首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Abnormal growth in Down syndrome (DS) is reflected by variable reduction in size and simplification in form of many physical traits. This study aimed to compare the thickness of enamel and dentine in deciduous and permanent mandibular incisor teeth between DS and non‐DS individuals and to clarify how these tissues contribute to altered tooth size in DS. Sample groups comprised 61 mandibular incisors (29 permanent and 32 deciduous) from DS individuals and 55 mandibular incisors (29 permanent and 26 deciduous) from non‐DS individuals. Maximum mesiodistal and labiolingual crown dimensions were measured initially, then the crowns were sectioned midsagittally and photographed using a stereomicroscope. Linear measurements of enamel and dentine thickness were obtained on the labial and lingual surfaces of the crowns, together with enamel and dentine–pulp areas and lengths of the dentino‐enamel junction. Reduced permanent crown size in DS was associated with a reduction in both enamel and dentine thickness. After adjustments were made for tooth size, DS permanent incisors had significantly thinner enamel than non‐DS permanent teeth. The DS permanent teeth also exhibited significant differences in shape and greater variability in dimensions than the non‐DS permanent teeth. Crown dimensions of deciduous incisors were similar in size or larger in DS compared with non‐DS deciduous teeth. Enamel and dentine thicknesses of the deciduous teeth were similar in DS and non‐DS individuals. The findings indicate that growth retardation in DS reduces both enamel and dentine deposition in the permanent incisors but not in the earlier‐forming deciduous predecessors. The results are also consistent with the concept of amplified developmental instability for dental traits in DS. Am. J. Hum. Biol. 13:690–698, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

2.
Confocal microscope was used to analyze human enamel from 10 deciduous and 10 permanent teeth. Optically sectioned images were obtained. A more intense autofluorescence was found in primary teeth. This finding might be due to the greater presence of organic substances in deciduous enamel. The mean prism diameter measurement in permanent teeth enamel was 3.150?µm and 2.602?µm in deciduous teeth. The mean prism diameter in deciduous teeth was statistically least. The results indicate that a confocal microscope may be of help in analyzing and defining the microscopic features of human enamel.  相似文献   

3.
Shed deciduous teeth from patients with tuberous sclerosis, cerebral palsy, Down syndrome, phenylketonuria and healthy persons were examined with a surface microscope. We found enamel pits in all 87 deciduous teeth from the 20 patients with tuberous sclerosis, but in none of the 253 deciduous teeth from 142 controls constituting patients with cerebral palsy, phenylketonuria and Down syndrome as well as healthy persons. Enamel pits always occurred in the facial surface of the central incisor, lateral incisor and canine, while the number of enamel pits in the other surfaces of the deciduous teeth varied from none to nine. Ground sections examined microscopically revealed an undisturbed pattern of incremental lines (Retzius striae) surrounding the pits. In five dental sacs from patients with tuberous sclerosis, microscopic examination showed that the inner surface of the operculum was remarkably more irregular than in control patients.  相似文献   

4.
《Journal of anatomy》2017,230(2):272-281
The Havers‐Halberg Oscillation (HHO) hypothesis links evidence for the timing of a biorhythm retained in permanent tooth enamel (Retzius periodicity) to adult body mass and life history traits across mammals. Potentially, these links provide a way to access life history of fossil species from teeth. Recently we assessed intra‐specific predictions of the HHO on human children. We reported Retzius periodicity (RP) corresponded with enamel thickness, and cusp formation time, when calculated from isolated deciduous teeth. We proposed the biorhythm might not remain constant within an individual. Here, we test our findings. RP is compared between deciduous second and permanent first molars within the maxillae of four human children. Following this, we report the first RPs for deciduous teeth from modern great apes (= 4), and compare these with new data for permanent teeth (= 18) from these species, as well as with previously published values. We also explore RP in teeth that retain hypoplastic defects. Results show RP changed within the maxilla of each child, from thinner to thicker enameled molars, and from one side of a hypoplastic defect to the other. When considered alongside correlations between RP and cusp formation time, these observations provide further evidence that RP is associated with enamel growth processes and does not always remain constant within an individual. RP of 5 days for great ape deciduous teeth lay below the lowermost range of those from permanent teeth of modern orangutan and gorilla, and within the lowermost range of RPs from chimpanzee permanent teeth. Our data suggest associations between RP and enamel growth processes of humans might extend to great apes. These findings provide a new framework from which to develop the HHO hypothesis, which can incorporate enamel growth along with other physiological systems. Applications of the HHO to fossil teeth should avoid transferring RP between deciduous and permanent enamel, or including hypoplastic teeth.  相似文献   

5.
It was the aim of this study to investigate the distribution of Ca, P and C in predentin, dentin and enamel in human tooth buds and permanent teeth by EDX element analysis. The mandible of a 16-week-old human fetus containing eight mineralizing tooth buds and three human permanent molars were fixed in formaldehyde and embedded in Technovit 9100. Serial sections of 80 microm thickness of the mandible were cut in the frontal-dorsal direction, and polarized light micrographs were taken of these sections. The permanent teeth were cut in mesio-distal direction. The sections were investigated with scanning electron microscopy and EDX element analysis with a Philips XL 30 FEG scanning microscope and an EDAX energy-dispersive X-ray system using spot measurements, EDX line-scans and element mapping. Quantitative measurements were made in predentin, mineralizing dentin adjacent to predentin, mature dentin, mineralizing enamel and young enamel of developing teeth and mature enamel of permanent teeth. In developing teeth the Ca and P content increased rapidly from outer predentin towards mineralizing dentin. In enamel prisms of developing teeth the Ca and P content increased linearly from the surface towards the enamel-dentin junction. In permanent teeth only a small layer of predentin was found. The Ca and P content in enamel and circumpulpal dentin of permanent teeth was higher than in developing teeth. The Ca/P ratio differed between predentin and dentin areas reflecting different calcium phosphate compositions, but it was the same in mineralizing and young enamel. The differences in the distribution of Ca and P reflect different mineralizing patterns of the enamel and dentin matrices.  相似文献   

6.
Attempts have been made to define the relationships among the South American camelids, the guanaco, llama, alpaca, and vicuna, by comparing the morphology of their incisors. The alpaca has been reported to have an incisor morphology similar to the vicuna, lacking enamel on the lingual surface. The llama and guanaco are said to have enamel on both the labial and lingual surface of their incisor teeth. These comparisons have been based on gross morphological observations and not on histologic analysis. This study was undertaken to determine whether or not alpaca teeth have enamel on the lingual surface. The cross-sectional histologic anatomy of the incisor teeth was compared in two closely related South American camelid species, the llama (Lama glama), and the alpaca (Lama pacos). Thick sections (300 μm) and scanning electron microscopy were the techniques utilized. The mandibular first, second, and third incisors were examined in four llamas and five alpacas. A substantial layer of enamel was present on all surfaces of all llama incisors. The enamel layer on the labial surface of the alpaca incisors closely resembled that found in the llama. The enamel layer on the lingual surface of the alpaca incisors, although greatly reduced, was distinctly present. Alpacas may be more closely related to guanacos and llamas than to vicunas. A histologic study of vicuna incisors would help to better define the relationships of the four camelids. Anat Rec. 249:441–449, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Across mammalian species, the periodicity with which enamel layers form (Retzius periodicity) in permanent teeth corresponds with average body mass and the pace of life history. According to the Havers–Halberg Oscillation hypothesis (HHO), Retzius periodicity (RP) is a manifestation of a biorhythm that is also expressed in lamellar bone. Potentially, these links provide a basis for investigating aspects of a species’ biology from fossilized teeth. Here, we tested intra‐specific predictions of this hypothesis on skeletal samples of human juveniles. We measured daily enamel growth increments to calculate RP in deciduous molars (= 25). Correlations were sought between RP, molar average and relative enamel thickness (AET, RET), and the average amount of primary bone growth (= 7) in humeri of age‐matched juveniles. Results show a previously undescribed relationship between RP and enamel thickness. Reduced major axis regression reveals RP is significantly and positively correlated with AET and RET, and scales isometrically. The direction of the correlation was opposite to HHO predictions as currently understood for human adults. Juveniles with higher RPs and thicker enamel had increased primary bone formation, which suggests a coordinating biorhythm. However, the direction of the correspondence was, again, opposite to predictions. Next, we compared RP from deciduous molars with new data for permanent molars, and with previously published values. The lowermost RP of 4 and 5 days in deciduous enamel extends below the lowermost RP of 6 days in permanent enamel. A lowered range of RP values in deciduous enamel implies that the underlying biorhythm might change with age. Our results develop the intra‐specific HHO hypothesis.  相似文献   

8.
A cross-sectional sample of 151 skulls from Macaca mulatta of known age and similar rearing in U.S. Primate Centers was analyzed to determine age-related “norms” of stages of development and size of teeth. The stages of development from the follicle of a deciduous incisor in the fetus to completion of the root with apex closed of the permanent third molar were related to age. The age range observed for eruption of each tooth was noted and related to its stage of development. The crown of each erupted tooth was found to be completely developed, but growth of its root continued for a longer, indeterminate period. When a deciduous tooth was exfoliated, the crown of the permanent successor was found to be completed and root growth had begun. Measurements of both mesiodistal and faciolingual diameters and of crown length of the teeth in situ and of total length and root length on roentgenograms were examined for sexual dimorphism. The faciolingual diameter of the deciduous mandibular second incisor and of both second molars showed the greatest sexual dimorphism among both diameters of all deciduous teeth. The mesiodistal and faciolingual diameters of the mandibular premolars were found to be the best dimensions in discriminant functions for identifying sex in the absence of permanent canines.  相似文献   

9.
This study describes the three-dimensional features of enamel prisms and their arrangement in dog teeth. Tangential semithin sections of demineralized tooth germ were serially cut from the enamel surface to the enamel-dentin junction. Straight rows of enamel prisms parallel or perpendicular to the meridian were selected at the enamel-dentin junction; these prisms were reconstructed from micrographs with a personal computer. Near the enamel-dentin junction, the arrangement of enamel prisms appeared regular. Viewed from the enamel surface, the cut-ends of the enamel prisms that were parallel to the meridian at the enamel-dentin junction appeared as a sine curve, with 16 enamel prisms forming one period. The enamel prisms in a row perpendicular to the meridian were parallel to each other and deflected to the left or right from the enamel-dentin junction. Away from the enamel-dentin junction, the periodicity of the prisms gradually disappeared. The sine curve formed by the cut-ends of prisms in a row parallel to the meridian became irregular, and prisms in rows perpendicular to the meridian crossed each other. The semithin sections showed belt-like zones arranged perpendicular to the meridian. Each belt-like zone consisted of enamel prisms oriented in the same direction, those in neighboring zones being oriented in opposite directions. The disappearance of the regular arrangement of prisms was related to changes in their location in the belt-like zones.  相似文献   

10.
The three-dimensional architecture of enamel prisms was examined in cuspal enamel and compared with that in cervical enamel by light and electron microscopy as well as computer-assisted reconstruction using the developing enamel of several dog teeth. Dog tooth enamel consists of two groups of alternately arranged enamel prisms oriented in opposite sideward directions basically forming thick horizontal rings, partly branching off from the stem. Along a 8–10 enamel prism-wide group, the enamel prisms emerge in parallel tilting uniformly to the same sideward direction. In cervices, groups of enamel prisms are arranged nearly in parallel displaying a regular arrangement of prisms. Approaching the cusp of tooth, the groups of enamel prisms fuse to a concentric cusp-centered arrangement and the prisms exhibit no periodic arrangement as shown in the cervical enamel. It is suggested that the three-dimensional structure of enamel becomes complicated close to the cusp, contributing to the chewing stress of tooth. Anat. Rec. 252:355–368, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
Summary Anorganic unerupted developing teeth and airdired erupted teeth of the platypus (Ornithorhynchus anatinus) were examined in a scanning electron microscope and in a tandem scanning reflected light microscope. Typically mammalian developing fronts of enamel and dentine were identified in the anorganic unerupted specimens. The developing teeth were particularly small and fragile and the enamel elusive and difficult to examine in the normal way for morphological detail. Prepared fractured surfaces of unerupted specimens revealed preferentially oriented crystallite groups in the enamel generally perpendicular to the developing front and a highly globular, mineralized pattern in the dentine with fine diameter, sparsely distributed dentinal tubules.Although optically homogeneous, the enamel of both developing and mature teeth displayed well-defined incremental lines, radial clefts, crystallite domains of variable size and outline, and fine tubules when examined by high contrast, back-scattered electron imaging. The enamel is prismatic only in part; well-formed, regular prisms not being a primary feature of platypus enamel. This can be related to the variability inherent in the developing surface and the thinness of the enamel layer. No surface was found which could be confidently identified as cementum; those developing surfaces not covered by enamel displaying small calcospherites which elsewhere marked the outer aspect of the dentine.  相似文献   

12.
Enamel of human permanent teeth was sectioned and ground with 2 planes perpendicular to each other extending centrifugally from the dentino-enamel-junction to the crown surface. Prisms were made visible by acid etching before evaluation under the SEM. In the vicinity of the dentino-enamel-junction more prisms were found to be cut longitudinally, while close to the crown surface more prisms were cut transversely. In the perpendicularly ground plane the corresponding prisms were seen to deviate the more from the centrifugal orientation the more close they came to the crown surface. In a geometric model the angle under which the prisms deviate from the centrifugal orientation was calculated in dependence from the distance to the dentino-enamel-junction. The results correspond with the SEM-findings. We conclude that--since the prism diameter is today known to be constant--the form of the enamel mantle is created by a specific orientation of the prisms: They stand perpendicular at the dentino-enamel-junction, and the farther away they run towards the periphery the more they deviate from the perpendicular path. By this increasingly oblique orientation of the prisms the volume increment of the enamel mantle is created. The maximal angle of deviation is found morphologically and mathematically between 60 degrees-70 degrees at the crown surface. This arrangement of the prisms demonstrated by us is now seen to be the reason for erroneous assumptions about an increase of the prism diameter when ground sections were used. Because the prisms are oriented more and more oblique towards the periphery, correspondingly larger effective diameters must be produced while making ground sections tangential to the crown surface.  相似文献   

13.
Australopithecus anamensis is the stem species of all later hominins and exhibits the suite of characters traditionally associated with hominins, i.e., bipedal locomotion when on the ground, canine reduction, and thick-enameled teeth. The functional consequences of its thick enamel are, however, unclear. Without appropriate structural reinforcement, these thick-enameled teeth may be prone to failure. This article investigates the mechanical behavior of A. anamensis enamel and represents the first in a series that will attempt to determine the functional adaptations of hominin teeth. First, the microstructural arrangement of enamel prisms in A. anamensis teeth was reconstructed using recently developed software and was compared with that of extant hominoids. Second, a finite-element model of a block of enamel containing one cycle of prism deviation was reconstructed for Homo, Pan, Gorilla, and A. anamensis and the behavior of these tissues under compressive stress was determined. Despite similarities in enamel microstructure between A. anamensis and the African great apes, the structural arrangement of prismatic enamel in A. anamensis appears to be more effective in load dissipation under these compressive loads. The findings may imply that this hominin species was well adapted to puncture crushing and are in some respects contrary to expectations based on macromorphology of teeth. Taking together, information obtained from both finite-element analyses and dental macroanatomy leads us to suggest that A. anamensis was probably adapted for habitually consuming a hard-tough diet. However, additional tests are needed to understand the functional adaptations of A. anamensis teeth fully.  相似文献   

14.
Thirty patients with tuberous sclerosis (from 29 different families) were examined for evidence of macroscopically visible pitted enamel hypoplasia. Of 23 patients with permanent teeth, 11 (48%) showed multiple enamel pits (mean 4.6 pits, range 3-9), but none were seen in six patients with deciduous teeth. Five of 563 controls (0.88%) had similar pitted enamel hypoplasia. Simple dental examination may be a useful adjunct in the assessment of patients with permanent teeth when a diagnosis of tuberous sclerosis is being considered, but is less likely to be helpful in the pre-school child.  相似文献   

15.
The present study describes some anatomical characteristics of teeth and periodontal tissues in the deciduous and permanent dentition of the beagle dog. Five animals were used. At the age of 10 weeks (Period A) and 15 months (Period B), respectively, a plaque control period was initiated. At the end of each plaque control period, clinical examinations were performed. Biopsies were obtained from the 02P, 03P (Period A) and P3, P4 (Period B) tooth regions and were examined with the light microscope. Histometric and morphometric measurements were made. The macroscopic and microscopic measurements revealed that marked differences exist between the teeth and the periodontium of the deciduous and the permanent dentition. The permanent premolar erupting into the position of the deciduous premolar was found to be significantly wider and higher than its precursor. Also the shape of the crown of the permanent premolar differed from that of the deciduous premolar. The sinuous contour of the buccal gingival margin was more accentuated in the deciduous than in the permanent dentition. The free gingiva was shorter and the periodontal ligament space was wider in the deciduous than in the permanent dentition. The free gingival unit in the deciduous dentition consisted of a larger volume of epithelium and a smaller volume of connective tissue than the corresponding unit in the permanent dentition. The connective tissue of the deciduous gingiva contained a larger proportion of fibroblasts and a lower proportion of collagen fibres than the corresponding tissue of the permanent gingiva.  相似文献   

16.
Different regions of broken enamel of human permanent teeth are observed by means of a scanning electron microscope. The diameter of the prisms must be considered as constant from the dentino-enamel junction up to the enamel surface.  相似文献   

17.
Using light microscopy, we examined Hunter‐Schreger Band (HSB) patterns on the axial and occlusal/incisal surfaces of 160 human teeth, sectioned in both the buccolingual and mesiodistal planes. We found regional variations in HSB packing densities (number of HSBs per mm of amelodentinal junction length) and patterns throughout the crown of each class of tooth (maxillary and mandibular: incisor, canine, premolar, and molar) examined. HSB packing densities were greatest in areas where functional and occlusal loads are greatest, such as the occlusal surfaces of posterior teeth and the incisal regions of incisors and canines. From this it is possible to infer that the behaviour of ameloblasts forming enamel prisms during amelogenesis is guided by genetic/evolutionary controls that act to increase the fracture and wear resistance of human tooth enamel. It is suggested that HSB packing densities and patterns are important in modern clinical dental treatments, such as the bonding of adhesive restorations to enamel, and in the development of conditions, such as abfraction and cracked tooth syndrome.  相似文献   

18.
The angulation that prisms obtain with the surface in human permanent teeth was analysed on broken enamel by means of the scanning electron microscope. In the cervical region the prisms end nearly perpendicular towards the surface, while the angle becomes more and more acute towards the occlusal region of the crown. In the cuspal area the deviation from the perpendicular direction of the prisms approaches 70 degrees. The size discrepancy between the inner and the outer surface of the enamel mantle can be explained by the more or less angulated position of the prisms.  相似文献   

19.
The 2D arrangement of rows of enamel rods with alternating (decussating) tilt angles across the thickness of the inner layer in rat and mouse incisor enamel is well known and assumed to occur in a uniform and repetitive pattern. Some irregularities in the arrangement of rows have been reported, but no detailed investigation of row structure across the entire inner enamel layer currently exists. This investigation was undertaken to determine if the global row pattern in mouse mandibular incisor enamel is predominately regular in nature with only occasional anomalies or if rows of enamel rods have more spatial complexity than previously suspected. The data from this investigation indicate that rows of enamel rods are highly variable in length and have complex transverse arrangements across the width and thickness of the inner enamel layer. The majority of rows are short or medium in length, with 87% having < 100 rods per row. The remaining 13% are long rows (with 100–233 rods per row) that contain 46% of all enamel rods seen in transverse sections. Variable numbers of rows were associated with the lateral, central and mesial regions of the enamel layer. Each region contained different ratios of short, medium and long rows. A variety of relationships was found along the transverse length of rows in each region, including uniform associations of alternating rod tilts between neighboring rows, and instances where two rows having the same rod tilt were paired for variable distances then moved apart to accommodate rows of opposite tilt. Sometimes a row appeared to branch into two rows with the same tilt, or conversely where two rows merged into one row depending upon the mesial‐to‐lateral direction in which the row was viewed. Some rows showed both pairing and branching/merging along their length. These tended to be among the longest rows identified, and they often crossed the central region with extensions into the lateral and mesial regions. The most frequent row arrangement was a row of petite length nestled at the side of another row having the same rod tilt (30% of all rows). These were termed ‘focal stacks’ and may relate to the evolution of uniserial rat and mouse incisor enamel from a multilayered ancestor. The mesial and lateral endpoints of rows also showed complex arrangements with the dentinoenamel junction (DEJ), the inner enamel layer itself, and the boundary area to the outer enamel layer. It was concluded that the diversity in row lengths and various spatial arrangements both within and between rows across the transverse plane provides a method to interlock the enamel layer across each region and keep the enamel layer compact relative to the curving DEJ surface. The uniserial pattern for rows in mouse mandibular incisors is not uniform, but diverse and very complex.  相似文献   

20.
Shape and arrangement of cells and extent of intercellular spaces were studied in sections of enamel organ cut in three planes: at right angles to the axis of the incisor tooth, at right angles to the axis of the ameloblasts, and parallel to the axes of the incisor and ameloblasts. The cells in contact with the base of the ameloblasts make up the proximal part of the papillary layer. They have a polygonal cross section close to the ameloblasts and point several sheet-like cell processes towards the blood vessels which invaginate in the papillary layer. Intercellular spaces of constant width pervade the proximal part and provide a direct and straight communication between blood vessels and ameloblasts. The cells of the ridges make up the distal part of the papillary layer, and are flattened in the direction of the ridges. Intercellular spaces in the ridges are narrower than in the proximal part and visible with the light microscope only during a fraction of the enamel maturation period. No distinct cell layers are visible within the papillary layer during enamel maturation. All cells in the papillary layer may be in contact with the basement membrane investing the enamel organ. The structure of the papillary layer changes with the different phases of enamel maturation. Functional aspects of the papillary layer are briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号