首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
Ojamaa K  Kenessey A  Klein I 《Endocrinology》2000,141(6):2139-2144
  相似文献   

2.
The sarcoplasmic reticulum (SR) Ca(2+)-ATPase (SERCA2a) is under the control of a closely associated SR protein named phospholamban (PLN). Dephosphorylated PLN inhibits the SR Ca(2+) pump, whereas phosphorylation of PLN, at either Ser(16) by PKA or Thr(17) by calmodulin-dependent protein kinase II (CaMKII), reverses this inhibition, thus increasing SERCA2a activity and the rate of Ca(2+) uptake by the SR. This would in turn lead to an increase in the velocity of relaxation, SR Ca(2+) load, and myocardial contractility. Thus, PLN is a major determinant of cardiac contractility and relaxation. Although in the intact heart, beta-adrenoceptor stimulation results in phosphorylation of PLN at both Ser(16) and Thr(17) residues, the role of Thr(17) site has long remained equivocal. In this review, we attempt to highlight the signaling cascade and the physiological relevance of the phosphorylation of this residue in the heart under both physiological and pathological situations.  相似文献   

3.
Reduced Ca(2+) release from the sarcoplasmic reticulum (SR) and a negative force-frequency relation characterize end-stage human heart failure. The MLP(-/-) mouse with dilated cardiomyopathy is used as a model to explore novel therapeutic interventions but the alterations in Ca(2+) handling in MLP(-/-) remain incompletely understood. We studied [Ca(2+)](i) in left ventricular myocytes from MLP(-/-) and WT mice (3-4 months old; whole-cell voltage clamp, 30 degrees C). At 1 Hz stimulation, the amplitude of [Ca(2+)](i) transients was similar. However, in contrast to WT, at higher frequencies the [Ca(2+)](i) transient amplitude declined in MLP(-/-) and there was no increase in SR Ca(2+) content. Unexpectedly, the decline of [Ca(2+)](i) was faster in MLP(-/-) than in WT (at 1 Hz, tau of 80 +/- 9 vs. 174 +/- 29 ms, P < 0.001) and the frequency-dependent acceleration of the decline was abolished suggesting an enhanced basal SERCA activity. Indeed, the Ca(2+) affinity of SR Ca(2+) uptake in homogenates was higher in MLP(-/-), with the maximal uptake rate similar to WT. Phosphorylation of phospholamban in MLP(-/-) was increased (2.3-fold at Ser(16) and 2.9-fold at the Thr(17) site, P < 0.001) with similar SERCA and total phospholamban protein levels. On increasing stimulation frequency to 4 Hz, WT, but not MLP(-/-), myocytes had a net gain of Ca(2+), suggesting inadequate Ca(2+) sequestration in MLP(-/-). In conclusion, increased baseline phosphorylation of phospholamban in MLP(-/-) leads to a reduced reserve for frequency-dependent increase of Ca(2+) release. This represents a novel paradigm for altered Ca(2+) handling in heart failure, underscoring the importance of phosphorylation pathways.  相似文献   

4.
Sarcoplasmic reticulum (SR) dysfunction is one of the multiple alterations that occurs in ischemia-reperfused hearts. Because SR function is regulated by phosphorylation of phospholamban (PLB), a SR protein phosphorylated by cAMP-dependent protein kinase (PKA) at Ser(16)and Ca(2+)-calmodulin-dependent protein kinase (CaMKII) at Thr(17), the phosphorylation of these residues during ischemia and reperfusion was examined in Langendorff-perfused rat hearts. Ser(16)phosphorylation increased significantly after 20 min of ischemia from 2.5+/-0.6% to 99.8+/-25.5% of maximal isoproterenol-induced site-specific phosphorylation and decreased to control values immediately after reperfusion. Thr(17)phosphorylation transiently increased at 2-5 min of ischemia and at 1 min of reperfusion (R1, 166.2+/-28.2%). The ischemia-induced increase in Ser(16)phosphorylation was significantly diminished in hearts from catecholamine-depleted animals and/or after beta-blockade and abolished in the presence of the PKA-inhibitor, H-89. Thr(17)phosphorylation at the beginning of ischemia was blunted by nifedipine, whereas at R1 it was significantly diminished by perfusion with 0 m m Ca(2+)in the presence of EGTA and by the Na(+)/Ca(2+)exchanger inhibitor KB-R7943. KN-93, used to specifically inhibit CaMKII, decreased Thr(17)phosphorylation at R1 and significantly prolonged half relaxation time. The results demonstrated a dissociation between the phosphorylation of PLB sites, being phosphorylation of Ser(16)dependent on the beta-adrenergic cascade during ischemia and phosphorylation of Thr(17)on Ca(2+)influx both, at the beginning of ischemia and reperfusion. Phosphorylation of Thr(17)at the onset of reflow may provide the cell a mechanism to cope with Ca(2+)overload, transiently favoring the recovery of relaxation during early reperfusion.  相似文献   

5.
6.
BACKGROUND: Several independent lines of evidence indicate that phospholamban (PLB) expression correlates positively with depression of force of contraction and duration of contraction in isolated cardiac preparations of several animal species. Here, we studied whether PLB levels correlate with attenuation of contractility and enhancement of contractile time parameters in different parts of the human heart. METHODS: Force of contraction was measured in isolated electrically driven atrial and ventricular preparations from human hearts. Ca(2+)-uptake by human atrial and ventricular homogenates was assayed at different ionized Ca(2+)-concentrations. Protein expression of PLB and the sarcoplasmic Ca(2+)-ATPase (SERCA) was measured in homogenates by quantitative immunoblotting using specific antibodies. PLB mRNA expression was quantified in human cardiac preparations by Northern blot analysis. RESULTS: The duration of contraction in isolated preparations of human right ventricle (RV) was double that found in right atrial preparations (RA) (620 +/- 25 ms versus 308 +/- 15 ms). In RA, PLB expression was reduced by 44% at the protein level and by 34% at the mRNA level compared to RV. In contrast, the SERCA protein content was increased by 104% in RA compared to RV. Ca(2+)-uptake at low ionized Ca(2+)-concentration, where the inhibiting effect of PLB is maximal, amounted to 1.39 +/- 0.28 nmol Ca2+/mg protein in RA and to 0.62 +/- 0.09 nmol Ca2+/mg protein in RV (n = 6 both). CONCLUSIONS: It is suggested that duration of contraction is shorter in human atrium versus ventricle due to the combined effect of decreased PLB levels (which inhibits SERCA function) and increased SERCA levels. The lower relative ratio of PLB to SERCA leads to less inhibition of SERCA and increased Ca(2+)-uptake which enhances relaxation and contraction in human atrium.  相似文献   

7.
8.
9.
Summary The relationship between myocardial relaxation and phosphorylation of phospholamban, an intrinsic protein of sarcoplasmic reticulum (SR), was studied in perfused rat hearts beating at constant rate and perfused at constant coronary flow. The positive inotropic effect (increase in developed tension, T, and maximal rate of rise of tension, + ) of 3×10–9 and 3×10–8M isoproterenol (ISO) occurred together, with a proportionately greater increase in maximal velocity of relaxation, – . Thus, the + /– ratio decreased 0.23±0.04 and 0.41±0.05 respectively. Time to half-relaxation (t1/2) and the time constant of relaxation (Tau) were also significantly decreased by ISO. Phospholamban phosphorylation (in pmol32Pi/mg SR protein) increased from 23±3.3 (control) to 42±2.3 (3×10–9M ISO) and to 186±19.3 (3×10–8M ISO). When the negative inotropic action of nifedipine was just offset by either Ca2+ (N–Ca2+) or ISO (N–I), relaxation was faster when ISO was present. Perfusion with N–I significantly decreased + /– 0.18±0.05, t1/2 14±3 ms and Tau 1.4±0.2 ms. Phospholamban phosphorylation significantly increased from 23±3.3 to 40±4.9 pmol 32 Pi/mg SR protein. N–Ca2+ did not elicit any significant change in these parameters nor in phospholamban phosphorylation. Thus, phospholamban phosphorylation appears closely related to myocardial relaxation and may be one of the important mechanisms by which contractility and relaxation are dissociated in vivo.This work was supported by grants # 3-106600/85 from CONICET and # 2109-1239/85 from CIC.  相似文献   

10.
11.
目的探讨缺氧预适应和前胡丙素预处理对大鼠心肌受磷蛋白磷酸化水平的影响。方法体外培养的乳鼠心肌细胞随机分为4组:对照组,缺氧复氧损伤组(HR组)、缺氧预适应组(HP组)和前胡丙素预处理组(PP组)。用蛋白激酶A抑制剂H-89进行干预,4组再分别分为H-89阴性组和H-89阳性组。检测各组间细胞上清乳酸脱氢酶(LDH);流式细胞术检测[Ca2+]i;放射自显影法检测受磷蛋白的磷酸化水平。结果与对照组比较,HR组的LDH和[Ca2+]i显著升高(P<0.05),HP组和PP组LDH和[Ca2+]i虽高于对照组,但差异无统计学意义(P>0.05);HP组和PP组受磷蛋白磷酸化水平与对照组比较增加15.6%和16.8%(P<0.05),而HR组较对照组降低29.3%(P<0.05)。H-89阳性组受磷蛋白的磷酸化水平较H-89阴性组显著下调(P<0.05)。结论缺氧预适应和前胡丙素预处理对缺氧复氧损伤后心肌细胞有保护作用,该作用与上调受磷蛋白磷酸化水平有关。  相似文献   

12.
The aim of the present study was to further elucidate the physiological role of the calcium-calmodulin (Ca(2+)-Cm)-dependent protein kinase system on phospholamban phosphorylation in the intact functioning heart. The effect of increasing extracellular calcium concentration [Ca]o on phospholamban phosphorylation (PHPL) was studied under different experimental conditions: (a) regular twitches and ryanodine induced-tetani both in the presence and in the absence of 3 x 10(-8) M isoproterenol and (b) Post-stimulation potentiation (PSP), i.e. the potentiation of contractility that follows a period of rapid repetitive stimulation. In the regular twitch, the increase in [Ca]o enhanced contractility both, in the absence and in the presence of beta-stimulation without changing basal or isoproterenol stimulated cAMP levels respectively. This increase in contractility was accompanied by a significant enhancement of PHPL-from 90.6 +/- 16.4 to 216 +/- 35.2 pmols 32Pi/mg protein at 0.25 and 3.85 mM [Ca]o respectively-only when isoproterenol was present. The calmodulin antagonist W-7 significantly decreased the isoproterenol-induced phosphorylation of phospholamban at [Ca]o 1.35 mM. Similar results were obtained under tetanic conditions. When myocardial contractility was enhanced by PSP up to ten-times with respect to the regular twitch, no detectable effect in PHPL was observed. Indirect evidence obtained from skinned rat cardiac trabeculae suggested that the failure of the cAMP-independent mechanisms to phosphorylate phospholamban is not related to a deficient increase in intracellular calcium. The results support the notion that the increase in intracellular calcium induces an increase in PHPL only at high intracellular cAMP levels.  相似文献   

13.
Evidence assembled in this review indicates that sympathetic nervous system dysfunction is crucial in the development of heart failure and essential hypertension. This takes the form of persistent and adverse activation of sympathetic outflows to the heart and kidneys in both conditions. An important goal for clinical scientists is translation of the knowledge of pathophysiology, such as this, into better treatment for patients. The achievement of this 'mechanisms to management' transition is at different stages of development with regard to the two disorders. Clinical translation is mature in cardiac failure, knowledge of cardiac neural pathophysiology having led to the introduction of beta-adrenergic blockers, an effective therapy. With essential hypertension perhaps we are on the cusp of effective translation, with recent successful testing of selective catheter-based renal sympathetic nerve ablation in patients with resistant hypertension, an intervention firmly based on the demonstration of activation of the renal sympathetic outflow. Additional evidence in this regard is provided by the results of pilot studies exploring the possibility to reduce blood pressure in resistant hypertensives through electrical stimulation of the area of carotid baroreceptors. Despite the general importance of the sympathetic nervous system in blood pressure regulation, and the specific demonstration that the blood pressure elevation in essential hypertension is commonly initiated and sustained by sympathetic nervous activation, drugs antagonizing this system are currently underutilized in the care of patients with hypertension. Use of beta-adrenergic blocking drugs is waning, given the propensity of this drug class to have adverse metabolic effects, including predisposition to diabetes development. The blood pressure lowering achieved with carotid baroreceptor stimulation and with the renal denervation device affirms the importance of the sympathetic nervous system in hypertension pathogenesis, and perhaps suggests a wider role for anti-adrenergic antihypertensives, such as the imidazoline drug class (moxonidine, rilmenidine) which act within the CNS to inhibit central sympathetic outflow, although the lack of large-scale outcome trials with this drug class remains a very material deficiency.  相似文献   

14.
15.
心率变异性的机制及其与心血管疾病的相关性研究进展   总被引:3,自引:0,他引:3  
心率变异性(heart rate variability,HRV)是能够准确反映心脏自主神经系统活性的指标.通过动态心电图检查完善HRV分析,结合时域分析和频域分析,可定量评价人体心脏的交感神经和迷走神经张力及其平衡状态.本文以HRV的调节机制为着手点,解读HRV时域和频域分析指标的临床意义;结合新近国内外在冠状动脉粥...  相似文献   

16.
Frequency-dependent acceleration of relaxation (FDAR) is an intrinsic physiological mechanism, which allows more rapid ventricular diastolic filling at higher heart rates. FDAR is also observed in isolated myocardial trabeculae and cardiac myocytes, but its mechanism is still poorly understood. We tested the hypothesis that FDAR results mainly from Ca/calmodulin-dependent protein kinase II (CaMKII) dependent stimulation of sarcoplasmic reticulum (SR) Ca transport, but does not require phospholamban. Experiments were performed at 23 or 35 degrees C in isolated ventricular muscle and single myocytes from wild-type (WT) and phospholamban knockout (PLB-KO) mice and rat ventricular myocytes. Isometric twitch force of muscles and unloaded shortening and Ca transients in myocytes were measured ([Ca](o)=1mM) in the absence and presence of CaMKII inhibitors (1 microM KN-93 or 20 microM autocamtide-2 related inhibitory peptide, AIP). Stimulation frequency was altered over a wide range (0.2-8Hz) and post-rest vs steady state twitches were also compared. In both WT and PLB-KO mouse muscles FDAR of twitch force was prominent, but was largely suppressed by KN-93. FDAR of twitch contractions was associated with FDAR of Ca transients in PLB-KO myocytes, and both were inhibited by KN-93. Similarly, a different CaMKII inhibitor (AIP) inhibited FDAR of contraction and Ca transients in rat ventricular myocytes. We conclude that FDAR results mainly from CaMKII-dependent stimulation of SR Ca transport, but does not require phospholamban.  相似文献   

17.
The tumor necrosis factor (TNF) alpha level is elevated in patients with advanced heart failure, and the phosphorylation of contractile regulatory proteins is reduced in the human heart. We hypothesized that TNFalpha affects the phosphorylation of proteins involved in regulating contraction; phospholamban (PLB), myosin light chain 2 (MLC2) and troponin I (TnI). Spontaneously beating rat neonatal cardiac myocytes, prelabelled with [32P]orthophosphate, were treated with TNFalpha for 30 min, and stimulated with isoproterenol for 5 min. 32P-labelled myofibrillar proteins were isolated by 15% SDS-PAGE. Baseline phosphorylation levels of PLB, TnI and an unknown 23kDa phosphoprotein were decreased by TNFalpha in a dose-dependent manner. Moreover, TNFalpha attenuated the phosphorylation levels of PLB and TnI increased by a concentration of 0.01 microM isoproterenol, but not by 1 microM of isoproterenol. Although TNFalpha had no effect on the cAMP content or cAMP-dependent protein kinase activity in the presence or absence of isoproterenol, an inverse relationship was observed between the concentration of TNFalpha and the cGMP content in cardiac myocytes, and treatment with TNFalpha resulted in a concentration-dependent increase in type 2A protein phosphatase activity. The observation that TNFalpha decreases phosphorylation levels of PLB and TnI in cardiac myocytes suggests that the reduction of these protein phosphorylation levels is partially responsible for alterations of intracellular Ca2+-cycling and the force of contraction in TNF alpha-treated cardiac myocytes. Furthermore, TNFalpha reduces myocyte contraction and protein phosphorylation states possibly via cAMP-independent mechanisms, at least in part, by the activation of type 2A protein phosphatase.  相似文献   

18.
19.
Sarcolipin (SLN) inhibits the cardiac sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA2a) by direct binding and is superinhibitory if it binds as a binary complex with phospholamban (PLN). To demonstrate whether overexpression of SLN in the heart might impair cardiac function directly, transgenic (TG) mice with cardiac-specific overexpression of NF-SLN (SLN tagged at its N terminus with the FLAG epitope) were generated on a phospholamban (PLN) null (PLN KO) background. In NF-SLN TG/PLN KO cardiac microsomes, the apparent affinity of SERCA2a for Ca2+ was decreased compared with non-TG littermate PLN KO hearts. Analyses of isolated NF-SLN/PLN KO cardiomyocytes revealed impaired cardiac contractility, reduced calcium transient peak amplitude, and slower decay kinetics compared to PLN KO animals. In these cardiomyocytes, isoproterenol restored calcium dynamics to the levels seen in PLN KO. Invasive hemodynamic and echocardiographic analyses of NF-SLN/PLN KO mouse cardiac muscle in vivo showed no direct effects of NF-SLN overexpression when compared to PLN KO mice. A possible mechanism for the lack of effects in the whole heart may be a responsiveness to phosphorylation because we determined that NF-SLN can be phosphorylated in cardiomyocytes in response to isoproterenol, and we provide evidence that serine/threonine kinase 16 is a kinase that can phosphorylate NF-SLN. Site-directed mutagenesis showed that SLN Thr-5 is the target site for this kinase. These data show that overexpression of NF-SLN can inhibit SERCA2a in the absence of PLN and that the inhibition of SERCA2a is correlated with impairment of contractility and calcium cycling in cardiomyocytes.  相似文献   

20.
目的通过构建SD大鼠的甲基苯丙胺(METH)中毒模型与心肌细胞中毒模型,检测缝隙连接蛋白43(Cx43)及其S368位点磷酸化(p-Cx43)表达水平;检测吸食METH的人心肌组织内Cx43及其S368位点p-Cx43的表达情况,分析其与METH诱导的心肌毒性的关系,探讨Cx43及S368位点p-Cx43水平在METH诱导的心肌毒性中的作用。方法建立SD大鼠METH慢性中毒动物模型和新生SD大鼠心肌原代METH中毒细胞模型;提取蛋白,采用Western blot检测Cx43、p-Cx43蛋白的表达情况;分析Cx43及其S368位点p-Cx43水平与METH诱导的心肌毒性的关系。收集贵州医科大学法医司法鉴定中心中经毒化检验确认吸食METH的人心肌组织为实验组,无吸食任何毒品者为对照组;常规石蜡切片,HE染色观察2组心肌的结构改变;免疫组织化学染色法、Western blot检测Cx43及其S368位点p-Cx43的表达水平。结果 (1)在METH慢性中毒动物模型中Cx43及S368位点p-Cx43表达较对照组明显下降(P0.05);(2)在METH中毒细胞浓度、时间梯度模型中,Cx43及其S368位点p-Cx43表达量较对照组显著下降(P0.05);(3)与对照组比较,实验组人心肌细胞呈现萎缩、坏死及局灶性出血等病理改变;(4)与对照组相比,实验组人心肌组织中Cx43及S368位点p-Cx43表达水平降低,主要表现为心肌细胞之间闰盘处的棕黄色着色减少,部分呈现侧膜化改变;(5)实验组人心肌组织Cx43及S368位点p-Cx43蛋白表达较对照组下降(P0.05)。结论 METH能通过减少心肌中Cx43及其S368位点p-Cx43的表达,从而破坏心肌的组织结构,影响心脏的正常功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号