首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BACKGROUND: To assess the clinical application of thrombopoietin (TPO) for thrombocytopenia of patients receiving cord blood (CB) or bone marrow (BM) transplants, we examined whether various types of hematopoietic progenitors including megakaryocyte (MK) progenitors from CB and BM exerted different proliferative and differentiative potential in the presence of TPO. METHODS: The development of MK, granulocyte-macrophage, and erythroid/mixed erythroid (E/Mix) progenitors in a serum-deprived liquid culture medium supplemented with TPO was compared between CD34+ CB and BM cells. RESULTS: The CD34+ CB cells generated 30-fold more MKs than the CD34+ BM cells, but the CB-derived MKs were more immature. A single-cell culture study showed that CB CD34+CD38- cells as well as CD34+CD38+ cells proliferated in response to TPO, whereas the two subpopulations of CD34+ BM cells showed little multiplication. In short-term liquid cultures containing CD34+ CB or BM cells, TPO significantly increased the absolute numbers of various types of colony-forming cells, compared with the input values. In particular, MK progenitors and E/Mix progenitors in CB were amplified to a substantially greater extent than in BM. The superior response of CD34+ CB cells to TPO observed in this study may be due in part to the use of cryopreserved cells. CONCLUSIONS: Our results suggest that TPO alone cannot only stimulate megakaryocytopoiesis but also increase the numbers of various types of hematopoietic progenitors, and that quantitative and qualitative differences in TPO-dependent hematopoietic progenitor development exist between CB and BM.  相似文献   

2.
Hematopoietic stem cell (HSC) activity has been identified from the hair follicles (HFs) in mice; however, it has not been identified in human HFs. We used immunohistochemistry and flow cytometry to identify cultured dermal papilla (DP) cells expressing CD45 to test for hematopoietic activity in colony-forming assays of granulocyte/macrophage hematopoietic progenitors (CFU-GM). Occasional CD45-positive cells were detected in cultured DP cells. After in vitro stimulation with IL-3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and granulocyte colony-stimulating factor (G-CSF) for 7 days, about 1% of the cells were CD45-positive by flow cytometry analysis, an fifty-fold expansion in cell numbers. We further examined whether mesenchymal stem/progenitor cells reside in human dermal papillae. Cultured DP papilla cells incubated with monoclonal antibodies to remove the CD45 positive cells were induced into multilineage differentiation with the formation of CFU-GM. Our findings preliminarily indicate that human dermal papilla contain at least a CD45-positive hematopoietic cell population and a mesenchymal stem/progenitor cell population.  相似文献   

3.
BACKGROUND: Successful engraftment of human hematopoietic stem and progenitor cells (HSPCs) in a large animal may serve not only as a model to study human hematopoiesis but also as a bioreactor to expand human HSPCs in vivo. The aim of this study was to accomplish xenotransplantation of human HSPCs into pig. METHODS: Total mononuclear or CD34-positive HSPCs obtained from human cord blood were xenotransplanted percutaneously under an ultrasonographic guidance into preimmune pig fetuses. Peripheral blood and bone marrow (BM) cells of recipient pigs were collected and analyzed for the presence of human cells by a polymerase chain reaction to detect human specific Alu sequence on DNA extracted from those cells. Fluorescence-activated cell sorting (FACS) analysis was also performed to detect human hematopoietic cells. RESULTS: Transplantation of human cord blood cells into pig fetuses aged less than 52 days postcoitus resulted in a good engraftment rate. In one case, engraftment was detected up to 315 days posttransplantation by polymerase chain reaction. Human hematopoietic cells were detectable also by FACS in peripheral blood and BM. Furthermore, human CD34+ HSPCs were also observed in the BM of recipients. Those CD34+ cells in BM were sorted by FACS and subjected to further analyses. First, in vitro colony formation assay resulted in formations of multilineage colonies. Second, when they were transplanted into an immunodeficient mouse they were engrafted in the mouse. CONCLUSIONS: These data indicate an engraftment of human HSPCs in pig BM. In utero transplantation of human HSPCs into a preimmune pig fetus is useful to establish a pig reproducing human hematopoiesis.  相似文献   

4.
Murine BM was fractionated using a series of hematopoietic markers to characterize its osteoclast progenitor populations. We found that the early osteoclastogenic activity in total BM was recapitulated by a population of cells contained within the CD11b(-/low) CD45R- CD3- CD115high fraction. INTRODUCTION: Osteoclasts are of hematopoietic origin and they have been shown to share the same lineage as macrophages. We further characterized the phenotype of osteoclast progenitor populations in murine bone marrow (BM) by analyzing their cell surface markers. MATERIALS AND METHODS: We used fluorescence-activated cell sorting (FACS) to identify the subsets of BM cells that contained osteoclast progenitors. We fractionated BM according to several markers and cultured the sorted populations for a period of 2-6 days with macrophage-colony stimulating factor (M-CSF) and RANKL. The numbers of multinucleated osteoclast-like cells (OCLs) that formed in the cultures were counted. RESULTS: We found that the CD45R- CD11b(-/low) population recapitulated the early osteoclastogenic activity of total BM. In addition, although previous experiments indicated that osteoclastogenic activity was enriched within the CD45R+ population, we found that highly purified CD45R+ BM was incapable of differentiating into osteoclasts in vitro. We also found that CD45R- CD11b(high) BM cells were an inefficient source of osteoclast progenitors. However, CD11b was transiently upregulated by cells of the CD45R- CD11b(-/low) fraction early (within 24 h) during culture with M-CSF. Finally, further fractionation of BM using CD115 and CD117 showed that, as osteoclast precursor cells matured, they downregulate CD117 but remain CD115+. Curiously, pure populations of CD117- (CD115high) cells isolated fresh from BM have low osteoclastogenic activity in vitro. CONCLUSIONS: We provided a refined analysis of the precise subpopulations of murine BM that are capable of differentiating into OCLs in vitro when treated with M-CSF and RANKL.  相似文献   

5.
We report the generation of 30 healthy human embryonic stem cell (h-ESC) lines from 33 voluntary oocyte donors using a donor somatic cell nuclear transfer (SCNT) technique on 190 oocytes. Our aim was to coculture them with their own bone marrow (BM) to generate hematopoietic progenitor cells for therapeutic purposes. Pluripotency and undifferentiated stage were confirmed using molecular cell surface markers. Normal karyotype of these cell lines was confirmed. Here we demonstrate that SCNT-h-ESCs differentiate to hematopoietic precursors when cocultured with unmodified, nonirradiated donor BM. We did not use any xenogeneic material for this hematopoietic differentiation. Hematopoietic precursors derived from them expressed cell surface antigens CD45/34. When further cultured with hematopoietic growth factors these hematopoietic precursors formed characteristic myeloid, erythroid, and megakaryocyte lineages. Phenotypic CD34+ cells derived from NT-h-ESCs were functionally similar to their counterparts in primary hematopoietic tissues like BM, umbilical cord, and blood. More terminally differentiated hematopoietic cells derived from h-ESCs under these culture conditions also expressed normal surface antigens like glycophorin A on erythroid cells, CD15 on myeloid cells, and CD41 on megakaryocytes. We report generation of hematopoietic progenitor cells from h-ESC lines by a SCNT technique, with differentiation into further lineages with structural and functional similarities to their adult counterparts in vivo. This novel alternative source of CD34+ stem cells from h-ESC lines generated without any xenogeneic material might be used to create transplantation tolerance, to implement regenerative medicine, and to treat autoimmune disorders.  相似文献   

6.
BACKGROUND: The aim of the present study was to determine whether certain components of nonmyeloablative regimens for hematopoietic cell transplantation might compromise the growth of hematopoietic progenitors. METHODS: Porcine peripheral blood progenitor cells (PBPC) were cytokine-mobilized, collected by leukapheresis, and cryopreserved using 5% dimethyl sulfoxide and 6% hydroxyethyl starch. The influence of cryopreservation on PBPC was tested in vitro by enumeration of colony-forming units (CFUs) in methylcellulose and cobblestone area-forming cell (CAFC) subsets in stromal-associated long-term cultures on fresh and frozen PBPC. The effects of mycophenolate mofetil (MMF) on porcine PBPC and baboon and human bone marrow (BM) were tested in vitro by adding varying doses of MMF to the CFU assays. One baboon was treated with increasing doses of MMF (100-500 mg/kg per day continuously intravenous), and sequential BM aspirations were tested for CFU content. RESULTS: Fresh cytokine-mobilized PBPC had similar frequencies of progenitor cells when compared with porcine BM. Freezing-thawing of PBPC had no effect on porcine CFUs but reduced the recovery of CAFCs by more than 90%. In vitro, MMF completely inhibited the development of porcine and human CFUs at a concentration of 1 microg/mL and of baboon CFUs at levels between 10 and 100 microg/mL. Plasma-free mycophenolic acid levels of 10 to 30 microg/mL were associated with decreased CFUs in the BM. CONCLUSIONS: Cryopreservation and MMF potentially prevent engraftment of porcine PBPC by reducing the content or development of progenitor cells. These results indicate that the use of fresh PBPC might improve the induction of mixed hematopoietic chimerism and raise the possibility that use of high doses of MMF in the poststem cell transplant may compromise engraftment.  相似文献   

7.
目的 利用生物反应器大规模扩增人脐血造血干/祖细胞,并通过动物移植实验检验该方法的有效性.方法 采集抗凝脐血10份,分离出单个核细胞(MNC),分别进行生物反应器扩增培养和静态扩增培养.检测扩增前后细胞表面CD34、CD38、CD133、CD184和CD62L分子的表达,并进行造血干/祖细胞集落的培养.取非肥胖糖尿病重症联合免疫缺陷小鼠,以X射线照射后,分为4组,其中MNC组小鼠注射未经扩增培养的MNC;静态扩增组小鼠注射经过静态扩增培养的细胞;反应器扩增组小鼠注射经过生物反应器扩增培养的细胞;空白对照组小鼠注射生理盐水.移植后6周处死存活小鼠,收集骨髓细胞,检测其中CD45+、CD3+、CD19+和CD33+细胞的含量以及人特异的Cart-Ⅰ和Alu基因的表达.结果 生物反应器扩增前MNC为(1.2~2.8)×108个,扩增后为(3.7~12.6)×108个,扩增后的细胞数明显高于静态扩增培养者(P<0.01).经生物反应器扩增后所形成的红系集落形成单位、粒-巨噬细胞集落形成单位数明显高于经静态扩增者(P<0.05).移植6周后,空白对照组小鼠均死亡,MNC组存活率为35%,静态扩增组存活率为30%,反应器扩增组存活率为62.9%,后者明显高于前二者(P<0.05).各组存活小鼠骨髓细胞中均检测到Alu基因和Cart-Ⅰ基因的表达以及人源CD33+、CD45+、CD3+及CD19+细胞.结论 利用生物反应器可大规模扩增人脐血造血干/祖细胞,所得细胞能植入小鼠体内,并能获得造血功能重建.  相似文献   

8.
9.
Human mesenchymal stem cells (MSCs) are multipotential and are detected in bone marrow (BM), adipose tissue, placenta, and umbilical cord blood (UCB). In this study, we examined the ability of UCB-derived MSCs (UCB-MSCs) to support ex vivo expansion of hematopoietic stem/progenitor cells (HSPCs) from UCB and the engraftment of expanded HSPCs in NOD/SCID mice. The result showed that UCB-MSCs supported the proliferation and differentiation of CD34+ cells in vitro. The number of expanded total nucleated cells (TNCs) in MSC-based culture was twofold higher than cultures without MSC (control cultures). UCB-MSCs increased the expansion capabilities of CD34+ cells, long-term culture-initiating cells (LTC-ICs), granulocyte-macrophage colony-forming cells (GM-CFCs), and high proliferative potential colony-forming cells (HPP-CFCs) compared to control cultures. The expanded HSPCs were transplanted into lethally irradiated NOD/SCID mice to assess the effects of expanded cells on hematopoietic recovery. The number of white blood cells (WBCs) in the peripheral blood of mice transplanted with expanded cells from both the MSC-based and control cultures returned to pretreatment levels at day 25 posttransplant and then decreased. The WBC levels returned to pretreatment levels again at days 45-55 posttransplant. The level of human CD45+ cell engraftment in primary recipients transplanted with expanded cells from the MSC-based cultures was significantly higher than recipients transplanted with cells from the control cultures. Serial transplantation demonstrated that the expanded cells could establish long-term engraftment of hematopoietic cells. UCB-MSCs similar to those derived from adult bone marrow may provide novel targets for cellular and gene therapy.  相似文献   

10.
Hypertrophic nonunion usually results from insufficient fracture stabilization. Therefore, most hypertrophic nonunions simply require the stabilization of the nonunion site. However, the reasons why union occurs without treating the nonunion site directly is not well understood biologically. In this study, we hypothesized that the intervening tissue at the hypertrophic nonunion site (nonunion tissue) could serve as a reservoir of mesenchymal progenitor cells and investigated whether the cells derived from nonunion tissue had the capacity for multilineage mesenchymal differentiation. After nonunion tissue was obtained, it was cut into strips and cultured. Homogenous fibroblastic adherent cells were obtained. Flow cytometry revealed that the adherent cells were consistently positive for mesenchymal stem cell related markers CD13, CD29, CD44, CD90, CD105, CD166, and negative for the hematopoietic markers CD14, CD34, CD45, and CD133, similar to control bone marrow stromal cells. In the presence of lineage‐specific induction factors, the adherent cells differentiated in vitro into osteogenic, chondrogenic, and adipogenic cells. These results demonstrated for the first time that hypertrophic nonunion tissue contains multilineage mesenchymal progenitor cells. This suggests that hypertrophic nonunion tissue plays an important role during the healing process of hypertrophic nonunion by serving as a reservoir of mesenchymal cells that are capable of transforming into cartilage and bone forming cells. © 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:208–215, 2009  相似文献   

11.
Hematopoietic stem cell transplantation (HSCT) is the treatment of choice for children and certain adults with malignant and nonmalignant hematologic disease. Since viral infections are the major problem, this study examined those that might potentially be transmitted to HSCT recipients via bone marrow (BM) versus umbilical cord blood (UCB). BM progenitor cells, peripheral blood leukocytes, and plasma samples were collected from 30 allogenic BM donors. Umbilical cord blood hematopoietic stem cells and plasma samples were also collected from 34 UCB donors. Viral DNA extracted and purified from collected specimens was processed using nested polymerase chain reactions (PCR) to detect human parvovirus B19 (HPV B19), human herpesvirus-6 (HHV-6), varicella-zoster virus (VZV), human cytomegalovirus (HCMV), and Epstein-Barr virus (EBV). The prevalences of HCMV DNA in collected BM progenitor cells versus UCB hematopoietic stem cells were 73% versus 23%, respectively. Conversely, HHV-6 DNA was not detected in any collected specimen by simple PCR. Distribution of the other investigated virus DNAs except EBV DNA was similar in specimens collected from both groups. EBV DNA was not determined in UCB hematopoietic stem cells. The results indicate that the risk of viral transmission to BM transplant recipients via UCB hematopoietic stem cells is less than that with BM progenitor cells.  相似文献   

12.
We isolated multilineage mesenchymal progenitor cells from haematomas collected from fracture sites. After the haematoma was manually removed from the fracture site it was cut into strips and cultured. Homogenous fibroblastic adherent cells were obtained. Flow cytometry revealed that the adherent cells were consistently positive for mesenchymal stem-cell-related markers CD29, CD44, CD105 and CD166, and were negative for the haemopoietic markers CD14, CD34, CD45 and CD133 similar to bone-marrow-derived mesenchymal stem cells. In the presence of lineage-specific induction factors the adherent cells could differentiate in vitro into osteogenic, chondrogenic and adipogenic cells. Our results indicate that haematomas found at a fracture site contain multilineage mesenchymal progenitor cells and play an important role in bone healing. Our findings imply that to enhance healing the haematoma should not be removed from the fracture site during osteosynthesis.  相似文献   

13.
Galα1-3Gal (Gal) is the major epitope on pig tissues bound by human natural antibodies. Xenogeneic hematopoietic cell transplantation is being investigated to induce immunological tolerance to xenografts. We have investigated the level of Gal expression on pig hematopoietic cells. Cells were collected from pig fetal liver and bone marrow (BM), and also from adult BM and peripheral blood, before and after treatment with pig-specific hematopoietic growth factors. Fluorescent activated cell sorting (FACS) analysis was performed with the M86 monoclonal antibody (specific for Gal), lineage markers, and biotinylated stem cell factor (SCF) to detect c-kit expression. In fetal pig BM and liver, there was no significant difference in Gal expression between monocytes/macrophages (myeloid cells) and lymphocytes. In adult hematopoietic cells from all sources, Gal-positive subpopulations in T cells showed weak expression of Gal, whereas B cells demonstrated higher expression, and myeloid cells showed highest expression. Adult BM and mobilized peripheral blood progenitor cells contained small populations with very low or negligible expression of Gal. A very small population of c-kit-positive cells, indicating progenitor cells, were Gal-negative. The small Gal-negative population that exists in progenitor cells might explain why some pig colony forming units (CFU) can be resistant to human serum.  相似文献   

14.
人脐血造血干/祖细胞的磁力搅拌悬浮培养及移植实验   总被引:1,自引:0,他引:1  
目的 探讨磁搅拌大规模培养体系对人脐血造血祖细胞的扩增效果以及扩增的人造血祖细胞植入动物体内后的造血重建情况.方法 从新鲜抗凝脐血中分离出单个核细胞(MNC),以添加干细胞因子、酪氨酸激酶受体3配基及血小板生成素的无血清培养体系进行培养.静态扩增组的细胞置于T25培养瓶中培养,磁搅拌悬浮扩增组(磁搅拌扩增组)的细胞采用Celstir装置进行培养,培养体系为50~100 ml.培养7 d后进行细胞计数、集落培养检测和细胞表面分子表达的测定.以不进行培养者为对照组.非肥胖糖尿病重症联合免疫缺陷(NOD/SCID)小鼠在接受2.5 Gy的亚致死剂量X射线照射后分别从尾静脉输入上述静态扩增组、磁搅拌扩增组和对照组的MNC(5×106个),另设不移植的空白对照组.观察小鼠的存活情况,6周后处死存活小鼠,检测骨髓细胞中CD34+细胞、CD3+细胞、CD19+细胞、CD33+细胞及CD45+细胞的含量以及人特异的Cart-Ⅰ和Alu基因的表达.结果 经过7天的培养,磁搅拌扩增组的造血祖细胞扩增倍数为(2.8±0.45)倍,明显高于静态扩增组的(2.1±0.48)倍(P<0.01).磁搅拌扩增组形成的红系集落、粒-巨噬细胞集落数均明显高于静态扩增组(P<0.05).静态扩增组扩增后的CD34+细胞、CD34+CD38-细胞和CD133+细胞含量均高于磁搅拌扩增组(P<0.05),而CD184+细胞和CD62L+细胞含量低于磁搅拌扩增组(P<0.01).移植后6周,对照组、静态扩增组和磁搅拌扩增组分别有3、4、5只小鼠存活,三组间两两比较,6周存活率的差异无统计学意义(P>0.05).存活6周的小鼠,其骨髓中能检人特异性CD34+细胞,以及CD3+细胞、CD19+细胞、CD33+细胞及CD45+细胞,也检测到人Alu基因和Cart-Ⅰ基因的表达.结论 磁搅拌培养能大规模扩增脐带血造血祖细胞,扩增的细胞能植入x射线照射的NOD/SCID小鼠,并重建其多系造血.  相似文献   

15.
Bone marrow-and adult kidney-derived stem/progenitor cells hold promise in the development of therapies for renal failure. Here is reported the identification and characterization of renal multipotent progenitors in human embryonic kidneys that share CD24 and CD133 surface expression with adult renal progenitors and have the capacity for self-renewal and multilineage differentiation. It was found that these CD24+CD133+ cells constitute the early primordial nephron but progressively disappear during nephron development until they become selectively localized to the urinary pole of Bowman's capsule. When isolated and injected into SCID mice with acute renal failure from glycerol-induced rhabdomyolysis, these cells regenerated different portions of the nephron, reduced tissue necrosis and fibrosis, and significantly improved renal function. No tumorigenic potential was observed. It is concluded that CD24+CD133+ cells represent a subset of multipotent embryonic progenitors that persist in human kidneys from early stages of nephrogenesis. The ability of these cells to repair renal damage, together with their apparent lack of tumorigenicity, suggests their potential in the treatment of renal failure.  相似文献   

16.
As an early acting growth factor, flt-3 ligand (FL) promotes the ex vivo expansion of hematopoietic stem and progenitor cells. The effect and mechanism of FL on the development of the megakaryocytic lineage remain unclear. In this study, we compared the effects of FL and stem cell factor (SCF) in combination with other megakaryocyte-promoting cytokines on the differentiation and proliferation of megakaryocytic progenitors and investigated the expression of flt-3 receptors on megakaryocytic cell lines. In liquid cultures of enriched CD34+ cells from human umbilical cord blood for 14 days, FL plus thrombopoietin (TPO), interleukin-3 (IL-3), and IL-6 promoted the expansion of nucleated cells, CD34+ cells, CD34+ CD38- cells, and megakaryocyte colony-forming units (CFU-MK) by 300 +/- 115-, 23.8 +/- 11.3-, 33.9 +/- 28.6-, and 584 +/- 220-fold, respectively. Replacing FL with SCF significantly decreased the yield of all cell types. Using murine bone marrow (BM) cells, we demonstrated that FL at a range of 0-100 ng/ml had no significant mitogenic effect on CFU-MK formation. TPO increased CFU-MK (p < 0.001) but the effect was not significantly modified by FL. While one human acute lymphoblastic leukemia sample expressed high levels of flt-3 receptor, the four megakaryocytic cell lines (Meg-01, CHRF-288-11, M-07e, and Dami) did not show any positive expression. Our data suggest that the present cytokine combination and expansion conditions provide an effective and potentially useful system for the clinical expansion of cord blood for bone marrow transplantation (BMT). FL alone did not stimulate megakaryocytopoiesis, possibly due to the lack of receptor expression on megakaryocytes. The effect of FL in augmenting the expansion of CFU-MK in liquid culture might be due to the early action of FL at the pluripotent stem cell stage.  相似文献   

17.
Kozlowski T, Monroy R, Giovino M, Hawley RJ, Glaser R, Li Z, Meshulam DH, Spitzer TR, Cooper DKC and Sachs DH Effect of pig specific cytokines on mobilization of hematopoietic progenitor cells in pigs and on pig bone marrow engraftment in baboons. Xenotransplantation 1999; 6: 00-00. ©Munksgaard, Copenhagen. Abstract: Mixed hematopoietic chimerism has been found to be a requirement for achieving specific immunologic hyporesponsiveness. Some of the requirements for in vitro and in vivo coexistence of discordant hematopoietic systems in the pig-to-baboon (or human) model have been investigated. We have tested the efficacy of pig-specific cytokines (PSC) (IL3, SCF, GM-CSF) in the mobilization of porcine bone marrow (BM) progenitors in vivo (i) in the pig and (ii) in baboons that underwent a conditioning regimen and porcine BM transplantation. In a preliminary in vitro study, porcine BM cells were incubated in various media to assess the effect of human plasma on pig progenitors in a colony-forming unit (CFU) assay. In in vivo studies, four pigs received PSC and one control pig did not. Six baboons underwent natural antibody removal, with subsequent pig BM transplantation. Four of these six underwent nonmyeloablative (n=2) or myeloablative (n=2) conditioning and all received PSC treatment. Two baboons did not receive PSC, one of which underwent a nonmyeloablative regimen. Sequential blood samples and BM biopsies in pigs and baboons were analyzed by CFU assay for the detection of porcine cells. Baboon samples were analyzed by polymerase chain reaction (PCR) to detect porcine DNA. In the case of the in vitro tests, colony forming by porcine progenitors was not inhibited by media containing human plasma and for the in vivo tests, PSC increased the number of progenitors in pig BM; mobilization of progenitors into the peripheral blood was observed. PSC-treated baboons which experienced transient depletion of leukocytes < 1,000/ml (as an effect of the conditioning regimen) had porcine BM cells detectable by PCR for as long as day 316 after BM transplantation. In conclusion we found that: (i) under the conditions of these studies, in vitro porcine progenitor cell growth was not inhibited by human plasma containing natural antibody and complement; (ii) PSC treatment led to an increased number of progenitors in pig BM and peripheral blood; (iii) the combination of an effective conditioning regimen and treatment with PSC was capable of inducing long-term survival of pig progenitors in baboons, although only a low level of engraftment was achieved.  相似文献   

18.
Bone marrow (BM) cavities are utilized for hematopoiesis and to maintain hematopoietic stem cells (HSCs). HSCs have the ability to self-renew as well as to differentiate into multiple different hematopoietic lineage cells. HSCs produce their daughter cells throughout the lifespan of individuals and thus, maintaining HSCs is crucial for individual life. BM cavities provide a specialized microenvironment termed “niche” to support HSCs. Niches are composed of various types of cells such as osteoblasts, endothelial cells and reticular cells. Osteoclasts are unique cells which resorb bones and are required for BM cavity formation. Loss of osteoclast function or differentiation results in inhibition of BM cavity formation, an osteopetrotic phenotype. Osteoclasts are also reportedly required for hematopoietic stem and progenitor cell (HSPC) mobilization to the periphery from BM cavities. Thus, lack of osteoclasts likely results in inhibition of HSC maintenance and HSPC mobilization. However, we found that osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization by using three independent osteoclast-less animal models. In this review, I will discuss the roles of osteoclasts in hematopoietic stem cell maintenance and mobilization.  相似文献   

19.
Hematopoietic stem cells (HSC) derived from peripheral blood (PB) and bone marrow (BM) are frequently used for autologous and allogenic transplantations. Establishing quality control at appropriate steps of the stem cell preparation process is crucial for a successful transplantation. Microbial contamination of haematopoietic stem cells is rare but could cause a potentially mortal complication of a stem cells transplantation. We investigated the microbiological contamination of PB (291 donations) and BM (39 donations) products. Microbial cultures of 330 donations between January 2012 and June 2013 were retrospectively analyzed after the collection and preparation steps. The microbiological analysis was performed with an automated system. Hematopoietic stem cells were processed in a closed system. Additionally, in this report the environment of the working areas of stem cell preparation was monitored. We analyzed microbial contamination of the air in a class I laminar air flow clean bench at the time of preparation and in the laboratory once per month. We reported 9 (2.73%) contaminated HSC products. The most frequent bacteria isolated from PB and BM products were Bacillus species. Coagulase-negative staphylococci and Micrococcus species were the most frequent micro-organisms detected in the air microbial control. Microbial control results are necessary for the safety of hematopoietic stem cell products transplantation. Microbial control of hematopoietic stem cell products enables an early contamination detection and allows for knowledgeable decision making concerning either discarding the contaminated product or introducing an efficient antibiotic therapy. Each step of cell processing may cause a bacterial contamination. A minimum of manipulation steps is crucial for increasing the microbial purity of the transplant material. Also, the air contamination control is essential to ensure the highest quality standards of HSC products preparation.  相似文献   

20.
To develop a culture system for bone marrow (BM) cell expansion, we examined the effect of growth factors (GFs) on the proliferation and differentiation of BM cells cultured in three-dimensional (3D) scaffolds of porous polyvinyl formal (PVF) resin. Murine BM cells were cultured for 2 weeks in the PVF resin or in culture dishes as a control, in the presence or absence of 4 GFs (erythropoietin, stem cell factor, interleukin [IL]-3, and IL-6). These GFs remarkably stimulated cell proliferation both in PVF and dish cultures. In addition, the PVF cultures showed enhanced cell proliferation in comparison with the corresponding dish cultures. Moreover, PVF cultures with GFs revealed the highest number of colony-forming units and the highest percentage of hematopoietic progenitor cells (HPCs) among all the cultures examined. Therefore, this 3D PVF culture system with GFs is considered as a potential alternative method for the ex vivo expansion of HPCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号