首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This retrospective study incorporates a six years, six months (January 2000-June 2006) laboratory data comprising 258 isolates of Salmonella. Cultures were identified by standard methods. Salmonella enterica serotype Typhi (S.Typhi) was the more frequent serotype isolated i.e., 61.62% with the remaining 38.37% being Salmonella enterica serotype Paratyphi A (S. Paratyphi A). There was emergence of S. Paratyphi A as the predominant serotype in 2003-2004 with resurgence of serotype Typhi thereon. A total of 66.27% isolates were resistant to one or more antibiotics. MDR S. Typhi was 10.69% and while 13.13% were MDR S. Paratyphi A. There was decrease in resistance to ampicillin, cotrimoxazole in 2004 and nalidixic acid beyond 2005 and increase in resistance to cefuroxime. We also documented a decrease in resistance to ciprofloxacin after 2005.  相似文献   

2.
Purpose: The main purpose of this study was to establish ‘Antimicrobial Resistance Surveillance Network’ in India and to monitor the antimicrobial susceptibility profile of clinical isolates to establish a national network across the country for monitoring antimicrobial resistance in Salmonella. Materials and Methods: This study was conducted at All India Institute of Medical Sciences, nodal centre with clinical isolates of Salmonellae collected from four centres across India, which included Christian Medical College, Vellore; Postgraduate Institute of Medical Education and Research, Chandigarh and Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry. Total 20% of the selected strains from each centre were characterised for molecular studies which included molecular mechanism of fluoroquinolones resistance and multiple locus sequence type. Results: A total of 622 Salmonellae were received from all centres during January 2014 to December 2015. Out of these 622 isolates, 380 were Salmonella Typhi, 162 were Salmonella Paratyphi A and 7 were S. Paratyphi B isolated from blood and 73 were other Salmonella serotypes. Multiple drug resistance (resistant to ampicillin, chloramphenicol and co-trimoxazole) was less than 3% in S. Typhi. In S. Paratyphi A, chloramphenicol and co-trimoxazole susceptibility was 100% and 99%, respectively, whereas ampicillin susceptibility was 86% (139/161). Ciprofloxacin and nalidixic acid susceptibility was 15% (24/162) and 1% (2/162) from all centres. S. Paratyphi B was isolated from 7 patients. All isolates were third-generation cephalosporin sensitive. The most common mutations found were at codon 83 and at codon 87. We did not find any mutation in acrR gene. Efflux pump and qnr genes were not found in any isolate tested. All 86 S. Typhi isolates clustered into two sequence types - ST1 and ST2. Out of these 86 isolates, 70 S. Typhi were ST1 and 16 were ST2. All S. Paratyphi A was clustered in ST85 and ST129 on the basis of mutation in sucA gene. Out of 27 S. Paratyphi A, 13 were grouped into ST85 and 14 were grouped into ST129. Conclusions: Enteric fever is one such infection which poses challenges in antimicrobial resistance. Hence, continuous surveillance is important to track bacterial resistance and to treat infections in a cost-effective manner.  相似文献   

3.
Purpose: The present study was undertaken to analyse the trend in prevalence of culture-positive typhoid fever during the last decade and to determine antimicrobial susceptibility profile of Salmonella Typhi and Salmonella Paratyphi A isolated from patients of enteric fever presenting to our hospital. Methods: All the culture-positive enteric fever cases during 2005–2016 presenting to our Hospital were included in the study. Antimicrobial susceptibility was done against chloramphenicol, amoxicillin, co-trimoxazole, ciprofloxacin, ofloxacin, levofloxacin, pefloxacin, ceftriaxone and azithromycin as per corresponding CLSI guidelines for each year. We also analysed the proportion of culture positivity during 1993–2016 in light of the antibiotic consumption data from published literature. Results: A total of 1066 strains-S. Typhi (772) and S. Paratyphi A (294) were isolated from the blood cultures during the study. A maximum number of cases were found in July–September. Antimicrobial susceptibility for chloramphenicol, amoxicillin and co-trimoxazole was found to be 87.9%, 75.5%, 87.3% for S. Typhi and 94.2%, 90.1% and 94.2% for S. Paratyphi A, respectively. Ciprofloxacin, ofloxacin and levofloxacin susceptibility were 71.3%, 70.8% and 70.9% for S. Typhi and 58.1%, 57.4% and 57.1% for S. Paratyphi A, respectively. Azithromycin susceptibility was 98.9% in S. Typhi. Although susceptibility to ceftriaxone and cefixime was 100% in our isolates, there is a continuous increase in ceftriaxone minimum inhibitory concentration (MIC)50 and MIC90 values over the time. The proportion of blood culture-positive cases during 1993–2016 ranged from a minimum of 0.0006 in 2014 to a maximum of 0.0087 in 1999. Conclusion: We found that the most common etiological agent of enteric fever is S. Typhi causing the majority of cases from July to October in our region. MIC to ceftriaxone in typhoidal salmonellae is creeping towards resistance and more data are needed to understand the azithromycin susceptibility.  相似文献   

4.
Purpose: Enteric fever is endemic in India with Salmonella Typhi being the major causative agent. Antibiotic therapy constitutes the mainstay of management. The present study was undertaken to find the susceptibility profile of Salmonella enterica var Typhi (S. Typhi) blood isolates in a tertiary care hospital between January 2001 and December 2012. Materials and Methods: A retrospective analysis of laboratory records was carried out. Conventional blood culture method was used until 2009; from January 2010 onwards BACTEC 9240 system has been in use. Salmonella were confirmed by serotyping using group and type specific antisera. Antibiotic susceptibility was performed using the disk diffusion method. In addition 116 isolates were subjected to minimum inhibitory concentration testing for chloramphenicol, ciprofloxacin, amoxicillin and nalidixic acid (NA) using agar dilution and for ceftriaxone and azithromycin using E-strips (Biomerieux). Result: A total of 1016 typhoidal salmonellae were obtained. The predominant serotype obtained was S. Typhi (852, 83.8%) followed by Salmonella enterica var Paratyphi A (164, 16.2%). We observed a re-emergence of susceptibility to first line antibiotics and a notable decline in multidrug resistant (MDR) strains. We also found all recent isolates resistant to NA and susceptible to third generation cephalosporins and 84.5% of isolates having decreasing ciprofloxacin susceptibility using revised criteria as per Clinical and Laboratory Standards Institute 2012 guidelines. Conclusion: There has been re-emergence of susceptibility to first line antibiotics and a notable decline in MDR strains of S. Typhi. We have a very high resistance to NA and decreasing susceptibility to ciprofloxacin. Third generation cephalosporins and azithromycin seem to be effective therapeutic options. Judicious use of these antibiotics is mandatory to prevent emergence of resistant strains.  相似文献   

5.
Purpose: Recent reports indicate decreased susceptibility of S. typhi to fluoroquinolones, especially ciprofloxacin. Chloramphenicol has been suggested as first line therapy of enteric fever in many studies. This is a prospective study that describes the trends of antimicrobial susceptibility of S. typhi and S. paratyphi A causing bacteraemia in children and reports therapeutic failure to ciprofloxacin and evaluates the possible use of chloramphenicol, ampicillin, ciprofloxacin and third generation cephalosporins as first line therapy in the treatment of enteric fever in children. Methods: The present study was conducted from April 2004 to March 2005 in a superspeciality children hospital at New Delhi. A total of 56 S. typhi and five S. paratyphi A isolates were obtained among the 673 blood cultures performed. Antimicrobial testing was done using disk diffusion technique (NCCLS method) for 13 antimicrobials and MICs were calculated for ampicillin, ciprofloxacin, chloramphenicol and cefotaxime. Analysis of data was done using WHONET software. Results: All 56 isolates of S. typhi were sensitive to amoxycillin+clavulanate, gentamicin, cefixime, cefotaxime and ceftazidime. Multidrug resistance (MDR, resistance to three drugs) was seen in 22 cases (39%) and resistance to five drugs was seen in 12 cases (21%). Only two isolates were resistant to chloramphenicol (3%). MIC90 for ampicillin, chloramphenicol, ciprofloxacin and cefotaxime were 1.0 μg/ml, 4.0 μg/ml, 64 μg/ml and 0.125 μg/ml respectively. All S. paratyphi A isolates were sensitive to ampicillin and chloramphenicol and resistant to nalidixic acid.MIC distribution data for chloramphenicol revealed elevated MIC but still in susceptible range. Conclusions: There is an urgent need for further clinical studies to evaluate response to chloramphenicol in such cases. Antimicrobial susceptibility data and MIC distribution favour use of ampicillin as a drug of choice for the treatment of enteric fever. Third generation cephalosporins are also useful but their use should be restricted for complicated cases.  相似文献   

6.
Background: Fluoroquinolones are the drugs extensively employed for the treatment of Salmonella infections. Over the couple of decades that have elapsed since the introduction of fluoroquinolones, resistance to these agents by Enterobacteriaceae family members has become common and widespread. Although fluoroquinolone resistance is mediated by genomic DNA (deoxyribonucleic acid) as well as plasmid DNA, the plasmid-mediated quinolone resistance (PMQR) facilitates higher level resistance by interacting with genomic mechanism and is capable of horizontal spread. Materials and Methods: During a period of 1-year, 63 typhoidal Salmonellae were isolated from 14,050 blood cultures and one parietal wall abscess. 36 (56.25%) were Salmonella Typhi and 27 (42%) were Salmonella Paratyphi A. They were all screened for resistance by the disc diffusion method and their minimum inhibitory concentrations were determined using agar dilution, broth dilution and E-strip method. Ciprofloxacin resistant isolates were screened for PMQR determinants by polymerase chain reaction assay. Results: All the 63 isolates were resistant to nalidixic acid. Among the 36 S. Typhi isolates 20 were resistant to ciprofloxacin, of which 14 carried the plasmid gene qnrB and one carried the aac(6’)-Ib-cr gene. qnrA and qnrS genes were not detected. Ciprofloxacin resistance was not seen in any of the S. Paratyphi A isolates. Conclusion: The antibiotic sensitivity pattern of typhoidal Salmonellae shows an increasing trend of PMQR. The allele B of qnr gene was found to be the predominant cause of PMQR in this study.  相似文献   

7.
Enteric fever is an invasive life-threatening systemic disease caused by the Salmonella enterica human-adapted serovars Typhi and Paratyphi. Increasing incidence of infections with Salmonella enterica serovar Paratyphi A and the spreading of its antibiotic-resistant derivates pose a significant health concern in some areas of the world. Herein, we describe a molecular and phenotypic characterization of an S. Paratyphi A strain accounted for a recent paratyphoid outbreak in Nepal that affected at least 37 travelers. Pulsed-field gel electrophoresis analysis of the outbreak isolates revealed one genetic clone (pulsotype), confirming a single infecting source. Genetic profiling of the outbreak strain demonstrated the contribution of specific bacteriophages as a prime source of genetic diversity among clinical isolates of S. Paratyphi A. Phenotypic characterization in comparison with the S. Paratyphi A ATCC 9150 reference sequenced strain showed differences in flagellar morphology and increased abilities of the outbreak strain with respect to its motility, invasion into nonphagocytic cells, intracellular multiplication, survival within macrophages, and higher induction of interleukin-8 (IL-8) secreted by host cells. Collectively, these differences suggest an enhanced virulence potential of this strain and demonstrate an interesting phenotypic variation among S. Paratyphi A isolates. In vivo profiling of 16 inflammatory cytokines in patients infected with the outbreak strain revealed a common profile of a remarkable gamma interferon (IFN-γ) induction together with elevated concentrations of tumor necrosis factor alpha (TNF-α), IL-6, IL-8, IL-10, and IL-15, but not IL-12, which was previously demonstrated as elevated in nontyphoidal Salmonella infections. This apparent profile implies a distinct immune response to paratyphoid infections.  相似文献   

8.
Typhoid fever is caused by Salmonella enterica serovar Typhi, a major public health concern in developing countries. Recently, there has been an upsurge in the occurrence of bacterial isolates that are resistant to ciprofloxacin, and the emergence of broad spectrum β-lactamases in typhoidal salmonellae constitutes a new challenge for the clinician. A total of 337 blood culture isolates of S. Typhi, isolated from Pondicherry, India, between January 2005 and December 2009, were investigated using phenotypic, molecular and serological methods. Of the 337 isolates, 74 (22%) were found to be multidrug resistant (MDR) and 264 (78%) nalidixic acid resistant (NAR). Isolates with reduced susceptibility to ciprofloxacin possessed single mutations in the gyrA gene. A high rate of resistance (8%) was found to ciprofloxacin. All isolates with a ciprofloxacin MIC ≥ 4 mg/L possessed both double mutations in the QRDR of the gyrA gene and a single mutation in the parC gene. Active efflux pump mechanisms were also found to be involved in ciprofloxacin resistance. Finally, a large number of PFGE patterns (non-clonal genotypes) were observed among the S. Typhi isolates. In conclusion, a high rate of ciprofloxacin resistance was observed in comparison to other endemic areas in blood culture isolates of S. Typhi from Pondicherry, India, with steadily increasing NAR but decreasing MDR isolations over the study period. This is most likely to be due to an increased use of ciprofloxacin as a first-line drug of choice over more traditional antimicrobial agents for the treatment of typhoid fever.  相似文献   

9.
10.
Purpose: To detect the presence of autolysin and pneumolysin genes among Streptococcus pneumoniae strains isolated from different disease entities among Indian patients. The study also attempted to determine antimicrobial susceptibility of the isolates. Materials and Methods: A total of 24 S. pneumoniae isolates were checked for the presence of lytA gene coding for autolysin and ply gene coding for pneumolysin using polymerase chain reaction (PCR). All the isolates were subjected to susceptibility testing by disc diffusion method for 10 different therapeutically relevant antibiotics. Minimum inhibition concentration (MIC) was determined using broth dilution method for ampicillin, penicillin and ciprofloxacin. Results: Eleven isolates from ocular infections and 13 isolates from different invasive diseases showed susceptibility to most of the antibiotics tested except chloramphenicol and ciprofloxacin. Fifty percentage of the isolates showed resistance to chloramphenicol and ciprofloxacin. A moderate level of resistance of 18% was noted for cefepime and ceftriaxone. Only 6% of resistance was observed for amoxicillin and ceftazidime. MIC levels ranged from 0.015 to 1 μg/mL for ampicillin and only one isolate had an MIC of 1 μg/mL. The MIC levels for penicillin ranged from 0.062 to 4 μg/mL, wherein nine isolates showed high levels of MICs ranging from 2 to 4 μg/mL. Six isolates had a very high resistance levels for ciprofloxacin with MIC ranging from 32-128 μg/mL. The presence of lytA was observed in 23 out of 24 isolates tested whereas only 17 isolates were positive for pneumolysin. Four ocular isolates and one isolate from ear infection were negative for pneumolysin. Conclusion: Emerging resistance observed for cefepime and ceftriaxone might be due their increased and frequent usage nowadays. Presence of pneumolysin appears to be more critical for pathogenesis of invasive infections than the ocular infections. However, presence of lytA gene in all the isolates signifies that irrespective of site of isolation, kind of infection caused, autolysin is an obligate necessity for this organism.  相似文献   

11.
《Immunobiology》2019,224(3):371-382
Enteric fever, caused by Salmonella enterica serovars, Typhi (S. Typhi) and Paratyphi (S. Paratyphi) is a major public health challenge for the developing nations. Globally, the disease affects ˜15-30 million individuals every year, resulting in >200,000 deaths. Multidrug-resistant S. Typhi H58 strain has emerged as the dominant circulating strain in a large part of the world and an extensively drug-resistant (XDR) subclade of the strain was recently reported. Many believe that vaccination of the susceptible populations is urgently needed and the best option to control the infection. However, the commercial live attenuated (Ty21a) vaccine is not recommended for children below six years of age while the Vi-polysaccharide-based vaccine has poor long-term efficacy against typhoid fever. Moreover, no vaccines are available against S. Paratyphi infection. Thus, a new formulation capable of providing long term protection against both the pathogens and safe for all age groups is immediately required. We show that recombinant, S. Typhi outer membrane protein STIV (rSTIV) is immunogenic in mice and elicits high serum titers of different immunoglobulin subtypes. STIV antibodies opsonize S. Typhi and S. Paratyphi A to promote antibody-dependent cellular cytotoxicity and complement-mediated lysis. Immunization with rSTIV also induces robust cell-mediated immunity, including antigen-specific T cell proliferation and cytotoxic T lymphocyte response. Finally, mice immunized with rSTIV are significantly protected against S. Typhi and S. Paratyphi A challenge, with reduced visceral bacterial load. Our results underscore the potential of rSTIV as a novel vaccine candidate for enteric fever.  相似文献   

12.
The antimicrobial trends over 6 years were studied, and the effect of revised Clinical Laboratory Standards Institute (CLSI) breakpoints (2012) for ciprofloxacin susceptibility reporting in typhoidal Salmonellae was determined. A total of 874 (95.4%) isolates were nalidixic acid-resistant (NAR). Using the CLSI 2011 guidelines (M100-S21), 585 (66.9%) isolates were ciprofloxacin susceptible. The susceptibility reduced to 11 (1.25%) isolates when interpreted using 2012 guidelines (M100-S22). Among the forty nalidixic acid susceptible (NAS) Salmonellae, susceptibility to ciprofloxacin decreased from 37 isolates (M100-S21) to 12 isolates (M100-S22). The 25 cases which appeared resistant with newer guidelines had a minimum inhibitory concentration (MIC) range between 0.125 and 0.5 μg/ml. MIC50 for the third generation cephalosporins varied between 0.125 and 0.5 μg/ml over 6 years whereas MIC90 varied with a broader range of 0.19–1 μg/ml. The gap between NAR and ciprofloxacin-resistant strains identified using 2011 guidelines has been reduced; however, it remains to be seen whether additional NAS, ciprofloxacin-resistant isolates are truly resistant to ciprofloxacin by other mechanisms of resistance.  相似文献   

13.
Invasive Salmonella infections for which improved or new vaccines are being developed include enteric fever caused by Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B and sepsis and meningitis in young children in sub-Saharan Africa caused by nontyphoidal Salmonella (NTS) serovars, particularly S. enterica serovars Typhimurium and Enteritidis. Assays are needed to measure functional antibodies elicited by the new vaccines to assess their immunogenicities and potential protective capacities. We developed in vitro assays to quantify serum bactericidal antibody (SBA) activity induced by S. Typhi, S. Paratyphi A, S. Typhimurium, and S. Enteritidis vaccines in preclinical studies. Complement from various sources was tested in assays designed to measure antibody-dependent complement-mediated killing. Serum from rabbits 3 to 4 weeks of age provided the best complement source compared to serum from pigs, goats, horses, bovine calves, or rabbits 8 to 12 weeks of age. For S. Enteritidis, S. Typhimurium, and S. Typhi SBA assays to be effective, bacteria had to be harvested at log phase. In contrast, S. Paratyphi A was equally susceptible to killing whether it was grown to the stationary or log phase. The typhoidal serovars were more susceptible to complement-mediated killing than were the nontyphoidal serovars. Lastly, the SBA endpoint titers correlated with serum IgG anti-lipopolysaccharide (LPS) titers in mice immunized with mucosally administered S. Typhimurium, S. Enteritidis, and S. Paratyphi A but not S. Typhi live attenuated vaccines. The SBA assay described here is a useful tool for measuring functional antibodies elicited by Salmonella vaccine candidates.  相似文献   

14.
Purpose: There are increasing reports on failure of clinical response to ciprofloxacin in typhoid fever despite the strain being sensitive to drug in in-vitro using standard guidelines and showing mutations in DNA gyrase. But this increased MIC and clinical failures with ciprofloxacin are not always co-related with mutations presently identified in gyrA and parC genes. This shows that there may be other mechanisms such as an active drug efflux pump responsible as has been shown in other Enterobacteriaceae. This study was carried out to determine the role of efflux pump in Salmonella Typhi isolates. Materials and Methods: Total 25 already characterized nalidixic acid sensitive and nalidixic acid resistant S. Typhi strains with different range of ciprofloxacin MIC were included to study the role of efflux pump in the presence of CCCP (efflux pump inhibitor). For genotypic characterization, the entire acrR gene was sequenced to confirm the presence of any mutation in the gene. Results: The MIC of ciprofloxacin remained same in the presence and absence of CCCP in the studied strains and no significant mutations were found in the acrR gene in any of the isolates studied. Conclusions: No role of efflux pump in ciprofloxacin resistance was found in strains studied. There is a need to explore further mechanism of ciprofloxacin resistance in Salmonella Typhi.  相似文献   

15.

Introduction

Pseudomonas aeruginosa (P. aeruginosa) is a gram-negative bacterium that continues to be a major cause of opportunistic nosocomial infections. In P. aeruginosa, several fluoroquinolones resistance mechanisms have been proposed such as mutations in the target enzymes GyrA and ParC and upregulation of efflux pump MexAB-OprM. Fluoroquinolones inhibit the target enzymes DNA gyrase and topoisomerase IV, each comprised of two subunits: GyrA and GyrB, and ParC and ParE, respectively. In addition, fluoroquinolones were blocked by overexpression of MexAB-OprM induced through mutations in the regulatory genes mexR and nalC.

Materials and methods

In this study, 44 P. aeruginosa strains were isolated from different clinical samples of burn and infection from patients in some hospitals and laboratories in Guilan, which were identified by biochemical tests. The antibiotic resistance and susceptibility of strains was determined by Kirby Bauer method and microdilution method, and then PCR-sequencing was carried out to assess mutation in several genes involved in ciprofloxacin resistance.

Results

Of 44 isolates, 14 isolates were fluoroquinolone resistant. All 14 strains were nalidixic acid resistant with MIC = 1024 μg/mL. While ciprofloxacin resistance was showed in resistant isolates with MIC to be 32–1024 μg/mL. PCR-sequencing analysis showed that all 14 fluoroquinolone resistant isolates had one or two mutations in gyrA mutation. Mutations in parC, mexR and nalC were shown in some ciprofloxacin resistant isolates. Moreover, three strains had new mutation in mexR gene (111InsC and 262-263delAG).

Conclusions

It seems that high resistance to ciprofloxacin can simultaneously be the result of mutation in several genes such as topoisomerase enzymes and negative regulatory genes implicated in the expression of efflux pump systems in Guilan Province.
  相似文献   

16.
《Mucosal immunology》2015,8(6):1349-1359
Previously we have extensively characterized Salmonella enterica serovar Typhi (S. Typhi)-specific cell-mediated immune (CMI) responses in volunteers orally immunized with the licensed Ty21a typhoid vaccine. In this study we measured Salmonella-specific multifunctional (MF) CD8+ T-cell responses to further investigate whether Ty21a elicits crossreactive CMI against S. Paratyphi A and S. Paratyphi B that also cause enteric fever. Ty21a-elicited crossreactive CMI responses against all three Salmonella serotypes were predominantly observed in CD8+ T effector/memory (TEM) and, to a lesser extent, in CD8+CD45RA+ TEM (TEMRA) subsets. These CD8+ T-cell responses were largely mediated by MF cells coproducing interferon-γ and macrophage inflammatory protein-1β and expressing CD107a with or without tumor necrosis factor-α. Significant proportions of Salmonella-specific MF cells expressed the gut-homing molecule integrin α4β7. In most subjects, similar MF responses were observed to S. Typhi and S. Paratyphi B, but not to S. Paratyphi A. These results suggest that Ty21a elicits MF CMI responses against Salmonella that could be critical in clearing the infection. Moreover, because S. Paratyphi A is a major public concern and Ty21a was shown in field studies not to afford cross-protection to S. Paratyphi A, these results will be important in developing a S. Typhi/S. Paratyphi A bivalent vaccine against enteric fevers.  相似文献   

17.
18.
Typhoid fever is becoming an ever increasing threat in the developing countries. We have improved considerably upon the existing PCR-based diagnosis method by designing primers against a region that is unique to Salmonella enterica subsp. enterica serovar Typhi and Salmonella enterica subsp. enterica serovar Paratyphi A, corresponding to the STY0312 gene in S. Typhi and its homolog SPA2476 in S. Paratyphi A. An additional set of primers amplify another region in S. Typhi CT18 and S. Typhi Ty2 corresponding to the region between genes STY0313 to STY0316 but which is absent in S. Paratyphi A. The possibility of a false-negative result arising due to mutation in hypervariable genes has been reduced by targeting a gene unique to typhoidal Salmonella serovars as a diagnostic marker. The amplified region has been tested for genomic stability by amplifying the region from clinical isolates of patients from various geographical locations in India, thereby showing that this region is potentially stable. These set of primers can also differentiate between S. Typhi CT18, S. Typhi Ty2, and S. Paratyphi A, which have stable deletions in this specific locus. The PCR assay designed in this study has a sensitivity of 95% compared to the Widal test which has a sensitivity of only 63%. As observed, in certain cases, the PCR assay was more sensitive than the blood culture test was, as the PCR-based detection could also detect dead bacteria.Salmonella enterica is an important enteric pathogen and is involved in causing both systemic and intestinal diseases in humans and a wide range of other hosts (7, 21). Serotypes within subspecies I (Salmonella enterica subsp. enterica) are responsible for the vast majority of salmonellosis in warm-blooded animals. S. enterica subsp. enterica serovar Typhi and S. enterica subsp. enterica serovar Paratyphi A cause typhoid fever strictly in humans mostly in developing countries, with no age exemption, but it is less common in children younger than 2 years old. According to one estimate, the worldwide incidence of typhoid fever is 16 million cases annually and the mortality rate is 600,000 individuals per year (23). According to a press release from the Press Information Bureau, Government of India, dated 22 February 2006, the morbidity due to typhoid fever varies from 102 to 2,219 per 100,000 population in different parts of India, and in some areas, typhoid fever is responsible for 2 to 5% of all deaths. The problem of typhoid fever has been exacerbated by the appearance of multiple-drug-resistant strains (25), the treatment of which would depend on newer and advanced antibiotics and early and precise diagnosis.The existing modes of diagnosis are through the detection of antibodies against Salmonella bacteria by the Widal test and other serological tests like DOT enzyme immunoassay, dip stick assays, and semiquantitative tube agglutination test (22). Apart from this, the bacteremia observed in typhoid fever around day 6 to 9 enables it to be detected through the blood culture test (29) and PCR amplification of the bacterial DNA from blood. Of the commonly available diagnostic tests, Widal test and other serological diagnostic methods are limited because of the low specificity of the test. There are reports of a large number of false-positive cases especially in areas where typhoid fever is endemic and in patients exposed to typhoid fever earlier (6). The blood culture test has the major disadvantage of being a time-consuming test, which takes 2 to 3 days.PCR-based diagnoses are superior to the classical serological method, Widal test, and blood culture test in terms of their specificity and sensitivity. The modification by Sanchez-Jimenez and Cardona-Castro (26) where the initial DNA purification step is omitted and the whole blood is used directly as the template for PCR has been used in our assay system with minor modifications.The PCR-based systems currently use primers against flagellin genes (2, 4, 5, 12, 16, 17, 27), hilA (26), and invA and spvC genes (5). The different distributions of invA and spvC genes among Salmonella isolates from animals highlights the unsuitability of these two genes as PCR probes for Salmonella detection (20). Many genes carried on Salmonella pathogenicity islands have evolved differentially in typhoidal and nontyphoidal Salmonella serovars giving rise to different allelic variants of these genes (9). These genes are present in different Salmonella serovars, and their orthologs in other species of bacteria share various degrees of identity at the nucleotide levels (9). These differences, if minor, at certain PCR conditions can lead to promiscuous amplification, thereby leading to false-positive results. This problem can be overcome by choosing those regions that are unique to S. Typhi and S. Paratyphi A. Though certain pathogenicity islands are unique to S. Typhi and S. Paratyphi A, like Salmonella pathogenicity island 7 (SPI-7) and SPI-8, these islands are known to be unstable. These islands can be excised by the activation of certain recombinases as exemplified by isolation of the clinical variants lacking SPI-7 (19). Also, the presence of a gene encoding integrase on SPI-8 suggests that it is a mobile island (13). For the same reason, insertion sequences and bacteriophage genes are not good candidates for diagnostic purposes. However, a thorough examination of the whole-genome sequences of S. enterica serovar Typhi, S. Paratyphi A, and S. Typhimurium highlights the existence of genomic regions of unknown function with no homologous genes in related serovars and without the features of mobile DNA sequences. Using these criteria for the identification of a good diagnostic marker gene in S. Typhi CT18, we identified the genomic loci spanning the STY0312 gene, which is unique to S. Typhi CT18 and S. Paratyphi, the causative agents of typhoid fever. The adjoining locus spanning STY0313 to STY0316 was different in S. Typhi Ty2 and S. Paratyphi but otherwise conserved in most Salmonella strains. This region was found to be part of SPI-6, which is present in many Salmonella enterica subspecies I strains (10).We hypothesized that these novel primers could differentiate between typhoidal and nontyphoidal serovars of Salmonella enterica. Hence, the aim of the present work was to amplify the genomic region using the unique set of primers and demonstrate whether this method can be useful for the early diagnosis of typhoid fever.  相似文献   

19.
ObjectivesDiutina (Candida) catenulata is an ascomycetous yeast isolated from environmental sources and animals, occasionally infecting humans. The aim of this study is to shed light on the in vitro antifungal susceptibility and genetic diversity of this opportunistic yeast.MethodsForty-five D. catenulata strains isolated from various sources (including human and environmental sources) and originating from nine countries were included. Species identification was performed using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and confirmed via internal transcribed spacer ribosomal DNA barcoding. In vitro antifungal susceptibility was determined for seven systemic antifungals via the gradient strip method after 48 hours of incubation at 35°C using Etest® (Biomérieux) or Liofilchem® strips. Isolates exhibiting fluconazole minimal inhibitory concentrations (MICs) of ≥8 μg/mL were investigated for mutations in the ERG11 gene. A novel microsatellite genotyping scheme consisting of four markers was developed to assess genetic diversity.ResultsMIC ranges for amphotericin B, caspofungin, micafungin, isavuconazole, and posaconazole were 0.19–1 μg/mL, 0.094–0.5 μg/mL, 0.012–0.064 μg/mL, 0.003–0.047 μg/mL, and 0.006–0.032 μg/mL, respectively. By comparison, a broad range of MICs was noted for fluconazole (0.75 to >256 μg/mL) and voriconazole (0.012–0.38 mg/L), the higher values being observed among clinical strains. The Y132F amino acid substitution, associated with azole resistance in various Candida species (C. albicans, C. tropicalis, C. parapsilosis, and C. orthopsilosis), was the main substitution identified. Although microsatellite typing showed extensive genetic diversity, most strains with high fluconazole MICs clustered together, suggesting human-to-human transmission or a common source of contamination.DiscussionThe high rate of acquired fluconazole resistance among clinical isolates of D. catenulata is of concern. In this study, we highlight a link between the genetic diversity of D. catenulata and its antifungal resistance patterns, suggesting possible clonal transmission of resistant isolates.  相似文献   

20.
Since Turkey currently lacks a national reference center for Salmonella infections, the present study was conducted to document the distribution of serotypes and antimicrobial resistance patterns among Salmonella enterica isolates recovered from clinical samples in ten Turkish provinces over a 2-year period. Among the 620 Salmonella enterica isolates recovered between 1 July 2000 and 30 June 2002, strains belonging to the serotypes Enteritidis (47.7%), Typhimurium (34.7%), Paratyphi B (6.0%), Typhi (2.9%), Paratyphi A (0.2%) and serogroup C (8.5%) were found. Resistance to multiple antimicrobial agents was particularly high among Salmonella Typhimurium isolates (76.7%), and resistance or decreased susceptibility to ciprofloxacin (MIC0.125 mg/l) was demonstrated in Salmonella Paratyphi B, Salmonella Typhimurium and Salmonella Enteritidis strains. All of the Salmonella Typhi isolates were susceptible to ciprofloxacin. The results indicate that decreased susceptibility to ciprofloxacin is an emerging problem in Salmonella enterica in Turkey, particularly in multiresistant strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号