首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
The serum G-CSF levels of eight patients with severe congenital neutropenia (SCN) were found to be significantly higher than those of 22 patients with chronic benign neutropenia (CBN). The relative number of cells expressing the G-CSF receptor in light density bone marrow cells (LDBMC) was lower in patients with SCN than in patients with CBN or in normal subjects. When recombinant human G-CSF was incubated with LDBMC, G-CSF levels were decreased by LDBMC from normal subjects and CBN patients, but not by those from SCN patients. Serum G-CSF concentrations, which are affected by mature neutrophils, may also be modulated by myeloid precursor cells in the bone marrow.  相似文献   

2.
M Kobayashi  C Yumiba  Y Kawaguchi  Y Tanaka  K Ueda  Y Komazawa  K Okada 《Blood》1990,75(11):2143-2149
The effects of recombinant human interleukin-3 (IL-3) and recombinant human granulocyte colony-stimulating factor (G-CSF) on the growth of myeloid progenitor cells (CFU-C) in semisolid agar culture were studied in two patients with Kostmann-type congenital neutropenia. CFU-C growth in bone marrow cells from patients was significantly reduced in response to various concentrations of either IL-3 or G-CSF alone, compared with that from normal subjects. There was no inhibitory effect of bone marrow cells from patients on normal CFU-C formation supported by IL-3 or G-CSF. However, the simultaneous stimulation with IL-3 and G-CSF induced the increase of CFU-C formation in patients with congenital neutropenia. Furthermore, CFU-C growth in both patients was supported when bone marrow cells were preincubated with IL-3 in liquid culture followed by the stimulation with G-CSF in semisolid agar culture. In contrast, that was not supported by the preincubation with G-CSF and the subsequent stimulation with IL-3. This evidence suggests that the hematopoietic progenitor cells in patients with congenital neutropenia have the potential for developing CFU-C in the combined stimulation with IL-3 and G-CSF, and that this growth may be dependent on the priming of IL-3 followed by the stimulation with G-CSF. The level of mature neutrophils in peripheral blood was not fully restored to normal levels by the daily administration of G-CSF in doses of 100 to 200 micrograms/m2 of body surface area for 20 to 25 days in both patients. These observations raise the possibility that the combination of IL-3 and G-CSF might have a potential role for the increase of neutrophil counts in patients with congenital neutropenia.  相似文献   

3.
Myeloid engraftment after bone marrow transplantation (BMT) is influenced by a number of variables, including cytoreductive chemoradiotherapy, genetic disparity, number of reinfused committed myeloid progenitor cells, healthy microenvironment, and the presence of hematopoietic growth factors. Granulocyte colony-stimulating factor (G-CSF) stimulates proliferation of myeloid progenitor cells and enhances myeloid engraftment after BMT. We investigated the temporal relationship between endogenous G-CSF production and myeloid engraftment in both children and adults after allogeneic (ALLO) and autologous (AUTO) BMT. Circulating endogenous G-CSF levels ranged between 0 and 2552 pg/mL. The correlation coefficient between circulating serum G-CSF levels and the peripheral absolute neutrophil count (ANC) was r = -.875 (P less than .001). The endogenous serum G-CSF level was highest during the first week after BMT, when the ANC was less than or equal to 200/microL (699 +/- 82.3 pg/mL) (P less than .001). Both children and adults demonstrated a similar inverse relationship between circulating G-CSF level and degree of neutropenia. One patient failed to engraft after AUTO BMT and also failed to generate any endogenous G-CSF production. Lastly, once the serum G-CSF level decreased to less than 200 pg/mL, a mean of 6.1 +/- 0.9 days elapsed before the ANC was greater than or equal to 500/microL for 2 consecutive days. This study demonstrates that endogenous G-CSF production is associated with myeloid engraftment in both children and adults after AUTO and ALLO BMT and that the rate of increase and decrease in endogenous G-CSF may be predictive of either failure to engraft or duration of neutropenia.  相似文献   

4.
Aprikyan AA  Liles WC  Park JR  Jonas M  Chi EY  Dale DC 《Blood》2000,95(1):320-327
Myelokathexis is a congenital disorder that causes severe chronic leukopenia and neutropenia. Characteristic findings include degenerative changes and hypersegmentation of mature neutrophils and hyperplasia of bone marrow myeloid cells. The associated neutropenia can be partially corrected by treatment with granulocyte colony-stimulating factor (G-CSF) or granulocyte-macrophage colony-stimulating factor (GM-CSF). These features led us to propose that accelerated apoptosis of neutrophil precursors might account for the neutropenic phenotype. Blood and bone marrow aspirates were obtained from 4 patients (2 unrelated families) with myelokathexis before G-CSF therapy and from 2 of the affected persons after G-CSF therapy (1 microg/kg per day subcutaneously for 3 weeks). Bone marrow was fractionated using immunomagnetic bead cell sorting into CD34(+), CD33(+)/CD34(-), and CD15(+)/CD34(-)/CD33(- )cell populations. Examination of these cells by flow cytometry and electron microscopy revealed abundant apoptosis in the CD15(+) neutrophil precursor population, characterized by enhanced annexin-V binding, extensive membrane blebbing, condensation of heterochromatin, and cell fragmentation. Colony-forming assays demonstrated significant reduction in a proportion of bone marrow myeloid-committed progenitor cells. Immunohistochemical analysis revealed a selective decrease in bcl-x, but not bcl-2, expression in the CD15(+)/CD34(-)/CD33(-)cell population compared with similar subpopulations of control bone marrow-derived myeloid precursors. After G-CSF therapy, apoptotic features of patients' bone marrow cells were substantially reduced, and the absolute neutrophil counts (ANC) and expression of bcl-x in CD15(+)/CD34(-)/CD33(-)cells increased. The authors concluded that myelokathexis is a disease characterized by the accelerated apoptosis of granulocytes and the depressed expression of bcl-x in bone marrow-derived granulocyte precursor cells. These abnormalities are partially corrected by the in vivo administration of G-CSF. (Blood. 2000;95:320-327)  相似文献   

5.
CXCR4 receptor expression is required for the retention of granulocyte precursors and mature neutrophils within the bone marrow, and disruption of the SDF-1/CXCR4 axis in the bone marrow results in the mobilization of myeloid lineage cells to the peripheral circulation. We report that G-CSF down-regulates CXCR4 expression in bone marrow-derived murine and human myeloid lineage cells. When exposed to G-CSF, murine Gr1(+) bone marrow myeloid cells display a time-dependent reduction of cell-surface CXCR4 and respond poorly to SDF-1 in attachment and migration assays. Bone marrow-derived cells of nonmyeloid lineage display no change in surface CXCR4 expression upon exposure to G-CSF. Compared with controls, mice treated with G-CSF for mobilization of hematopoietic progenitor cells display reduced levels of CXCR4 selectively in bone marrow Gr1(+) myeloid cells. Since bone marrow myeloid cells express G-CSF receptors and G-CSF rapidly reduces CXCR4 expression in purified Gr1(+) cells populations, these results provide evidence that G-CSF acts directly on myeloid lineage cells to reduce CXCR4 expression. By down-regulating CXCR4 expression in bone marrow myeloid cells and attenuating their responsiveness to SDF-1, G-CSF promotes their mobilization from the bone marrow to the peripheral blood.  相似文献   

6.
A 55-year-old man was admitted to our hospital for the evaluation of neutropenia. On physical examination, he had apthae and splenomegaly. CBC showed 1,000/microliter WBC with 5% neutrophils, and microcytic anemia consistent with iron deficiency. Bone marrow examination revealed a marked decrease of mature neutrophils, but normal percentage of immature myeloid cells. There was no morphological abnormality in the hemopoietic cells. He had no drug or family history responsible for the neutropenia. Anti-neutrophil auto-antibody was negative. Hence, a diagnosis of chronic idiopathic neutropenia (CIN) was made. He developed frequent episodes of infection such as balanitis, peri-anal infection, gingivitis, and pharyngitis. He was treated with steroid pulse therapy, anabolic hormone, and high dose gamma-globulin infusion, but no significant improvement occurred. Then, recombinant granulocyte-colony stimulating factor (rG-CSF) was started. The neutrophil count was normalized by the 7th day of 5 micrograms/kg/day rG-CSF administration. The administration of G-CSF was discontinued after a 14-day course. Thereafter, the neutrophil count remained at near normal level (approximately 1,500/microliter) and there have been no episodes of infection in the last 5 months. However this cannot be explained simply by the direct effect of rG-CSF on the myeloid precursors; rather, it suggests some unknown effect of G-CSF on the bone marrow microenvironment regulating myeloid hemopoiesis. We consider this to be a rare case of CIN with frequent episodes of infection, which was successfully treated with G-CSF.  相似文献   

7.
Severe congenital neutropenia (SCN) is a hematopoietic disorder characterized by neutropenia in peripheral blood and maturation arrest of neutrophil precursors in bone marrow. Patients with SCN may evolve to have myelodysplastic syndrome or acute myelocytic leukemia. In approximately 20% of SCN cases, a truncation mutation is found in the cytoplasmic region of the granulocyte colony-stimulating factor receptor (G-CSFR). We then generated mice carrying murine wild-type G-CSFR and its mutants equivalent to truncations at amino acids 718 and 731 in human G-CSFR, those were reported to be related to leukemic transformation of SCN. Although numbers of peripheral white blood cells, red blood cells, and platelets did not differ among mutant and wild-type G-CSFR transgenic (Tg) mice, both of the mutant receptor Tg mice had one third of peripheral neutrophil cell counts compared with wild-type receptor Tg mice. The mutant receptor Tg mice also showed impaired resistance to the infection with Staphylococcus aureus. Moreover, bone marrow of these Tg mice had an increased percentage of immature myeloid cells, a feature of SCN. This maturation arrest was also observed in in vitro cultures of bone marrow cells of truncated G-CSFR Tg mice under G-CSF stimulation. In addition, clonal culture of bone marrow cells of the truncated G-CSFR Tg mice showed the hypersensitivity to G-CSF in myeloid progenitors. Our Tg mice may be useful in the analysis of the role of truncated G-CSFR in SCN pathobiology.  相似文献   

8.
The number and growth factor requirements of committed progenitor cells (colony-forming units-granulocyte/macrophage and burst-forming units-erythroid) in three patients with cyclic neutropenia (two congenital, one acquired) were studied before and during therapy with recombinant human granulocyte colony-stimulating factor (G-CSF; 3 to 10 micrograms/kg/d). When the patients with congenital disease were treated with G-CSF, the cycling of blood cells persisted, but the cycle length was shortened from 21 days to 14 days, and the amplitude of variations in blood counts increased. There was a parallel shortening of the cycle and increase of the amplitude of variations (from two- to three-fold to 10- to 100-fold) in the number of both types of circulating progenitor cells in these two patients. In the patient with acquired cyclic neutropenia, cycling of both blood cells and progenitors could not be seen. In cultures deprived of fetal bovine serum, erythroid and myeloid bone marrow progenitor cells from untreated patients and from normals differed in growth factor responsiveness. As examples, maximal growth of granulocyte/macrophage (GM) colonies was induced by granulocyte/macrophage (GM)-CSF plus G-CSF in the patients, whereas a combination of GM-CSF, G-CSF and interleukin-3 (IL-3) was required in the normals, and erythropoietin alone induced fourfold more erythroid bursts from cyclic neutropenic patients than from normal donors (46% versus 11% of the maximal colony number, respectively). The growth factor responsiveness of marrow progenitor cells slightly changed during the treatment toward the values observed with normal progenitors. These results indicate that treatment with G-CSF not only ameliorated the neutropenia, but also increased the amplitude and the frequency of oscillation of circulating progenitor cell numbers. These data are consistent with the hypothesis that G-CSF therapy affects the proliferation of the hematopoietic stem cell.  相似文献   

9.
Granulocyte colony-stimulating factor (G-CSF) has had a major impact on the management of "severe chronic neutropenia" (SCN), a collective term referring to congenital, idiopathic, or cyclic neutropenia. Almost all patients respond to G-CSF with increased neutrophils, reduced infections, and improved survival. Some responders with congenital neutropenia and Shwachman-Diamond syndrome (SDS) have developed myelodysplastic syndrome and acute myeloid leukemia (MDS/AML), which raises the question of the role of G-CSF in pathogenesis. The issue is complicated because both disorders have a propensity for MDS or AML as part of their natural history. To address this, the Severe Chronic Neutropenia International Registry (SCNIR) used its large database of chronic neutropenia patients treated with G-CSF to determine the incidence of malignant myeloid transformation in the two disorders, and its relationship to treatment and to other patient characteristics. No statistically significant relationships were found between age at onset of MDS or AML and patient gender, G-CSF dose, or duration of G-CSF therapy. What was observed, however, was the multistep acquisition of aberrant cellular genetic changes in marrow cells from patients who transformed, including activating ras oncogene mutations, clonal cytogenetic abnormalities, and G-CSF receptor mutations. In murine models, the latter produces a hyperproliferative response to G-CSF, confers resistance to apoptosis, and enhances cell survival. Since congenital neutropenia and SDS are inherited forms of bone marrow failure, G-CSF may accelerate the propensity for MDS/AML in the genetically altered stem and progenitor cells, especially in those with G-CSF receptor and ras mutations (82% and 50% of patients who transform, respectively). Alternatively, and equally plausible, G-CSF may simply be an "innocent bystander" that corrects neutropenia, prolongs patient survival, and allows time for the malignant predisposition to declare itself. In patients who transform to overt MDS or AML, hematopoietic stem cell transplantation is the only chance for cure. In those with "soft" signs of MDS, such as an isolated clonal cytogenetic change but without other evidence of MDS, or with an isolated G-CSF receptor mutation, there is room for conservative management. One option is to reduce the G-CSF dosage as much as possible, and observe the tempo of progression, if any, to more overt signs of malignancy.  相似文献   

10.
The human bladder carcinoma cell line 5637 produces hematopoietic growth factors [granulocyte and granulocyte/macrophage colony-stimulating factors (G-CSF and GM-CSF)] and hemopoietin 1, which synergizes with CSFs to stimulate colony formation by primitive hematopoietic stem cells in 5-fluorouracil-treated mouse bone marrow. Molecular and functional properties of hemopoietin 1 identified it as identical to interleukin 1 alpha (IL-1 alpha). When bone marrow cells from 5-fluorouracil-treated mice were cultured in suspension for 7 days with recombinant human IL-1 alpha and/or G-CSF, it was found that the two factors synergized to enhance recovery of myelopoietic cells and colony-forming cells of both high and low proliferative potential. G-CSF alone did not sustain these populations, but the combination had greater-than-additive stimulating capacity. In vivo, 5-fluorouracil (150 mg/kg) produced profound myelosuppression and delayed neutrophil regeneration for up to 2 weeks in C3H/HeJ mice. Daily administration of recombinant human G-CSF or recombinant human IL-1 alpha accelerated recovery of stem cells, progenitor cells, and blood neutrophils by up to 4 days in 5-fluorouracil-treated C3H/HeJ and B6D2F1 mice. The combination of IL-1 alpha and G-CSF acted synergistically, reducing neutropenia and accelerating recovery of normal neutrophil numbers by up to 7 days. This was accompanied by accelerated regeneration of spleen colony-forming units and erythroid, myeloid, and megakaryocytic progenitor cells in marrow and spleen, with enhanced erythroid and granulocytic differentiation. These results indicate the possible therapeutic potential of combination therapy with IL-1 and hematopoietic growth factors such as G-CSF in the treatment of chemotherapy- or radiation-induced myelosuppression.  相似文献   

11.
Using a methylcellulose culture system, we studied the effects of recombinant human interleukin-3 (IL-3), recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF), and recombinant human granulocyte colony-stimulating factor (G-CSF) on the growth of myeloid progenitor cells (CFU-C) from an adult patient with congenital neutropenia. The moderate clinical course and the maturation arrest at blast-promyelocyte stage in the marrow differentiated this patient from those described as having Kostmann-type congenital neutropenia. CFU-C growth in bone marrow cells from the patient responded to IL-3 normally in a dose-dependent manner. GM-CSF stimulated only macrophage colony formation in a dose-dependent manner comparable to that in normal subjects. Neither GM-CSF nor G-CSF stimulated any significant granulocyte colony formation. This evidence suggests that the hematopoietic progenitor cells in this patient had the potential for developing CFU-C with IL-3, and that the neutropenia in this patient could be a result of an intrinsic defect in myelopoiesis along a granulocytic pathway responsive to GM-CSF or G-CSF.  相似文献   

12.
The levels of serum and long-term bone marrow culture supernatant soluble flt-3 ligand (sFL) were determined in 54 patients with chronic idiopathic neutropenia (CIN) and 16 normal controls. Both serum and supernatant sFL levels were significantly increased in the patients compared with controls. Individual sFL values inversely correlated with the number of circulating neutrophils and the proportion of bone marrow CD34+ cells. Supernatant sFL values positively correlated with the levels of supernatant G-CSF. These findings suggest that the impaired myelopoiesis in CIN patients is accompanied by a compensatory mechanism attempting to increase the neutrophil production at the myeloid progenitor cell level.  相似文献   

13.
Severe congenital neutropenia (CN) is a bone marrow failure syndrome characterized by an absolute neutrophil count (ANC) below 500 cells/μL and recurrent, life-threatening bacterial infections. Treatment with granulocyte colony-stimulating factor (G-CSF) increases the ANC in the majority of CN patients. In contrary, granulocyte-monocyte colony-stimulating factor (GM-CSF) fails to increase neutrophil numbers in CN patients in vitro and in vivo, suggesting specific defects in signaling pathways downstream of GM-CSF receptor. Recently, we detected that G-CSF induces granulopoiesis in CN patients by hyperactivation of nicotinamide phosphoribosyl transferase (NAMPT)/Sirtuin 1 signaling in myeloid cells. Here, we demonstrated that, in contrast to G-CSF, GM-CSF failed to induce NAMPT-dependent granulopoiesis in CN patients. We further identified NAMPT signaling as an essential downstream effector of the GM-CSF pathway in myelopoiesis.  相似文献   

14.
Severe congenital neutropenia (Kostmann syndrome) is characterized by profound absolute neutropenia and a maturation arrest of marrow progenitor cells at the promyelocyte-myelocyte stage. Marrow cells from such patients frequently display a reduced responsiveness to granulocyte-colony-stimulating factor (G-CSF). G-CSF binds to and activates a specific receptor which transduces signals critical for the proliferation and maturation of granulocytic progenitor cells. Here we report the identification of a somatic point mutation in one allele of the G-CSF receptor gene in a patient with severe congenital neutropenia. The mutation results in a cytoplasmic truncation of the receptor. When expressed in murine myeloid cells, the mutant receptor transduced a strong growth signal but, in contrast to the wild-type G-CSF receptor, was defective in maturation induction. The mutant receptor chain may act in a dominant negative manner to block granulocytic maturation.  相似文献   

15.
Kostmann syndrome, or severe congenital neutropenia (SCN), is an autosomal recessive disorder of neutrophil production. To investigate the potential role of apoptosis in SCN, bone marrow aspirates and biopsies were obtained from 4 patients belonging to the kindred originally described by Kostmann and 1 patient with SCN of unknown inheritance. An elevated degree of apoptosis was observed in the bone marrow of these patients, and a selective decrease in B-cell lymphoma-2 (Bcl-2) expression was seen in myeloid progenitor cells. Furthermore, in vitro apoptosis of bone marrow-derived Kostmann progenitor cells was increased, and mitochondrial release of cytochrome c was detected in CD34(+) and CD33(+) progenitors from patients, but not in controls. Administration of granulocyte colony-stimulating factor (G-CSF) restored Bcl-2 expression and improved survival of myeloid progenitor cells. In addition, cytochrome c release was partially reversed upon incubation of progenitor cells with G-CSF. In sum, these studies establish a role for mitochondria-dependent apoptosis in the pathogenesis of Kostmann syndrome and yield a tentative explanation for the beneficial effect of growth factor administration in these patients.  相似文献   

16.
To define the basis for faulty granulopoiesis in patients with severe congenital neutropenia (SCN), the expression of granulocyte colony-stimulating factor receptor (G-CSFR) in primitive myeloid progenitor cells and their responsiveness to hematopoietic factors were studied. Flow cytometric analysis of bone marrow cells based on the expression of CD34, Kit receptor, and G-CSFR demonstrated a reduced frequency of CD34(+)/Kit(+)/ G-CSFR(+) cells in patients with SCN. The granulocyte-macrophage colony formation of CD34(+)/Kit(+)/G-CSFR(+) cells in patients was markedly decreased in response to G-CSF alone and to the combination of stem cell factor, the ligand for flk2/flt3, and IL-3 with or without G-CSF in serum-deprived semisolid culture. In contrast, no difference in the responsiveness of CD34(+)/Kit(+)/G-CSFR(-) cells was noted between patients with SCN and subjects without SCN. These results demonstrate that the presence of qualitative and quantitative abnormalities of primitive myeloid progenitor cells expressing G-CSFR may play an important role in the impairment of granulopoiesis in patients with SCN. (Blood. 2000;96:4366-4369)  相似文献   

17.
A 47-year-old woman presented with severe neutropenia accompanied by diplopia and orbital pain. Her bone marrow was normal except for the absence of segmented neutrophils. Because the administration of granulocyte colony-stimulating factor (G-CSF) at a dose of 1 microgram/kg/day was not sufficiently effective and neutropenia developed, the patient was admitted to our hospital. Physical examination revealed painful ophthalmoplegia and hypoalgesia in the first region of trigeminal nerve, suggestive of Tolosa-Hunt syndrome. Severe neutropenia was observed in both peripheral blood and bone marrow, together with mild anemia and thrombocytopenia. The life span of red cells and platelets was shortened. High PAIgG levels, a positive Coombs test, and a positive test for anti-NA1 antibody suggested that blood cells were being destroyed by an autoimmune mechanism. Corticosteroid hormone therapy preceded by the administration of G-CSF at 5 micrograms/kg/day was effective for both neutropenia and in improving the patient's neurological findings.  相似文献   

18.
Konishi N  Kobayashi M  Miyagawa S  Sato T  Katoh O  Ueda K 《Blood》1999,94(12):4077-4083
Although several mechanisms have been proposed to explain the pathophysiology of severe congenital neutropenia (SCN), the precise defect responsible for SCN remains unknown. We studied the responsiveness of primitive myeloid progenitor cells to hematopoietic factors in 4 patients with SCN. The number of granulocyte-macrophage (GM) colonies formed in patients was decreased in response to granulocyte colony-stimulating factor (G-CSF) in both serum-supplemented and serum-deprived culture. The polymerase chain reaction-single-strand conformational polymorphism analysis of the G-CSF receptor gene showed no variance in structure conformation between the 4 patients and the normal subjects. In patients with SCN, the nonadherent light density bone marrow cells and cells that were purified on the basis of the expression of CD34 and Kit receptor (CD34(+)/Kit(+) cells) showed the reduced response to the combination of steel factor (SF), the ligand for flk2/flt3 (FL), and interleukin-3 (IL-3) with or without G-CSF in serum-deprived culture. Furthermore, when individual CD34(+)/Kit(+) cells from patients were cultured in the presence of SF, FL, and IL-3, with or without G-CSF for 10 days, the number of clones proliferated and the number of cells per each proliferating clone was significantly less than those in normal subjects. These results suggest that primitive myeloid progenitor cells of patients with SCN have defective responsiveness to not only G-CSF, but also the early- or intermediate-acting hematopoietic factors, SF, FL, and IL-3.  相似文献   

19.
Moderate hematologic abnormalities, like anemia or leukopenia, are frequently seen in anorexia nervosa, whereas pancytopenia and bone marrow abnormalities are uncommon. We report a case of tricytopenia with gelatinous bone marrow transformation in anorexia nervosa. Marrow gelatinous transformation (also called serous fat atrophy or starvation marrow) is characterized by the association of marrow hypoplasia and interstitial infiltration of a ground gelatinous substance (acidic mucopolysaccharides). Changes in peripheral blood cell counts are various and moderate, and do not always reflect the severity of bone marrow damage. The pathogenesis is not yet well elucidated but is certainly related to the nutritional status because gelatinous bone marrow transformation is found in anorexia nervosa and in other clinical situations with cachexia. Gelatinous transformation of the marrow is reversible with feeding.  相似文献   

20.
The optimal schedule of post-chemotherapy granulocyte colony-stimulating factor (G-CSF) administration has not been determined. G-CSF is customarily started 24 hours after chemotherapy; however, clinical data demonstrated that delaying G-CSF until 5 days after completion of chemotherapy has not resulted in a longer duration of neutropenia. Here, we examined the optimal timing of post-chemotherapy G-CSF administration in a mouse model, to show that delayed administration does not postpone the appearance of mature granulocytes in the peripheral blood. We also investigated the mechanism of decreased efficacy of the early G-CSF application after chemotherapy by characterizing the changes in bone marrow cellular composition. To our knowledge, we demonstrate for the first time, that early after chemotherapy, the bone marrow is predominantly composed of mature residual granulocytes and very few progenitors and precursors, on which G-CSF would act to generate granulocytes. The point when immature progenitors reappear does not occur in murine bone marrow until 48 hours after a single dose of cyclophosphamide. Our results indicate that the bone marrow cellular composition early after discontinuation of chemotherapy is not optimal for G-CSF action on acceleration of myeloid recovery. Given the high cost of G-CSF prophylaxis, its delayed administration may potentially result in substantial economic benefits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号