.  相似文献   

11.
Sterile immunity against malaria can be achieved by the induction of IFNgamma-producing CD8(+) T cells that target infected hepatocytes presenting epitopes of the circumsporozoite protein (CSP). In the present study we evaluate the protective efficacy of a heterologous prime/boost immunization protocol based on the delivery of the CD8(+) epitope of Plasmodium berghei CSP into the MHC class I presentation pathway, by either a type III secretion system of live recombinant Salmonella and/or by direct translocation of a recombinant Bordetella adenylate cyclase toxoid fusion (ACT-CSP) into the cytosol of professional antigen-presenting cells (APCs). A single intraperitoneal application of the recombinant ACT-CSP toxoid, as well as a single oral immunization with the Salmonella vaccine, induced a specific CD8(+) T cell response, which however conferred only a partial protection on mice against a subsequent sporozoite challenge. In contrast, a heterologous prime/boost vaccination with the live Salmonella followed by ACT-CSP led to a significant enhancement of the CSP-specific T cell response and induced complete protection in all vaccinated mice.  相似文献   

12.
Immunization of BALB/c mice with irradiated sporozoites (IrSp) of Plasmodium yoelii can lead to sterile immunity. The circumsporozoite protein (CSP) plays a dominant role in protection. Nevertheless after hyper-immunization with IrSp, complete protection is obtained in CSP-transgenic BALB/c mice that are T-cell tolerant to the CSP and cannot produce antibodies [CSP-Tg/JhT(−/−)]. This protection is mediated exclusively by CD8+ T cells [1]. To identify the non-CSP protective T cell antigens, we studied the properties of 34 P. yoelii sporozoite antigens that are predicted to be secreted and to contain strong Kd-restricted CD8+ T cell epitopes. The synthetic peptides corresponding to the epitopes were used to screen for the presence of peptide-specific CD8+ T cells secreting interferon-γ (IFN-γ) in splenocytes from CSP-Tg/JhT(−/−) BALB/c mice hyper immunized with IrSp. However, the numbers of IFN-γ-secreting splenocytes specific for the non-CSP antigen-derived peptides were 20-100 times lower than those specific for the CSP-specific peptide. When mice were immunized with recombinant adenoviruses expressing selected non-CSP antigens, the animals were not protected against challenge with P. yoelii sporozoites although large numbers of CD8+ specific T cells were generated.  相似文献   

13.
T-cell mediated immune responses are critical for acquired immunity against infection by the intracellular protozoan parasite Trypanosoma cruzi. Despite its importance, it is currently unknown where protective T cells are primed and whether they need to re-circulate in order to exert their anti-parasitic effector functions. Here, we show that after subcutaneous challenge, CD11c(+)-dependent specific CD8(+) T-cell immune response to immunodominant parasite epitopes arises almost simultaneously in the draining lymph node (LN) and the spleen. However, until day 10 after infection, we observed a clear upregulation of activation markers only on the surface of CD11C(+)PDCA1(+) cells present in the LN and not in the spleen. Therefore, we hypothesized that CD8(+) T cells re-circulated rapidly from the LN to the spleen. We investigated this phenomenon by administering FTY720 to T. cruzi-infected mice to prevent egress of T cells from the LN by interfering specifically with signalling through sphingosine-1-phosphate receptor-1. In T. cruzi-infected mice receiving FTY720, CD8 T-cell immune responses were higher in the draining LN and significantly reduced in their spleen. Most importantly, FTY720 increased susceptibility to infection, as indicated by elevated parasitemia and accelerated mortality. Similarly, administration of FTY720 to mice genetically vaccinated with an immunodominant parasite antigen significantly reduced their protective immunity, as observed by the parasitemia and survival of vaccinated mice. We concluded that re-circulation of lymphocytes mediated by sphingosine-1-phosphate receptor-1 greatly contributes to acquired and vaccine-induced protective immunity against experimental infection with a human protozoan parasite.  相似文献   

14.
The ability to generate potent antigen-specific T cell responses by vaccination has been a major hurdle in vaccinology. Vaccinia virus and avipox viruses have been shown to be capable of expressing antigens in mammalian cells and can induce a protective immune response against several mammalian pathogens. We report on two such vaccine constructs, modified vaccinia virus Ankara and FP9 (an attenuated fowlpox virus) both expressing the pre-erythrocytic malaria antigen thrombospondin-related adhesion protein and a string of CD8+ epitopes (ME-TRAP). In prime-boost combinations in a mouse model MVA and FP9 are highly immunogenic and induce substantial protective efficacy. A series of human clinical trials using the recombinant MVA and FP9 malaria vaccines encoding ME-TRAP, both independently and in prime-boost combinations with or without the DNA vaccine DNA ME-TRAP, has shown them to be both immunogenic for CD8+ T cells and capable of inducing protective efficacy. We report here a detailed analysis of the safety profiles of these viral vectors and show that anti-vector antibody responses induced by the vectors are generally low to moderate. We conclude that these vectors are safe and show acceptable side effect profiles for prophylactic vaccination.  相似文献   

15.
Pre-existing immunity to adenovirus (Ad) reduces the efficacy of Ad-based vaccines. The goal of this study was to define the prevalence, magnitude, functionality and phenotype of Ad-specific human T cells directly ex vivo. To study the magnitude of T-cell responses to Ad, we developed a highly reproducible whole Ad vector stimulation assay for use with polychromatic flow cytometry. Ad-specific CD4+ and CD8+ T-cells were detected in all 17 human subjects tested and were capable of proliferating upon restimulation. Ad5-specific CD4+ T cells were primarily monofunctional CD4+ T cells that produced IL-2, IFN-γ or TNFα and expressed the memory markers CD27 and CD45RO. In contrast, Ad5-specific CD8+ T cells were more polyfunctional, expressing effector-like combinations of IFN-γ, MIP1α and perforin, and generally lacked CD27 and CD45RO expression. Ad-specific CD4+ and CD8+ T-cell responses against chimpanzee-derived AdC6 and AdC7 were found in all subjects, indicating the commonality of cross-serotype reactivity of Ad-specific T cells. This cross-reactivity is due in part to extensive CD4+ and CD8+ T-cell recognition of hexon regions conserved between multiple Ad serotypes. The prevalence, cross-reactivity and effector-like functions of Ad-specific T cells in humans may affect the efficacy of Ad vector-based vaccines by eliminating vector infected cells even when rare serotype Ad vectors are employed.  相似文献   

16.
Plasmodium falciparum (P. falciparum) is a leading causative agent of malaria, an infectious disease that can be fatal. Unfortunately, control measures are becoming less effective over time. A vaccine is needed to effectively control malaria and lead towards the total elimination of the disease. There have been multiple attempts to develop a vaccine, but to date, none have been certified as appropriate for wide-scale use. In this study, an immunoinformatics method is presented to design a multi-epitope vaccine construct predicted to be effective against P. falciparum malaria. This was done through the prediction of 12 CD4+ T-cell, 10 CD8+ T-cell epitopes and, 1 B-cell epitope which were assessed for predicted high antigenicity, immunogenicity, and non-allergenicity through in silico methods. The Human Leukocyte Antigen (HLA) population coverage showed that the alleles associated with the epitopes accounted for 78.48% of the global population. The CD4+ and CD8+ T-cell epitopes were docked to HLA-DRB1*07:01 and HLA-A*32:01 successfully. Therefore, the epitopes were deemed to be suitable as components of a multi-epitope vaccine construct. Adjuvant RS09 was added to the construct to generate a stronger immune response, as confirmed by an immune system simulation. Finally, the structural stability of the predicted multi-epitope vaccine was assessed using molecular dynamics simulations. The results show a promising vaccine design that should be further synthesised and assessed for its efficacy in an experimental laboratory setting.  相似文献   

17.
Kim B  Feng N  Narváez CF  He XS  Eo SK  Lim CW  Greenberg HB 《Vaccine》2008,26(44):5601-5611
Rotavirus (RV) infection of the intestine is the major cause of severe dehydrating diarrhea in infants around the world. Although protective immunity against RV, especially acquired B and T-cell responses, has been extensively studied, our understanding of RV immunity remains incomplete. In addition, the interaction between various protective immune mechanisms in the gut and specific enteric immune suppressor systems that normally exert a regulatory function on mucosal immunity has not been extensively investigated. Among the candidate suppressor systems, we hypothesized that CD4+ CD25+ Foxp3+ regulatory T (Treg) cells may play a role in modulating RV immunity since such cells are naturally present in large numbers in the intestine and function nonspecifically. Here we demonstrate that neonatal murine RV (EC) infection induces an expansion of the Treg cell population and the magnitude of the T cell mediated immune response is modulated by Treg cells. Accordingly, when natural Treg cells in neonatal mice were depleted before virus infection, both CD4+ and CD8+ T-cell responses to RV, such as proliferation and IFN-gamma secretion, were enhanced in mesenteric lymph nodes (MLNs) and the spleen. Interestingly, increased proliferation of CD19+ B cells from Treg cell depleted animals was also observed. Finally, we analyzed the in vivo effect of the Treg cell depletion on diarrheal disease, virus shedding and IgA RV-specific response. Treg cell depletion did not affect these functions. Our studies of immune modulatory Treg cells in the RV infection model may promote a better understanding of the basis for RV immunity as well as providing valuable clues for the development of more immunogenic RV vaccines.  相似文献   

18.
Nanjundappa RH  Wang R  Xie Y  Umeshappa CS  Xiang J 《Vaccine》2012,30(24):3519-3525
The limitations of highly active anti-retroviral therapy have necessitated the development of alternative therapeutics for human immunodeficiency virus type-1 (HIV-1)-infected patients with dysfunctional dendritic cells (DCs) and CD4(+) T cell deficiency. We previously demonstrated that HIV-1 Gp120-specific T cell-based Gp120-Texo vaccine by using ConA-stimulated C57BL/6 (B6) mouse CD8(+) T (ConA-T) cells with uptake of pcDNA(Gp120)-transfected B6 mouse DC line DC2.4 (DC2.4(Gp120))-released exosomes (EXO(Gp120)) was capable of stimulating DC and CD4(+) T cell-independent CD8(+) cytotoxic T lymphocyte (CTL) responses detected in wild-type B6 mice using non-specific PE-anti-CD44 and anti-IFN-γ antibody staining by flow cytometry. To assess effectiveness of Gp120-Texo vaccine in transgenic (Tg) HLA-A2 mice mimicking the human situation, we constructed adenoviral vector AdV(Gp120) expressing HIV-1 GP120 by recombinant DNA technology, and generated Gp120-Texo vaccine by using Tg HLA-A2 mouse CD8(+) ConA-T cells with uptake of AdV(Gp120)-transfected HLA-A2 mouse bone marrow DC (DC(Gp120))-released EXO(Gp120). We then performed animal studies to assess Gp120-Texo-induced stimulation of Gp120-specific CTL responses and antitumor immunity in Tg HLA-A2 mice. We demonstrate that Gp120-Texo vaccine stimulates Gp120-specific CTL responses detected in Tg HLA-A2 mice using Gp120-specific PE-HLA-A2/Gp120 peptide (KLTPLCVTL) tetramer staining by flow cytometry. These Gp120-specific CTLs are capable of further differentiating into functional effectors with killing activity to Gp120 peptide-pulsed splenocytes in vivo. In addition, Gp120-Texo vaccine also induces Gp120-specific preventive, therapeutic (for 6 day tumor lung metastasis) and CD4(+) T cell-independent long-term immunity against B16 melanoma BL6-10(Gp120/A2Kb) expressing both Gp120 and A2Kb (α1 and α2 domains of HLA-A2 and α3 domain of H-2K(b)) in Tg HLA-A2 mice. Taken together, the novel CD8(+) Gp120-Texo vaccine capable of stimulating efficient CD4(+) T cell-independent Gp120-specific CD8(+) CTL responses leading to therapeutic and long-term immunity in Tg HLA-A2 mice may represent a new immunotherapeutic vaccine for treatment of HIV-1 patients with CD4(+) T cell deficiency.  相似文献   

19.
《Vaccine》2015,33(32):3865-3872
Sublethal γ irradiation eliminates CD8+ T cell mediated memory responses. In this work, we explored how these memory responses could be rescued in the aftermath of such exposure. We utilized two models of CD8+ T cell mediated immunity: a mouse model of Listeria monocytogenes (LM) infection in which CD8+ T cells specific for LM expressed antigens (Listeriolysin O, LLO) can be tracked, and a murine skin graft model in which CD8+ T cells mediate rejection across a MHC class I (Dd) disparity. In the LM immunized mice, LL0 specific CD8+ T memory cells were lost on irradiation, preserved with rapid revaccination with an attenuated strain 1–3 days post-irradiation (PI), and these mice survived a subsequent wild type LM challenge. A genetic “signature of rescue” identified a group of immune-associated mRNA maintained or upregulated following irradiation and rescue. A number of these factors, including IL-36γ, dectin-2 (Clec4n), and mir101c are upregulated rapidly after exposure of mice to sublethal γ radiation alone and are sustained by early, but not later rescue. Such factors will be evaluated as potential therapeutics to replace individual vaccines for global rescue of CD8+ T memory cell responses following sublethal γ irradiation. The skin allograft model mirrored that of the LM model in that the accelerated Dd skin allograft rejection response was lost in mice exposed to sublethal γ radiation, but infusion of allogeneic Dd expressing bone marrow cells 1–4 days PI preserved the CD8+ T memory mediated accelerated rejection response, further suggesting that innate immune responses may not always be essential to rescue of CD8+ memory T cells following γ irradiation.  相似文献   

20.
《Vaccine》2019,37(32):4468-4476
In both preclinical animal studies and human clinical trials, adult females tend to develop greater adaptive immune responses than males following receipt of either viral or bacterial vaccines. While there is currently no approved malaria vaccine, several anti-sporozoite vaccines, including RTS,S/AS01 and attenuated sporozoite vaccines, are in development, but the impact of sex and age on their efficacy remains undefined. To examine sex differences in the efficacy of anti-sporozoite stage malaria vaccination, adult (10 weeks of age) or juvenile (11 days of age) male and female C3H mice were twice vaccinated with irradiated transgenic Plasmodium berghei sporozoites expressing the P. falciparum circumsporozoite (CSP) protein and 45 days post boost vaccination, mice were challenged with transgenic P. berghei via mosquito bite or intradermal challenge. Immunization with irradiated sporozoites resulted in greater protection against challenge in adult females, which was associated with greater anti-CSP antibody production and avidity, as well as greater hepatic, but not splenic, CD8+ T cell IFNƴ production in adult females than adult males. No sex differences in adaptive immune responses or protection were observed in mice vaccinated prior to puberty, suggesting a role for sex steroid hormones. Depletion of testosterone in males increased, whereas rescue of testosterone decreased, anti-CSP antibody production, the number of antigen-specific CD8+ T cells isolated from the liver, and protection following parasite challenge. Conversely, depletion of sex steroids in female mice did not alter vaccine-induced responses or protection following challenge. These data suggest that elevated testosterone concentrations in males reduce adaptive immunity and contribute to sex differences in malaria vaccine efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号