首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Vaccine》2016,34(51):6512-6517
Anthrax vaccine adsorbed (AVA, BioThrax) was recently approved by the Food and Drug Administration (FDA) for a post-exposure prophylaxis (PEP) indication in adults 18–65 years of age. The schedule is three doses administered subcutaneous (SC) at 2-week intervals (0, 2, and 4 weeks), in conjunction with a 60-day course of antimicrobials. The Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) developed an animal model to support assessment of a shortened antimicrobial PEP duration following Bacillus anthracis exposure. A nonhuman primate (NHP) study was completed to evaluate the efficacy of a two dose anthrax vaccine absorbed (AVA) schedule (0, 2 weeks) aerosol challenged with high levels of B. anthracis spores at week 4– the time point at which humans would receive the third vaccination of the approved PEP schedule. Here we use logistic regression models to combine the survival data from the NHP study along with serum anthrax lethal toxin neutralizing activity (TNA) and anti-PA IgG measured by enzyme linked immunosorbent assay (ELISA) data to perform a cross-species analysis to estimate survival probabilities in vaccinated human populations at this time interval (week 4 of the PEP schedule). The bridging analysis demonstrated that high levels of NHP protection also yield high predicted probability of human survival just 2 weeks after the second dose of vaccine with the full or half antigen dose regimen. The absolute difference in probability of human survival between the full and half antigen dose was estimated to be at most approximately 20%, indicating that more investigation of the half-antigen dose for vaccine dose sparing strategies may be warranted.  相似文献   

2.
The anthrax vaccine candidate AV7909 is being developed as a next-generation vaccine for post-exposure prophylaxis (PEP) against inhalational anthrax. In clinical studies, two vaccinations with AV7909 administered either two or four weeks apart induced an enhanced immune response compared to BioThrax® (Anthrax Vaccine Adsorbed) (AVA). Anthrax toxin-neutralizing antibody (TNA) levels on Day 70 following initial vaccination that were associated with protection of animals exposed to inhalational anthrax were previously reported for the 0, 4-week AV7909 vaccination regimen. The current study shows that a 0, 2-week AV7909 vaccination regimen protected guinea pigs (GPs) and nonhuman primates (NHPs) against a lethal inhalational anthrax challenge on Days 28 and 70 after the first immunization. An earlier induction of protective TNA levels using a 0, 2-week AV7909 vaccination regimen may provide benefit over the currently approved AVA PEP 0, 2, and 4-week vaccination regimen.  相似文献   

3.
《Vaccine》2017,35(37):4952-4959
The anthrax vaccine candidate AV7909 is being developed as a next generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the Anthrax Vaccine Adsorbed (AVA, BioThrax®) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. The studies described here provide initial information on AV7909-induced toxin-neutralizing antibody (TNA) levels associated with the protection of animals from lethal Bacillus anthracis challenge. Guinea pigs or nonhuman primates (NHPs) were immunized on Days 0 and 28 with various dilutions of AV7909, AVA or a saline or Alhydrogel + CPG 7909 control. Animals were challenged via the inhalational route with a lethal dose of aerosolized B. anthracis (Ames strain) spores and observed for clinical signs of disease and mortality. The relationship between pre-challenge serum TNA levels and survival following challenge was determined in order to calculate a threshold TNA level associated with protection. Immunisation with AV7909 induced a rapid, highly protective TNA response in guinea pigs and NHPs. Surprisingly, the TNA threshold associated with a 70% probability of survival for AV7909 immunized animals was substantially lower than the threshold which has been established for the licensed AVA vaccine. The results of this study suggest that the TNA threshold of protection against anthrax could be modified by the addition of an immune stimulant such as CPG 7909 and that the TNA levels associated with protection may be vaccine-specific.  相似文献   

4.
《Vaccine》2022,40(42):6163-6178
We undertook a Phase 4 clinical trial to assess the effect of time interval between booster doses on serological responses to AVP. The primary objective was to evaluate responses to a single booster dose in two groups of healthy adults who had previously received a complete 4-dose primary course. Group A had received doses on schedule while Group B had not had one for ≥2 years. Secondary objectives were to evaluate the safety and tolerability of AVP booster doses, and to gain information on correlates of protection to aid future anthrax vaccine development. Blood samples were taken on Day 1 before dosing, and on Days 8, 15, 29 and 120, to measure Toxin Neutralisation Assay (TNA) NF50 values and concentrations of IgG antibodies against Protective Antigen (PA), Lethal Factor (LF) and Edema Factor (EF) by ELISA.For each serological parameter, fold changes from baseline following the trial AVP dose were greater in Group B than Group A at every time-point studied. Peak responses correlated positively with time since last AVP dose (highest values being observed after intervals of ≥10 years), and negatively with number of previous doses (highest values occurring in individuals who had received a primary course only). In 2017, having reviewed these results, the Joint Committee on Vaccination and Immunisation (JCVI) updated UK anthrax vaccination guidelines, extending the interval between routine AVP boosters from one to 10 years.Booster doses of AVP induce significant IgG responses against the three anthrax toxin components, particularly PA and LF. Similarly high responses were observed in TNA, a recognised surrogate for anthrax vaccine efficacy. Analysis of the 596 TNA results showed that anti-PA and anti-LF IgG make substantial independent contributions to neutralisation of anthrax lethal toxin. AVP may therefore have advantages over anthrax vaccines that depend on generating immunity to PA alone.  相似文献   

5.
《Vaccine》2015,33(31):3709-3716
Anthrax Vaccine Adsorbed (AVA, BioThrax®) is approved for use in humans as a priming series of 3 intramuscular (i.m.) injections (0, 1, 6 months; 3-IM) with boosters at 12 and 18 months, and annually thereafter for those at continued risk of infection. A reduction in AVA booster frequency would lessen the burden of vaccination, reduce the cumulative frequency of vaccine associated adverse events and potentially expand vaccine coverage by requiring fewer doses per schedule. Because human inhalation anthrax studies are neither feasible nor ethical, AVA efficacy estimates are determined using cross-species bridging of immune correlates of protection (COP) identified in animal models. We have previously reported that the AVA 3-IM priming series provided high levels of protection in non-human primates (NHP) against inhalation anthrax for up to 4 years after the first vaccination. Penalized logistic regressions of those NHP immunological data identified that anti-protective antigen (anti-PA) IgG concentration measured just prior to infectious challenge was the most accurate single COP.In the present analysis, cross-species logistic regression models of this COP were used to predict probability of survival during a 43 month study in humans receiving the current 3-dose priming and 4 boosters (12, 18, 30 and 42 months; 7-IM) and reduced schedules with boosters at months 18 and 42 only (5-IM), or at month 42 only (4-IM). All models predicted high survival probabilities for the reduced schedules from 7 to 43 months. The predicted survival probabilities for the reduced schedules were 86.8% (4-IM) and 95.8% (5-IM) at month 42 when antibody levels were lowest. The data indicated that 4-IM and 5-IM are both viable alternatives to the current AVA pre-exposure prophylaxis schedule.  相似文献   

6.
Anthrax vaccine adsorbed (AVA), an effective countermeasure against anthrax, is administered as six subcutaneous (SQ) doses over 18 months. To optimize the vaccination schedule and route of administration, we performed a prospective pilot study comparing the use of fewer AVA doses administered intramuscularly (IM) or SQ with the current schedule and route. We enrolled 173 volunteers, randomized to seven groups, who were given AVA once IM or SQ; two doses, 2 or 4 weeks apart, IM or SQ; or six doses at 0, 2, 4 weeks and 6, 12, and 18 months (control group, licensed schedule and route). IM administration of AVA was associated with fewer injection site reactions than SQ administration. Following the first SQ dose of AVA, compared to males, females had a significantly higher rate of injection site reactions such as erythema, induration and subcutaneous nodules (P<0.001). Reaction rates decreased with a longer dose interval between the first two doses. The peak anti-PA IgG antibody response of subjects given two doses of AVA 4 weeks apart IM or SQ was comparable to that seen among subjects who received three doses of AVA at 2-week intervals. The IM route of administering this aluminum hydroxide adsorbed vaccine is safe and has comparable peak anti-PA IgG antibody levels when two doses are administered 4 weeks apart compared to the licensed initial dose schedule of three doses administered 2 weeks apart. A large pivotal study is being planned by the Centers for Disease Control and Prevention to confirm these results.  相似文献   

7.
Gorse GJ  Keitel W  Keyserling H  Taylor DN  Lock M  Alves K  Kenner J  Deans L  Gurwith M 《Vaccine》2006,24(33-34):5950-5959
BACKGROUND: We report the results of a phase I dose escalation, safety and immunogenicity trial of a new recombinant protective antigen (rPA102) anthrax vaccine. METHODS: Hundred healthy volunteers were randomized in a 4:1 ratio to receive intramuscular doses of rPA102 in the following formulations: 5, 25, 50, or 75 microg of rPA102 in 82.5 microg aluminum hydroxide adjuvant at 0, 4, and 8 weeks; or the US licensed Anthrax Vaccine Adsorbed (AVA) at weeks 0 and 4. FINDINGS: Local reactogenicity (mostly pain) was more common with AVA than with rPA102 following the first (94.7% versus 44.4%; p < 0.001) and the second (84.2% versus 35.4%; p < 0.001) vaccinations. Systemic reactogenicity (mostly headache) was more common among rPA102 vaccinees, but only following the first vaccination (49.4% versus 15.8%; p = 0.025). A dose-response relationship for anti-PA antibodies was present after the 2nd and 3rd vaccinations. Two weeks following the 2nd vaccination, the geometric mean titers (GMT) for lethal toxin neutralization activity (TNA), for the 5, 25, 50 and 75 microg rPA102 and AVA groups were 38.6, 75.4, 373.9, 515.3, and 855.2, respectively. The geometric mean concentrations (GMC) measured by anti-PA IgG ELISA were 3.7, 11.5, 25.9, 44.1, and 171.6, respectively. Two weeks following the 3rd vaccination, TNA GMTs for the four rPA102 groups, were: 134.7, 719.7, 2116.6, 2422.4; and ELISA GMCs were: 22.9, 104.7, 196.4, and 262.6, respectively. INTERPRETATION: No clinically serious or dose-related toxicity or reactogenicity was observed. The TNA response after two injections of the 75 microg dose of rPA102 was similar to the response after two injections of AVA. The third rPA102 vaccination substantially increased the antibody response.  相似文献   

8.
Whether to restart or continue the series when anthrax vaccine doses are missed is a frequent medical management problem. We applied the noninferiority analysis model to this prospective study comparing the Bacillus anthracis protective antigen (PA) IgG antibody response and lethal toxin neutralization activity at day 28 to the anthrax vaccine adsorbed (AVA) (Biothrax®) administered on schedule or delayed. A total of 600 volunteers were enrolled: 354 in the on-schedule cohort; 246 in the delayed cohort. Differences were noted in immune responses between cohorts (p < 0.0001) and among the racial categories (p < 0.0001). Controlling for covariates, the delayed cohort was non-inferior to the on-schedule cohort for the rate of 4-fold rise in both anti-PA IgG concentration (p < 0.0001) and TNA ED50 titers (p < 0.0001); as well as the mean log10-transformed anti-PA IgG concentration (p < 0.0001) and the mean log10-transformed TNA ED50 titers (p < 0.0001). Providing a missed AVA dose after a delay as long as 5–7 years, elicits anti-PA IgG antibody and TNA ED50 responses that are robust and non-inferior to the responses observed when the 6-month dose is given on-schedule. These important data suggest it is not necessary to restart the series when doses of the anthrax vaccine are delayed as long as 5 or more years.  相似文献   

9.
《Vaccine》2020,38(10):2307-2314
A next-generation anthrax vaccine candidate, AV7909, is being developed for post-exposure prophylaxis (PEP) of inhalational anthrax in combination with the recommended course of antimicrobial therapy. Clinical efficacy studies of anthrax countermeasures in humans are not ethical or feasible, therefore, licensure of AV7909 for PEP is being pursued under the US Food and Drug Administration (FDA) Animal Rule, which requires that evidence of effectiveness be demonstrated in an animal model of anthrax, where results of studies in such a model can establish reasonable likelihood of AV7909 to produce clinical benefit in humans. Initial development of a PEP model for inhalational anthrax included evaluation of post-exposure ciprofloxacin pharmacokinetics (PK), tolerability and survival in guinea pigs treated with various ciprofloxacin dosing regimens. Three times per day (TID) intraperitoneal (IP) dosing with 7.5 mg/kg of ciprofloxacin initiated 1 day following inhalational anthrax challenge and continued for 14 days was identified as a well tolerated partially curative ciprofloxacin treatment regimen. The added benefit of AV7909 vaccination was evaluated in guinea pigs given the partially curative ciprofloxacin treatment regimen. Groups of ciprofloxacin-treated guinea pigs were vaccinated.1 and 8 days post-challenge with serial dilutions of AV7909, a 1:16 dilution of AVA, or normal saline. A group of untreated guinea pigs was included as a positive control to confirm lethal B. anthracis exposure. Post-exposure vaccination with the AV7909 anthrax vaccine candidate administered in combination with the partially curative ciprofloxacin treatment significantly increased survival of guinea pigs compared to ciprofloxacin treatment alone. These results suggest that the developed model can be useful in demonstrating added value of the vaccine for PEP.  相似文献   

10.
In vitro correlate of immunity in a rabbit model of inhalational anthrax   总被引:12,自引:0,他引:12  
A serological correlate of vaccine-induced immunity was identified in the rabbit model of inhalational anthrax. Animals were inoculated intramuscularly at 0 and 4 weeks with varying doses of Anthrax Vaccine Adsorbed (AVA) ranging from a human dose to a 1:256 dilution in phosphate-buffered saline (PBS). At 6 and 10 weeks, both the quantitative anti-protective antigen (PA) IgG ELISA and the toxin-neutralizing antibody (TNA) assays were used to measure antibody levels to PA. Rabbits were aerosol-challenged at 10 weeks with a lethal dose (84–133 LD50) of Bacillus anthracis spores. All the rabbits that received the undiluted and 1:4 dilution of vaccine survived, whereas those receiving the higher dilutions of vaccine (1:16, 1:64 and 1:256) had deaths in their groups. Results showed that antibody levels to PA at both 6 and 10 weeks were significant (P<0.0001) predictors of survival.  相似文献   

11.

Background

After the Department of Defense implemented a mandatory anthrax vaccination program in 1998 concerns were raised about potential long-term safety effects of the current anthrax vaccine. The CDC multicenter, randomized, double-blind, placebo-controlled Anthrax Vaccine Adsorbed (AVA) Human Clinical Trial to evaluate route change and dose reduction collected data on participants’ quality of life. Our objective is to assess the association between receipt of AVA and changes in health-related quality of life, as measured by the SF-36 health survey (Medical Outcomes Trust, Boston, MA), over 42 months after vaccination.

Methods

1562 trial participants completed SF-36v2 health surveys at 0, 12, 18, 30 and 42 months. Physical and mental summary scores were obtained from the survey results. We used Generalized Estimating Equations (GEE) analyses to assess the association between physical and mental score difference from baseline and seven study groups receiving either AVA at each dose, saline placebo at each dose, or a reduced AVA schedule substituting saline placebo for some doses.

Results

Overall, mean physical and mental scores tended to decrease after baseline. However, we found no evidence that the score difference from baseline changed significantly differently between the seven study groups.

Conclusions

These results do not favor an association between receipt of AVA and an altered health-related quality of life over a 42-month period.  相似文献   

12.
We describe the Bacillus anthracis protective antigen IgG antibody response and the B. anthracis lethal toxin neutralization activity to a delayed dose of anthrax vaccine adsorbed (AVA, BioThrax®) using validated assays. 373 individuals received 1, 2, or 3 priming doses, 18–24 months afterward, they received a delayed dose of AVA. Overall, 23.6% of subjects showed detectable anti-PA IgG before the boost, compared to 99.2% (P < 0.0001) 28 days after the boost. Geometric mean anti-PA IgG concentration (GMC) was 1.66 μg/mL before and 887.82 μg/mL after the boost (P < 0.0001). The proportion of individuals with four-fold increase in GMC following the boost ranged from 93.8% to 100%. Robust anti-PA IgG levels and B. anthracis lethal toxin neutralization activity are induced when an AVA dose is delayed as long as two years. These data support continuing with the vaccination schedule when a dose is delayed as long as two years rather than restarting the series.  相似文献   

13.
We evaluated the prevalence and concentration of serum antibodies 18-24 months after primary inoculation with anthrax and botulinum vaccines, and assessed the reactogenicity and immunogenicity of a significantly delayed booster dose of these vaccines. Five hundred and eight male active-duty military personnel received one, two or three inoculations with anthrax vaccine and/or botulinum toxoid in 1990/1991 in preparation for Operations Desert Shield/Desert Storm. Subjects were vaccinated with the licensed anthrax vaccine, adsorbed (AVA) and pentavalent (ABCDE) botulinum toxoid (PBT) BB-IND 3723. Anthrax protective antigen (PA) IgG antibody was measured in serum using an immunocapture enzyme-linked immunosorbent assay (ELISA). A mouse neutralization test was used to determine the titer of Clostridium botulinum type A antitoxin in serum samples. The prevalence of anti-PA IgG was 30% in individuals 18-24 months after priming with one, two or three doses of AVA. After boosting, 99% of volunteers had detectable anti-PA IgG; only two individuals failed to respond. The prevalence of antibodies against botulinum toxin type A was 28% 18-24 months after initial priming. Following boosting, 99% of volunteers had serum titers >0.02IU/ml, and 97% responded with titers > or =0.25IU/ml.Systemic reactions to booster vaccinations could not be specifically ascribed to one or the other vaccine, but were generally mild and of brief duration. Forty-five percent of volunteers reported one or more systemic reactions over the course of 7 days. Injection site reactions of any kind occurred in 25% of AVA recipients and in 16% of PBT recipients; persistence of local reactions beyond 7 days was infrequent.While the kinetics and durability of immune responses must be studied, these findings suggest that booster doses of anthrax vaccine and botulinum toxoid sufficient to stimulate a robust anamnestic response may be given at times distant from receipt of the primary inoculations.  相似文献   

14.
《Vaccine》2019,37(43):6356-6361
The anthrax vaccine candidate AV7909 is being developed as a next-generation vaccine for a post-exposure prophylaxis (PEP) indication against anthrax. AV7909 consists of the anthrax vaccine adsorbed (AVA) (Emergent BioSolutions Inc., Lansing, MI) bulk drug substance adjuvanted with the immunostimulatory oligodeoxynucleotide (ODN) compound, CPG 7909. The addition of CPG 7909 to AVA enhances both the magnitude and the kinetics of antibody responses in animals and human subjects, making AV7909 a suitable next-generation vaccine for use in a PEP setting. Emergent has produced a thermostable (lyophilized) formulation of AV7909 vaccine utilizing drying technology. The purpose of the study described here was to assess the immunogenicity and efficacy of the lyophilized formulation of the AV7909 vaccine candidate as compared with the liquid formulation in the guinea pig general-use prophylaxis (GUP) model. The study also provides initial information on the relationship between the immune response induced by the thermostable formulation of the vaccine, as measured by the toxin neutralization assay (TNA), and animal survival following lethal anthrax aerosol challenge. Results demonstrated that there were no significant differences in the immunogenicity or efficacy of lyophilized AV7909 against lethal anthrax spore aerosol challenge in the guinea pig model as compared to liquid AV7909. For both vaccine formulations, logistic regression modeling showed that the probability of survival increased as the pre-challenge antibody levels increased.  相似文献   

15.
《Vaccine》2021,39(42):6333-6339
Px563L is a next-generation anthrax vaccine candidate consisting of a protein subunit, mutant recombinant protective antigen SNKE167-ΔFF-315-E308D (mrPA), and liposome-embedded monophosphoryl lipid A (MPLA) adjuvant. Px563L has the potential to deliver an improved safety and immunogenicity profile relative to the currently licensed vaccine, which is produced from filtered B. anthracis culture supernatants.We conducted a Phase 1, double–blind, placebo–controlled, dose–escalation study in 54 healthy subjects to evaluate Px563L at 3 dose levels of mrPA (10, 50, and 80 mcg). For each dose level, 18 subjects were randomized in an 8:8:2 ratio to Px563L (mrPA with adjuvant), RPA563 (mrPA only) or placebo (saline). Each subject received an intramuscular (IM) injection on Day 0 and Day 28. Primary safety and immunogenicity analysis was conducted after all subjects completed the Day 70 visit, a duration deemed clinically relevant for post-exposure prophylaxis. Long-term safety was assessed through Day 393.Vaccinations with Px563L at all dose levels were well-tolerated. There were no serious adverse events or adverse events (AE) leading to early withdrawal. In all treatment groups, most AEs were due to injection site reactions, and all AEs at the 10 and 50 mcg dose levels were mild. For the primary immunogenicity endpoint (protective toxin neutralizing antibody 50% neutralization factor [TNA NF50]), titers started to increase significantly after the second administration of Px563L, from Day 35 through Day 70, with the geometric mean and lower bound of the 95% confidence interval exceeding 0.56, a threshold correlating with significant survival in animal models of anthrax exposure.In conclusion, Px563L, administered as two IM doses 28 days apart, was well-tolerated and elicited a protective antibody response starting at seven days after the second vaccination. These findings support the continued development of Px563L in a two-dose regimen for anthrax post-exposure prophylaxis. ClinicalTrials.gov identifier NCT02655549.  相似文献   

16.
The antibody profile during and after the six-dose primary vaccination series with anthrax vaccine adsorbed (AVA, Biothrax) was characterized in 86 human volunteers. Ninety-three percent of recipients developed IgG antibodies to Bacillus anthracis protective antigen (PA) after two doses, and 100% were seropositive after dose #3. Geometric mean concentrations (GMC) of IgG to PA measured before and after each dose were significantly lower after injection #3 (peak GMC=146.65 microg/mL, trough GMC=15.16 microg/mL) than after injections #4 (peak GMC=430.46 microg/mL, trough GMC=94.57 microg/mL), #5 (peak GMC=415.05 microg/mL, trough GMC=81.94 microg/mL), or #6 (peak GMC=401.16 microg/mL, trough GMC=96.19 microg/mL) (por=0.7923 for each). Decay rates for IgG to PA were significantly faster after injection #3 (half life [T1/2]=39.21 days) than after injections #4 (T1/2=72.03 days), #5 (T1/2=70.14 days), and #6 (T1/2=74.59 days) (p相似文献   

17.

Background

This study was conducted to support licensure of a post-exposure prophylaxis indication for BioThrax® (anthrax vaccine adsorbed) concurrent with antimicrobials for individuals exposed to aerosolized anthrax spores.

Methods

The immunogenicity and safety of a three-dose regimen (0, 2, and 4 weeks) of BioThrax administered subcutaneously (SC) were evaluated in 200 healthy adults 18–65 years of age. Toxin-neutralizing antibody (TNA) was expressed as 50% neutralization factor (NF50) at predetermined time points through Day 100. Safety was assessed by physical examinations, vital signs, solicited local and systemic reactions using web-enabled subject diaries, in-clinic solicited reactions, and unsolicited adverse events (AEs).

Results

The prospectively defined success criteria for the primary and secondary endpoints were met. This required the lower bound of the 95% confidence interval (CI) for the proportion of subjects with a TNA NF50 value to be greater than 40% at Day 63 (primary), Day 70 (secondary) and Days 63–100 (secondary). At Day 63, 71% of subjects achieved a TNA NF50 threshold value ≥0.56, with a lower bound of the 95% CI ≥40% (64%). The percentage of subjects achieving a TNA NF50 threshold value ≥0.56 at Day 70 was 58% (95% CI: 50%, 65%), and the mean value on Days 63–100 (inclusive) was 53% (95% CI: 41%, 55%). The threshold TNA NF50 value of 0.56 was developed from previous rabbit challenge and human immunogenicity studies. No related serious AEs occurred during the study, and no subjects withdrew from the study because of an AE. Tenderness and pain at the injection site were recorded most often in subject diaries following vaccination.

Conclusions

BioThrax, administered as three SC doses at 0, 2, and 4 weeks, was well tolerated. The prospectively defined success criteria for TNA levels on Days 63, 70, and 63–100 were achieved.  相似文献   

18.
Concerns about the potential use of anthrax as a biologic weapon prompted the U.S. Department of Defense (DoD) to announce on December 15, 1997, anthrax vaccination of all U.S. military personnel. This effort is coordinated by the Anthrax Vaccine Immunization Program (AVIP). AVIP plans a phased vaccination process to achieve total force protection against anthrax by 2004. The current phase of implementation includes vaccination of all service members and mission-essential DoD civilian employees assigned or deployed to high-threat areas. On the basis of program monitoring, as of April 12, 2000, 425,976 service members had received 1,620,793 doses of anthrax vaccine adsorbed (AVA) (Bioport, Inc., Lansing, Michigan). Some service members have cited concerns about vaccine safety and efficacy in their decision to refuse vaccination, despite the possibility of administrative or disciplinary actions. To assess anthrax vaccination safety, DoD has conducted surveys of vaccinated personnel. This report describes three completed or ongoing surveys. The findings indicate that rates of local reactions were higher in women than men and that no patterns of unexpected local or systemic adverse events have been identified.  相似文献   

19.
The efficacy of a licensed human anthrax vaccine (Anthrax Vaccine Adsorbed (AVA)) was tested in guinea pigs, rabbits, and rhesus macaques against spore challenge by Bacillus anthracis isolates of diverse geographical origin. Initially, groups of Hartley guinea pigs were vaccinated at 0 and 4 weeks with AVA, then challenged intramuscularly at 10 weeks with spores from 33 isolates of B. anthracis. Survival among the vaccinated groups varied from 6 to 100%, although there were no differences in mean time to death among the groups. There was no correlation between isolate virulence and variable number tandem repeat category or protective antigen genotype identified. New Zealand white rabbits were then vaccinated with AVA at 0 and 4 weeks, and challenged at 10 weeks by aerosol with spores from six of the isolates that were highly virulent in vaccinated guinea pigs. AVA completely protected the rabbits from four of the isolates, and protected 90% of the animals from the other two isolates. Subsequently, two of these six isolates were then used to challenge rhesus macaques, previously vaccinated with AVA at 0 and 4 weeks, and challenged at 10 weeks by aerosol. AVA protected 80 and 100% of the animals from these two isolates. These studies demonstrated that, although AVA confers variable protection against different B. anthracis isolates in guinea pigs, it is highly protective against these same isolates in both rabbits and rhesus macaques.  相似文献   

20.
《Vaccine》2020,38(7):1586-1588
The protective efficacy of human sera from vaccinated individuals with a new recombinant protective antigen anthrax vaccine (GC1109) against lethal spore challenge was evaluated in a mouse model. Eighteen human sera were selected from the vaccinated individuals based on their toxin neutralizing assay (TNA) titer (ED50 of 55 to 668). The selected sera were diluted and passively transferred to A/J mice and the mice were subsequently challenged with 100 × LD50 of Bacillus anthracis Sterne spores. The correlation between the survival rate of passively immunized mice and the TNA ED50 of transferred sera was presented (r = 0.873, P-value < 0.001). The estimated TNA titer for 50% survival rate against lethal challenge was 197 (95% confidence interval of 149 and 260). The result suggest that GC1109 is protective against exposure to B. anthracis and the TNA titer of vaccinated serum can be an indicator for protective efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号