首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
4.
Loss of imprinting (LOI) of the insulin-like growth factor 2 gene (IGF2) is one of the most common epigenetic abnormalities seen in human neoplasms. LOI may be associated with the lack of Zinc-finger DNA binding protein CTCF-mediated enhancer insulation, presumably due to the gain of methylation on the maternal allele of the differentially methylated domain (DMD) of the imprinting control region. This results in an interaction between the IGF2 promoters and enhancers; and IGF2 is produced from both alleles. In this study we investigated the feasibility of a novel anti-cancer adenovirus (AdDC312-DT-A) driven by H19 enhancer DMD-H19 promoter complex. Cell lines with IGF2 LOI (HCT-8, HT-29 and H-522) that were infected with AdDC312-EGFP produced the EGFP protein. However, in cells in which imprinting was maintained (MOI) (MCF-7 and GES-1), no EGFP protein was produced. The AdDC312-DT-A significantly decreased cell viability and induced apoptosis only in LOI cells in vitro, and suppressed tumour development in HCT-8 xenografts in nude mice. In conclusion, the toxin gene therapy proves effective in inhibiting LOI cell growth in vitro and in vivo and provides a novel option for targeted gene therapy based on loss of IGF2 imprinting.Key words: genomic imprinting, IGF2, CTCF, DT-A, tumor, gene therapy  相似文献   

5.
6.
Epigenetic lesions are common in neoplasia and range from hypermethylation of subsets of CpG islands to loss of imprinting. By exploiting an episomal model system and the strong de novo methylation capacity of a human cancer cell line, we show that an H19 minigene rapidly becomes methylated and silenced, mimicking the inactivation of the maternal H19 allele in a range of cancers. Although the H19 imprinting control region (ICR) initially displayed methylation protection, it eventually succumbed to the pressure mounted by the de novo methylation machinery of the JEG-3 cells. Importantly, we were able to visualize the kinetics of the loss of the H19 ICR chromatin insulator function in association with chromatin compaction. Our results document that a strong de novo methylation machinery leads to loss of methylation privilege states of H19 ICR to functionally manifest loss of insulator function in a matter of only a few days in human cancer cells.  相似文献   

7.
8.
9.
10.
The CTCF paralog BORIS (brother of the regulator of imprinted sites) is an insulator DNA-binding protein thought to play a role in chromatin organization and gene expression. Under normal physiologic conditions, BORIS is predominantly expressed during embryonic male germ cell development; however, it is also expressed in tumors and tumor cell lines and, as such, has been classified as a cancer-germline or cancer-testis gene. It has been suggested that BORIS may be a pro-proliferative factor, whereas CTCF favors antiproliferation. BORIS and CTCF share similar zinc finger DNA-binding domains and seem to bind to identical target sequences. Thus, one critical question is the mechanism governing the DNA-binding specificity of these two proteins when both are present in tumor cells. Chromatin immunoprecipitation (ChIP) in HCT116 cells and their hypermethylated variant showed that BORIS binds to methylated DNA sequences, whereas CTCF binds to unmethylated DNA. Electromobility shift assays, using both whole-cell extracts and in vitro translated CTCF and BORIS protein, and methylation-specific ChIP PCR showed that BORIS is a methylation-independent DNA-binding protein. Finally, experiments in murine hybrid cells containing either the maternal or paternal human chromosome 11 showed that BORIS preferentially binds to the methylated paternal H19 differentially methylated region, suggesting a mechanism in which the affinity of CTCF for the unmethylated maternal allele directs the DNA binding of BORIS toward the paternal allele.  相似文献   

11.
Sullivan MJ  Taniguchi T  Jhee A  Kerr N  Reeve AE 《Oncogene》1999,18(52):7527-7534
Relaxation of IGF2 imprinting occurs in Wilms tumours and many other cancers, but the mechanism of loss of imprinting (LOI) remains unknown. To investigate the role of altered DNA methylation in LOI, we examined the pattern of methylation of the human insulin-IGF2 region in Wilms tumours and the normal kidney. The analysis included regions homologous to three 'differentially methylated regions' of the mouse Igf2 gene (dmrs 0, 1 and 2). In tumours displaying normal IGF2 imprinting, and in the normal kidney, maternal allele-specific DNA methylation was identified spanning exons 2 and 3. This region is homologous to dmr 0, a site of maternal-specific differential methylation in the mouse. In Wilms tumours with relaxed imprinting or 11p15.5 LOH this region was unmethylated. No other differential methylation was identified. In particular, two sites of paternal methylation in the mouse (dmrs 1 and 2), and all three imprinted IGF2 promoters were not methylated in the kidney or in Wilms tumours. We postulate that LOI in Wilms tumours is associated with loss of maternal allele-specific methylation from a region located upstream of the imprinted IGF2 promoters. This region may contain cis acting sequences that coordinately influence imprinting.  相似文献   

12.
13.
Kaneda A  Feinberg AP 《Cancer research》2005,65(24):11236-11240
Epigenetic alterations in cancer occur at least as commonly as genetic mutations, but epigenetic alterations could occur secondarily to the tumor process itself. To establish a causal role of epigenetic changes, investigators have turned to genetically engineered mouse models. Here, we review a recent study showing that a mouse model of loss of imprinting (LOI) of the insulin-like growth factor II gene (Igf2), which shows aberrant activation of the normally silent maternal allele, modifies the risk of intestinal neoplasia caused by mutations of the adenomatous polyposis coli (Apc) gene. This increased risk corresponds to the apparent increased risk of colorectal cancer in patients with LOI of IGF2. The model suggests that preexisting epigenetic alterations in normal cells increase tumor risk by expanding the target cell population and/or modulating the effect of subsequent genetic alterations on these cells, providing a novel idea for cancer risk management.  相似文献   

14.
ARHI is a maternally imprinted tumor suppressor gene that maps to a site on chromosome 1p31 where loss of heterozygosity has been observed in 40% of human breast and ovarian cancers. ARHI is expressed in normal ovarian and breast epithelial cells, but ARHI expression is lost in a majority of ovarian and breast cancers. Expression of ARHI from the paternal allele can be down-regulated by multiple mechanisms in addition to loss of heterozygosity. This article explores the role of DNA methylation in silencing ARHI expression. There are three CpG islands in the ARHI gene. CpG islands I and II are located in the promoter region, whereas CpG island III is located in the coding region. Consistent with imprinting, we have found that all three CpG islands were partially methylated in normal human breast epithelial cells. Additional confirmation of imprinting has been obtained by studying DNA methylation and ARHI expression in murine A9 cells that carry either the maternal or the paternal copy of human chromosome 1. All three CpG islands were methylated, and ARHI was not expressed in A9 cells that contained the maternal allele. Conversely, CpG islands were not methylated and ARHI was expressed in A9 cells that contained the paternal allele of human chromosome 1. Aberrant methylation was found in several breast cancer cell lines that exhibited decreased ARHI expression. Hypermethylation was detected in 67% (6 of 9) of breast cancer cell lines at CpG island I, 33% (3 of 9) at CpG island II, and 56% (5 of 9) at CpG island III. Hypomethylation was observed in 44% (4 of 9) of breast cancer cell lines at CpG island II. When methylation of CpG islands was studied in 20 surgical specimens, hypermethylation was not observed in CpG island I, but 3 of 20 cases exhibited hypermethylation in CpG island II (15%), and 4 of 20 cases had hypermethylation in CpG island III (20%). Treatment with 5-aza-2'-deoxycytidine, a methyltransferase inhibitor, could reverse aberrant hypermethylation of CpG island I, II and III and partially restore ARHI expression in some, but not all of the cell lines. Treatment with 5-aza-2'-deoxycytidine partially reactivated ARHI expression in cell lines with hypermethylation of CpG islands I and II but not in cell lines with partial methylation or hypomethylation of these CpG islands. To test the impact of CpG island methylation on ARHI promoter activity more directly, constructs were prepared with the ARHI promoter linked to a luciferase reporter and transfected into SKBr3 and human embryo kidney 293 cells. Methylation of the entire construct destroyed promoter activity. Selective methylation of CpG island II alone or in combination with CpG island I also abolished ARHI promoter activity. Methylation of CpG I alone partially inhibited promoter activity of ARHI. Thus, hypermethylation of CpG island II in the promoter region of ARHI is associated with the complete loss of ARHI expression in breast cancer cells. Other epigenetic modifications such as hypermethylation in CpG island III may also contribute to the loss of ARHI expression.  相似文献   

15.
Loss of imprinting (LOI) of insulin‐like growth factor 2 (IGF2) is a common event in many cancers and typically activates the maternally silenced allele. The resulting biallelic IGF2 expression correlates strongly with the hypomethylation of a differentially methylated region (DMR) near its promoter. It has also been shown that IGF2 undergoes overexpression in human malignancies; nevertheless, this phenomenon and its link to aberrant DMR methylation have not been reported in colorectal cancer (CRC). The aim of this study was to determine the relationship between IGF2 LOI, overexpression and DMR hypomethylation in CRC. By analyzing IGF2 and H19 methylation in 97 primary CRC and 64 matched normal colorectal tissues, we have shown a significant correlation between IGF2 LOI and DMR hypomethylation of IGF2 and H19. Additionally, when analyzing Affymetrix expression data of 167 primary CRC tumors and 32 normal tissues, 15% of tumors showed marked IGF2 elevation. We further investigated if substantially elevated IGF2 levels were linked to IGF2 or H19 hypomethylation, but found no significant correlation. However, we demonstrated that noticeable IGF2 overexpression, rather than LOI, negatively correlated with CRC microsatellite instability. These observations indicate that IGF2 expression, particularly when transcribed at significantly high levels, is a result of mechanisms unrelated to LOI. Our results suggest that IGF2 participates in CRC tumorigenesis through 2 different forms of aberrant gene expression.  相似文献   

16.
A number of genes, including IGF2 and H19, are normally imprinted with preferential expression of the paternal or maternal allele, respectively. Loss of imprinting (LOI) of IGF2 and H19 is found in a number of tumours, suggesting that LOI of IGF2 and/or H19 may play an important role in tumorigenesis. The IGF2 gene codes for a fetal growth factor and the H19 gene is likely to act as an RNA with an antitumour effect. We investigated the imprinting status of IGF2 and H19 in human meningiomas. The normally imprinted IGF2 gene lacks imprint in the leptomeninges and choroid plexus of the brain. To examine the imprinting status of IGF2 and H19 in human meningiomas we used the ApaI polymorphism in exon 9 for the IGF2 gene and the AluI polymorphism in exon 5 for the H19 gene. In total, 24 meningiomas of WHO grade I, II and III were analysed. 15 meningiomas (63%) were informative for the ApaI polymorphism in the IGF2 gene. Monoallelic expression (MAE) for IGF2 was found in 11 out of 15 tumours (73%) which is in contrast to the lack of imprinting status of IGF2 in leptomeninges. Ten cases (42%) were heterozygous for the H19 gene and biallelic expression was found in 3 out of 10 meningiomas (30%). These results indicate that modulation of the imprinting status of IGF2 and H19 may play an important role for the development of meningiomas.  相似文献   

17.
Decreased expression of p57(KIP2)mRNA in human bladder cancer   总被引:10,自引:0,他引:10  
To identify targets of genetic and epigenetic alterations on chromosome 11p15.5 in human bladder cancer, expression of the imprinted KIP2, IGF2 and H19 genes was studied by quantitative RT-PCR in 24 paired samples of urothelial carcinomas and morphologically normal mucosa obtained by cystectomy, and in bladder carcinoma cell lines. The most frequent alteration in tumour tissue was decreased expression of KIP2 identified in 9/24 (37%) specimens. Decreased IGF2 and H19 mRNA levels were found in five (21%) and three (13%) tumours, respectively. One tumour each overexpressed IGF2 and H19. Loss of H19 expression was only found associated with loss of KIP2 expression, whereas decreased expression of IGF2 mRNA occurred independently. Almost all bladder carcinoma cell lines showed significant changes in the expression of at least one gene with diminished expression of KIP2 mRNA as the most frequent alteration. IGF2 mRNA levels were diminished in several lines, but increased in others. The KIP2 gene could be an important target of genetic and epigenetic alterations in bladder cancer affecting the maternal chromosome 11p15.5. However, reminiscent of the situation in Wilms' tumours, expression of the IGF2 gene on the paternal chromosome can also be disturbed in bladder cancers.  相似文献   

18.
Disrupted imprinting is implicated in certain tumorigenesis. Since aberrant methylation has been described for a majority of microsatellite instability (MSI)-positive sporadic colorectal cancers, we have investigated alteration to the imprinting in 55 sporadic colorectal cancers with or without MSI. Loss of imprinting (LOI) of IGF2 and PEG1/MEST was observed in 42% and 35% of informative cancers, respectively. H19 expression was not detected in 24% of informative cancers. SNRPN and NDN retained monoallelic expression in all the cancers examined. These findings indicate no simultaneous disruption of the imprinted genes. LOI of IGF2 and PEG1/MEST was also observed in colorectal mucosa from almost all the patients with LOI in tumor tissue. Moreover, MSI-positive colorectal cancers exhibit LOI of IGF2 with a high frequency compared to MSI-negative cancers (P=0.013). These observations, consistent with a previous report, establish an association between LOI of IGF2 and MSI in colorectal cancers and provide insight into susceptibility of tumor development.  相似文献   

19.
Epigenetic silencing of PEG3 gene expression in human glioma cell lines   总被引:2,自引:0,他引:2  
Genomic imprinting, the phenomenon in which alleles of genes are expressed differentially depending on their parental origins, has important consequences for mammalian development, and disturbance of normal imprinting leads to abnormal embryogenesis and some inherited diseases and is also associated with various cancers. In the context of screening for novel imprinted genes on human chromosome 19q13.4 with mouse A9 hybrids, we identified a maternal allele-specific methylated CpG island in exon 1 of paternally expressed imprinted gene 3 (PEG3), a gene that exhibits paternal allele-specific expression. Because PEG3 expression is downregulated in some gliomas and glioma cell lines, despite high-level expression in normal brain tissues, we investigated whether the loss of PEG3 expression is related to epigenetic modifications involving DNA methylation. We found monoallelic expression of PEG3 in all normal brain tissues examined and five of nine glioma cell lines that had both unmethylated and methylated alleles; the remaining four glioma cell lines exhibited gain of imprinting with hypermethylated alleles. In addition, treatment of glioma cell lines with the DNA demethylating agent 5-aza-2'-deoxycytidine reversed the silencing of PEG3 biallelically. In this article, we report that the epigenetic silencing of PEG3 expression in glioma cell lines depends on aberrant DNA methylation of an exonic CpG island, suggesting that PEG3 contributes to glioma carcinogenesis in certain cases.  相似文献   

20.
The human chromosome region 11p15.5 contains a number of maternally and paternally imprinted genes, and the LIT1/KCNQ1OT1 locus acts as an imprinting center in the proximal domain of 11p15.5. Loss of imprinting (LOI) of LIT1 and its correlation with methylation status at a differentially methylated region, the KvDMR1, were investigated in 69 colorectal cancer tissue specimens. LIT1 expression profiles were also examined by RNA-fluorescence in situ hybridization in 13 colorectal cancer cell lines. In 69 colorectal cancer tissue specimens, LOI of LIT1 was observed in nine of the 17 (53%) informative cases. Moreover, LOI of LIT1 was only observed in tumor samples. In the cell lines, methylation status at the KvDMR1 correlated well with LIT1 expression profiles. Loss of expression of LIT1 also correlated with enrichment of H3 lysine 9 (H3-K9) dimethylation and reduction of H3 lysine 4 (H3-K4) dimethylation. Thus, LIT1 expression appears to be controlled by epigenetic modifications at the KvDMR1, although CDKN1C expression, which is considered to be controlled by LIT1, was not associated with epigenetic status at the KvDMR1 in some colorectal cancer cell lines. Therefore, these findings suggest that LOI of LIT1 via epigenetic disruption plays an important role in colorectal carcinogenesis, but it is not necessarily associated with CDKN1C expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号