首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, the engineering implications of carbon nanotubes (CNTs) have progressed enormously due to their versatile characteristics. In particular, the role of CNTs in improving the tribological performances of various engineering materials is well documented in the literature. In this work, an investigation has been conducted to study the tribological behaviour of CNTs filled with glass-reinforced polymer (GFRP) composites in dry sliding, oil-lubricated, and gaseous (argon) environments in comparison to unfilled GFRP composites. The tribological study has been conducted on hardened steel surfaces at different loading conditions. Further, the worn surfaces have been examined for a particular rate of wear. Field-emission scanning electron (FESEM) microscopy was used to observe wear behaviours. The results of this study explicitly demonstrate that adding CNTs to GFRP composites increases wear resistance while lowering friction coefficient in all sliding environments. This has also been due to the beneficial strengthening and self-lubrication properties caused by CNTs on GFRP composites, according to FESEM research.  相似文献   

2.
Additively manufactured composite specimens exhibit anisotropic properties, meaning that the elastic response changes with respect to orientation. Both in-plane and out-of-plane mechanical properties are important for designing purpose. Recent studies have characterised the in-plane performance. In this study, however, through-thickness tensile strength of 3D polymer composites were determined by printing of continuous carbon fibre reinforced thermoplastic polyamide-based composite, manufactured using a Markforged Two 3D printer. This paper discusses sample fabrication and geometry, adhesive used, and testing procedure. Test standards used to determine out-of-plane properties are tedious as most of the premature failures occur between the specimens and the tabs. Two types of samples were printed according to ASTM flatwise tension standard and the results were compared to determine the geometry effect on the interlaminar strength. This test method consists of subjecting the printed sample to a uniaxial tensile force normal to the plane. With this method, the acceptable failure modes for tensile strength must be internal to the structure, not between the sample and the end tabs. Micro-computed tomography (µCT) was carried out to observe the porosity. Surface behaviour was studied using scanning electron microscopy (SEM) to see the voids and the distribution of the fibres in the samples. The results showed consistent values for tensile strength and elastic modulus for Araldite glue after initial trials (with some other adhesives) to determine a suitable choice of adhesive for bonding the samples with the tabs. Circular specimens have higher tensile strength and elastic modulus as compared to rectangular specimens.  相似文献   

3.
Continuous pressure put on researchers all over the world these days to design materials of improved properties create opportunities to study new methods of production in conjunction with entirely new and innovative materials such as alloys or composites. The authors in the current research manufactured aluminium reinforced with glass fibre (GF) using metallurgical synthesis, which is an unconventional and not sufficiently studied method of production. The composites with 1, 2 and 5 wt.% of glass fibre were produced with additional material obtained using consolidation of aluminium powder in extrusion process as reference material with 5 wt.% of glass fibre. All the materials were subjected to series of tests in order to determine their microstructure, density, electrical properties, hardness and susceptibility to plastic working in the compression test. It was found that glass fibre during metallurgical synthesis of aluminium composite partially melted and thus did not reinforce the material as well as during extrusion, which has been observed not only in the scanning electron microscope (SEM) and energy-dispersive X-ray (EDX) analysis but also in the analysis of macroscopic physical and mechanical properties. Based on the analysed samples, it may be stated that electrical conductivity of the samples obtained via metallurgical synthesis is higher than might be estimated on the basis of the rule of mixtures and glass fibre content and concerning the sample with 5 wt.% of GF is higher (32.1 MS/m) than of the reference material obtained in extrusion process (30.6 MS/m). Similar situation has been observed in terms of hardness of the tested samples where a minor increase in hardness was noticeable as the amount of glass fibre increased in the composites obtained by metallurgical synthesis. It is believed to be related to the melting of glass fibre, which reduced the volume fraction of GF containing mainly silicon oxides and their diffusion into the aluminium matrix, thus causing solid solution strengthening.  相似文献   

4.
In this paper, glass fiber fabric reinforced polyphenylene sulfide composites were prepared by hot pressing. The effects of glass fibre modification and hot pressing temperature on the properties of the composites were investigated using a scanning electron microscope, infrared spectrometer, universal testing machine, and DIGEYE digital imaging colour measurement system. The results show that after the treatment with a silane coupling agent, the silane coupling agent was more uniformly distributed on the surface of the glass fibres, and the bonding effect between the glass fibre fabric and polyphenylene sulphide was significantly improved. The strength of the composites increased and then decreased with the increase of hot pressing temperature, and the surface colour of the composites became darker and darker. When the hot-pressing temperature is 310 °C, the mechanical properties of glass fabric-reinforced polyphenylene sulfide composites are at their best, the tensile strength reaches 51.9 MPa, and the bending strength reaches 78 MPa.  相似文献   

5.
This work sheds light on the first steps towards using glass fiber waste for semi-structural applications. This work aims to improve the properties of random flax fiber composites by incorporating waste glass fibers (WGF) obtained from the fiber production line. The waste glass fibers were incorporated as a core structure between the flax layers to form a hybrid composite. Two routes of manufacturing viz. vacuum infusion and autoclave were used to identify the optimum route to incorporate the WGF in flax fiber composites. The quality of composites was investigated in terms of residual void content and thickness uniformity. Residual void content was identified to be directly proportional to the WGF content in the composites. With the increase in WGF content, the flexural and impact properties were increased by 47% and 117%, respectively, indicating a positive hybridization effect. Furthermore, a global warming potential indicator was identified to be small, indicating the eco-friendliness of these composites.  相似文献   

6.
The performance of pretensioned, laminated, unidirectional (UD), carbon fiber reinforced polymer (CFRP) straps, that can potentially be used for example as bridge deck suspender cables or prestressed shear reinforcements for reinforced concrete slabs and beams, was investigated at elevated temperatures. This paper aims to elucidate the effects of elevated temperature specifically on the tensile performance of pretensioned, pin-loaded straps. Two types of tests are presented: (1) steady state thermal and (2) transient state thermal. Eight steady-state target temperatures in the range of 24 °C to 600 °C were chosen, based on results from dynamic mechanical thermal analysis (DMTA) and thermogravimetric analysis (TGA). Transient state thermal tests were performed at three sustained tensile load levels, namely 10, 15, and 20 kN, corresponding to 25%, 37%, and 50% of the ultimate tensile strength of the pin-loaded straps at ambient temperature. In general, the straps were able to retain about 50% of their ambient temperature ultimate tensile strength (UTS) at 365 °C.  相似文献   

7.
Copper matrix composites (CMCs) were prepared by blending Cu particles with boron nitride nanosheets (BNNSs) and then by consolidating the blended particles using spark plasma sintering (SPS). The relative density of the compacts was over 99%, and an intact interface was formed between Cu and the BNNSs. Within the range of the BNNS content studied, its introduction improved microhardness and wear resistance. With the introduction of 0.2 vol% BNNSs, the friction coefficient reduced from 0.15 to merely 0.07, and the wear resistance improved by over 100%. This makes the CMCs reinforced with BNNSs promising materials in applications such as bearings.  相似文献   

8.
Glass fibers (GF) are the reinforcement agent most used in polypropylene (PP) based composites, as they have good balance between properties and costs. However, their final properties are mainly determined by the strength and stability of the polymer-fiber interphase. Fibers do not act as an effective reinforcing material when the adhesion is weak. Also, the adhesion between phases can be easily degraded in aggressive environmental conditions such as high temperatures and/or elevated moisture, and by the stress fields to which the material may be exposed. Many efforts have been done to improve polymer-glass fiber adhesion by compatibility enhancement. The most used techniques include modifications in glass surface, polymer matrix and/or both. However, the results obtained do not show a good costs/properties improvement relationship. The aim of this work is to perform an accurate analysis regarding methods for GF/PP adhesion improvement and to propose a new route based on PP in-situ polymerization onto fibers. This route involves the modification of fibers with an aluminum alkyl and hydroxy-α-olefin and from there to enable the growth of the PP chains using direct metallocenic copolymerization. The adhesion improvements were further proved by fragmentation test, as well as by mechanical properties measurements. The strength and toughness increases three times and the interfacial strength duplicates in PP/GF composites prepared with in-situ polymerized fibers.  相似文献   

9.
Voids are common defects in 3D woven composites because of the complicated manufacturing processes of the composites. In this study, a micro–meso multiscale analysis was conducted to evaluate the influence of voids on the mechanical properties of three-dimensional orthogonal woven composites. Statistical analysis was implemented to calculate the outputs of models under the different scales. A method is proposed to generate the reasonable mechanical properties of the microscale models considering randomly distributed voids and fiber filaments. The distributions of the generated properties agree well with the calculated results. These properties were utilized as inputs for the mesoscale models, in which void defects were also considered. The effects of these defects were calculated and investigated. The results indicate that tensile and shear strengths were more sensitive to the microscale voids, while the compressive strength was more influenced by mesoscale voids. The results of this study can provide a design basis for evaluating the quality of 3D woven composites with void defects.  相似文献   

10.
In this study, mechanical testing of glass bead (GB), glass fiber (GF), and hybrid (GB/GF) composites was carried out. Following that, drilling tests were undertaken on glass bead/fiber-reinforced hybrid Polyamide 66 (PA66) polymer composites. The purpose of this study is to determine the mechanical properties of the cutting elements and the effect of cutting parameters (spindle speed and feed rate) and reinforcement ratios on thrust force and surface roughness (Ra). The contribution of the cutting parameters to the investigated outcomes was determined using statistical analysis. Optical microscopy and scanning electron microscopy (SEM) was used to inspect the hole quality and damage mechanisms. The results revealed that the feed rate was the most contributing factor to thrust force (96.94%) and surface roughness (63.59%). Furthermore, in comparison to other hybrid composites, the lowest Ra value was obtained as 0.95 µm in samples containing 30% GB, while the Ra value was 1.04 µm in samples containing 10% GF + 20% GB. Polymer PA reinforced with 30% GF had the highest strength, modulus of elasticity, impact strength, and hardness.  相似文献   

11.
The main purpose of the article is to present the possibilities of producing composite reinforcement with the use of a computer embroidery machine. The study below presents the results of strength tests of composites containing technical embroidery, woven fabric, and UD fabric as the reinforcement. Each of the samples was made of the same material—flax roving. The samples differed from each other in the arrangement of layers in the reinforcement. The composites were made using the infusion method with epoxy resin. The embroidery was made on a ZSK embroidery machine, type JCZA 0109-550. A total of 12 types of composites were produced and tested. The test material was subjected to strength tests—tensile strength, tensile elongation, and shear strength, on the INSTRON machine. As the research showed, the use of technical embroidery as a composite reinforcement increases its tensile strength. Furthermore, the use of embroidery is a vertical reinforcement of the composite and prevents the formation of interlayer cracks. The technology of technical embroidery allows for optimizing the mechanical values of the composite reinforcement.  相似文献   

12.
The use of a PMMA composite with graphene is being commercialized for application as dental prostheses. The different proportions of fibers provide a wide range of colors that favors dental esthetics in prostheses. However, there are no studies that have explained the influence that graphene has on the mechanical properties. In this contribution, we studied the PMMA and PMMA material with graphene fibers (PMMA-G) in the form of discs as supplied for machining. The presence of graphene fibers has been studied by Raman spectroscopy and the Shore hardness and Vickers micro hardness were determined. Mechanical compression tests were carried out to obtain the values of maximum strength and Young’s modulus (E) and by means of pin-on-disc wear tests, the specific wear rate and the friction coefficients were determined following the established international standards. Finally, the samples were characterized by field emission scanning electron microscopy (FESEM) to characterize the graphene’s morphology inside the PMMA. The results showed the presence of graphene in PMMA and was estimated in an amount of 0.1027% by weight in G-PMMA. The Shore hardness and Vickers microhardness values did not show statistically significant differences. Differences were observed in the compression maximum strength (129.43 MPa for PMMA and 140.23 for PMMA-G) and E values (2.01 for PMMA and 2.89 GPa for PMMA-G) as well as in the lower wear rate for the G-PMMA samples (1.93 × 10−7 for PMMA and 1.33 × 10−7 mm3/N·m) with a p < 0.005. The coefficients of friction for PMMA-G decreased from 0.4032 for PMMA to 0.4001 for PMMA-G. From the results obtained, a slight content in graphene produced a significant improvement in the mechanical properties that could be observed in the prosthesis material. Therefore, we can state that the main attraction of this material for dental prosthesis is its esthetics.  相似文献   

13.
The materials based on concrete with an addition of rubber are well-known. The interaction between concrete components and rubber particles is in the majority cases insufficient. For this reason, different substances are introduced into concrete-rubber systems. The aim of this paper is to establish the influence of five different polymer additives, i.e., 1. an aqueous dispersion of a styrene-acrylic ester copolymer (silanised) (ASS), 2. water dispersion of styrene-acrylic copolymer (AS), 3. anionic copolymer of acrylic acid ester and styrene in the form of powder (AS.RDP), 4. water polymer dispersion produced from the vinyl acetate and ethylene monomers (EVA), 5. copolymer powder of vinyl acetate and ethylene (EVA.RDP)) on the properties of the self-leveling rubberised concrete. Scanning electron microscopy has allowed to establish the interaction between the cement paste and rubber aggregates. Moreover, the compressive strength and flexural strength of the studied materials were evaluated. The results indicate that the mechanical properties depend extensively on the type as well as the amount of the polymer additive introduced into the system.  相似文献   

14.
15.
Concrete is the most widely used construction material. However, it cannot sustain the harsh environment and can easily deteriorate. It results in repair and reworks that amount to a considerable loss of money and time. The life span of concrete reduces if exposed to external attacks, for instance, sulfate attacks, alkali-silica reactions, corrosion, and drying shrinkage. These ubiquitous attacks cause a reduction in service life and raise the need for early repair and maintenance, resulting in higher life cycle costs and structural failures. To resolve these issues, the potential of styrene-butadiene-rubber (SBR) ultrafine powder as cement replacement polymeric admixture at 0%, 3%, 5%, 7%, and 10% have been evaluated. The effect of SBR-powder on concrete is investigated by conducting an alkali-silica reactivity test (ASR), rapid-chloride-permeability test (RCPT), drying shrinkage, and sulfate resistivity tests. Workability, compressive and flexural strength tests are also conducted. For ASR and drying shrinkage, mortar bar samples were cast, exposed to respective environments, and the percentage change in length was measured. For mechanical tests and RCPT, prisms, cylinders and cubes were cast and tested at 28 days. The SBR-powder modification reduces concrete’s permeability, drying shrinkage, and expansions due to ASR and sulfate attacks. SBR powder increased workability by 90%, compressive strength by 23%, and flexural strength by 9.4% in concrete when used at 10% cement replacement by weight. The SBR-powder (10%) modification reduced the RCPT value by up to one-third (67%), drying shrinkage by 53%, ASR by 57%, and sulfate reaction by 73%. Consequently, SBR powder usage can adequately improve the workability, mechanical properties, and durability of the concrete and lead to advanced sustainable concrete with low repair requirements.  相似文献   

16.
The rising concerns in terms of environmental protection and the search for more versatile polymer-based materials have led to an increasing interest in the use of polymer composites filled with natural organic fillers (biodegradable and/or coming from renewable resources) as a replacement for traditional mineral inorganic fillers. At the same time, the recycling of polymers is still of fundamental importance in order to optimize the utilization of available resources, reducing the environmental impact related to the life cycle of polymer-based items. Green composites from biopolymer matrix and wood flour were prepared and the investigation focused on several issues, such as the effect of reprocessing on the matrix properties, wood flour loading effects on virgin and reprocessed biopolymer, and wood flour effects on material reprocessability. Tensile, Dynamic-mechanical thermal (DMTA), differential scanning calorimetry (DSC) and creep tests were performed, pointing out that wood flour leads to an improvement of rigidity and creep resistance in comparison to the pristine polymer, without compromising other properties such as the tensile strength. The biopolymer also showed a good resistance to multiple reprocessing; the latter even allowed for improving some properties of the obtained green composites.  相似文献   

17.
The subject of the research is a polymer composite with a matrix base of epoxy resin L285 cured with H285 hardener, and a physical modifier of friction in the form of alundum. The article presents an analysis of findings of tribological examinations. The authors evaluated the influence of the modifier properties in the form of alundum, i.e., mass share and grain size, on the abrasive wear of a composite, defined as loss of weight as well as on roughness parameters and selected mechanical properties. The tribological examinations have been extended by measurements of hardness and density of the prepared composites. The obtained results of tribological examinations showed an increase in the average value of weight loss in relation to the loss of sample weight loss between the cycles. The influence of both the grain size and the mass percentage share of alundum upon the increase in the longitudinal modulus of elasticity was also observed. On the basis of the obtained results, it was found that alundum of grain sizes equal to F220 and F240 exerted the best influence on the reduction of abrasive wear of the tested samples. In the case of F220, it was 14.04% of the average value of the weight loss between the cycles for all percentage shares of the used grains.  相似文献   

18.
19.
A growing popularity of profiles made of natural fibre-reinforced polymer composites in civil engineering encourages determining test methods relevant for building performance assessment. Weathering resistance is among the key aspects that condition the durability of building structures. The paper includes a comparative analysis of two artificial weathering resistance test methods. Polyvinyl chloride and wood flour composite profiles were tested. They were subjected to UV and spraying (X-exposure) and UV, spraying and wetting by condensation (F-exposure), both at different exposure times. The influence of the applied weathering procedures on the composite’s microstructure and its mechanical characteristics were analysed. No changes in the microstructure of brittle fractures were observed. However, surface morphology changes were revealed, noticeably greater following X-exposure than F-exposure. F-exposure exerted significant influence on the mechanical properties of brushed profile, including, but not limited to, flexural modulus. Whereas X-exposure exerted more influence on the mechanical properties of non-brushed profile.  相似文献   

20.
Bio-based fillers for the polymer composites are still interesting from the scientific and industrial point of view, due to their low cost and renewable nature. In this work partially green composites were obtained by the mixing of thermoplastic poly(ester-urethane) with the unmodified and modified (by acetylation) grinded buckwheat husks. Obtained biocomposites were characterized in the terms of their chemical structure (FTIR), microstructure (SEM), thermal stability (TGA), thermomechanical properties (DMTA), and selected mechanical properties. The results showed that introduction of grinded buckwheat husks (even if the amount is 60 wt%) permit retaining high values of tensile strength (around 8–10 MPa), but the increasing amount of applied filler is connected with the decreasing of elongation at break. It can result from good interaction between the polymer matrix and the bio-based filler (confirmed by high values of polymer matrix-filler interaction parameter determined from Pukánszky’s model for the tensile strength of composites). The applied chemical treatment results in changing of mechanical properties of filler and composites. Obtained results confirmed the possibility of using powdered buckwheat husks as filler for thermoplastic polyurethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号