首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
S Rattigan  M G Wallis  J M Youd  M G Clark 《Diabetes》2001,50(12):2659-2665
Exercise training is considered to be beneficial in the treatment and prevention of insulin insensitivity, and much of the effect occurs in muscle. We have recently shown that capillary recruitment by insulin in vivo is associated with and may facilitate insulin action to increase muscle glucose uptake. In the present study, we examined the effect of 14 days of voluntary exercise training on euglycemic-hyperinsulinemic clamped (10 mU. min(-1). kg(-1) for 2 h), anesthetized rats. Whole-body glucose infusion rate (GIR), hindleg glucose uptake, femoral blood flow (FBF), vascular resistance, and capillary recruitment, as measured by metabolism of infused 1-methylxanthine (1-MX), were assessed. In sedentary animals, insulin caused a significant (P < 0.05) increase in FBF (1.6-fold) and capillary recruitment (1.7-fold) but a significant decrease in vascular resistance. In addition, hindleg glucose uptake was increased (4.3-fold). Exercise training increased insulin-mediated GIR (24%), hindleg glucose uptake (93%), and capillary recruitment (62%) relative to sedentary animals. Neither capillary density nor total xanthine-oxidase activity in skeletal muscle were increased as a result of the training regimen used. We concluded that exercise training improves insulin-mediated increases in capillary recruitment in combination with augmented muscle glucose uptake. Increased insulin-mediated glucose uptake may in part result from the improved hemodynamic control attributable to exercise training.  相似文献   

2.
Clerk LH  Rattigan S  Clark MG 《Diabetes》2002,51(4):1138-1145
Infusion of triglycerides and heparin causes insulin resistance in muscle. Because the vascular actions of insulin, particularly capillary recruitment, may contribute to the increase in glucose uptake by skeletal muscle, we investigated the effects of Intralipid/heparin infusion on the hemodynamic actions of insulin during clamp conditions. Saline or 10% Intralipid/heparin (33 U/ml) was infused into anesthetized rats at 20 microl/min for 6 h. At 4 h into the saline infusion, a 2-h hyperinsulinemic (3 mU. min(-1).kg(-1))-euglycemic clamp was conducted (Ins group). At 4 h into the lipid infusion, a 2-h saline control (Lip group) or 2-h hyperinsulinemic-euglycemic clamp (Lip + Ins group) was conducted. Arterial blood pressure, heart rate, femoral blood flow (FBF), hindleg vascular resistance, glucose infusion rate (GIR), hindleg glucose uptake (HGU), and muscle 2-deoxyglucose uptake (R'g) were measured. Capillary recruitment, as measured by metabolism of infused 1-methylxanthine (1-MX), was also assessed. When compared with either Lip or Lip + Ins, Ins had no effect on arterial blood pressure, heart rate, FBF, or vascular resistance but increased GIR, HGU, and R'g of soleus, plantaris, extensor digitorum longus, and gastrocnemius red muscles and hindlimb 1-MX metabolism. GIR, HGU, and R'g of soleus, plantaris, gastrocnemius red, and the combined muscles and 1-MX metabolism were less in Lip + Ins than in Ins rats. HGU correlated closely with hindleg capillary recruitment (r = 0.86, P < 0.001) but not total hindleg blood flow. In conclusion, acute elevation of plasma free fatty acids blocks insulin-mediated glucose uptake and capillary recruitment.  相似文献   

3.
Acute vasoconstriction-induced insulin resistance in rat muscle in vivo   总被引:4,自引:0,他引:4  
Rattigan S  Clark MG  Barrett EJ 《Diabetes》1999,48(3):564-569
Insulin-mediated changes in blood flow are associated with altered blood flow distribution and increased capillary recruitment in skeletal muscle. Studies in perfused rat hindlimb have shown that muscle metabolism can be regulated by vasoactive agents that control blood flow distribution within the hindlimb. In the present study, the effects of a vasoconstrictive agent that has no direct effect on skeletal muscle metabolism but that alters perfusion distribution in rat hindlimb was investigated in vivo to determine its effects on insulin-mediated vascular action and glucose uptake. We measured the effects of alpha-methylserotonin (alpha-met5HT) on mean arterial blood pressure, heart rate, femoral blood flow, hindlimb vascular resistance, and glucose uptake in control and euglycemic insulin-clamped (10 mU x min(-1) x kg(-1)) anesthetized rats. Blood flow distribution within the hindlimb muscles was assessed by measuring the metabolism of 1-methylxanthine (1-MX), an exogenously added substrate for capillary xanthine oxidase. Alpha-met5HT (20 microg x min(-1) x kg(-1)) infusion alone increased mean arterial blood pressure by 25% and increased hindlimb vascular resistance but caused no change in femoral blood flow. These changes were associated with decreased hindlimb 1-MX metabolism indicating less capillary flow. Insulin infusion caused decreased hindlimb vascular resistance that was associated with increased femoral blood flow and 1-MX metabolism. Treatment with alpha-met5HT infusion commenced before insulin infusion prevented the increase in femoral blood flow and inhibited the stimulation of 1-MX metabolism. Alpha-met5HT infusion had no effect on hindlimb glucose uptake but markedly inhibited the insulin stimulation of glucose uptake (P < 0.05) and was associated with decreased glucose infusion rates to maintain euglycemia (P < 0.05). A significant correlation (P < 0.05) was observed between 1-MX metabolism and hindlimb glucose uptake but not between femoral blood flow and glucose uptake. The results indicate that in vivo, certain types of vasoconstriction in muscle such as elicited by 5HT2 agonists, which prevent normal insulin recruitment of capillary flow, cause impaired muscle glucose uptake. Moreover, if vasoconstriction of this kind results from stress-induced increase in sympathetic outflow, then this may provide a clue as to the link between hypertension and insulin resistance that is often observed in humans.  相似文献   

4.
The involvement of Ca(2+) in insulin-mediated glucose uptake is uncertain. We measured Ca(2+) influx (as Mn(2+) quenching or Ba(2+) influx) and 2-deoxyglucose (2-DG) uptake in single muscle fibers isolated from limbs of adult mice; 2-DG uptake was also measured in isolated whole muscles. Exposure to insulin increased the Ca(2+) influx in single muscle cells. Ca(2+) influx in the presence of insulin was decreased by 2-aminoethoxydiphenyl borate (2-APB) and increased by the membrane-permeable diacylglycerol analog 1-oleyl-2-acetyl-sn-glycerol (OAG), agents frequently used to block and activate, respectively, nonselective cation channels. Maneuvers that decreased Ca(2+) influx in the presence of insulin also decreased 2-DG uptake, whereas increased Ca(2+) influx was associated with increased insulin-mediated glucose uptake in isolated single cells and whole muscles from both normal and insulin-resistant obese ob/ob mice. 2-APB and OAG affected neither basal nor hypoxia- or contraction-mediated 2-DG uptake. 2-APB did not inhibit the insulin-mediated activation of protein kinase B or extracellular signal-related kinase 1/2 in whole muscles. In conclusion, alterations in Ca(2+) influx specifically modulate insulin-mediated glucose uptake in both normal and insulin-resistant skeletal muscle. Moreover, the present results indicate that Ca(2+) acts late in the insulin signaling pathway, for instance, in the GLUT4 translocation to the plasma membrane.  相似文献   

5.
Insulin and glucose delivery (muscle perfusion) can modulate insulin-mediated glucose uptake. This study was undertaken to determine 1) to what extent insulin sensitivity modulates the effect of perfusion on glucose uptake and 2) whether this effect is achieved via capillary recruitment. We measured glucose disposal rates (GDRs) and leg muscle glucose uptake (LGU) in subjects exhibiting a wide range of insulin sensitivity, after 4 h of steady-state (SS) euglycemic hyperinsulinemia (>6,000 pmol/l) and subsequently after raising the rate of leg blood flow (LBF) 2-fold with a superimposed intrafemoral artery infusion of methacholine chloride (Mch), an endothelium-dependent vasodilator. LBF was determined by thermodilution: LGU = arteriovenous glucose difference (AVGdelta) x LBF. As a result of the 114+/-12% increase in LBF induced by Mch, the AVGdelta decreased 32+/-4%, and overall rates of LGU increased 40+/-5% (P < 0.05). We found a positive relationship between the Mch-modulated increase in LGU and insulin sensitivity (GDR) (r = 0.60, P < 0.02), suggesting that the most insulin-sensitive subjects had the greatest enhancement of LGU in response to augmentation of muscle perfusion. In separate groups of subjects, we also examined the relationship between muscle perfusion rate and glucose extraction (AVGdelta). Perfusion was either pharmacologically enhanced with Mch or reduced by intra-arterial infusion of the nitric oxide inhibitor N(G)-monomethyl-L-arginine during SS euglycemic hyperinsulinemia. Over the range of LBF, changes in AVGdelta were smaller than expected based on the noncapillary recruitment model of Renkin. Together, the data indicate that 1) muscle perfusion becomes more rate limiting to glucose uptake as insulin sensitivity increases and 2) insulin-mediated increments in muscle perfusion are accompanied by capillary recruitment. Thus, insulin-stimulated glucose uptake displays both permeability- and perfusion-limited glucose exchange properties.  相似文献   

6.
Insulin-mediated hemodynamic effects in muscle were assessed in relation to insulin resistance in obese and lean Zucker rats. Whole-body glucose infusion rate (GIR), femoral blood flow (FBF), hindleg glucose extraction (HGE), hindleg glucose uptake (HGU), 2-deoxyglucose (DG) uptake into muscles of the lower leg (R(g)), and metabolism of infused 1-methylxanthine (1-MX) to measure capillary recruitment were determined for isogylcemic (4.8 +/- 0.2 mmol/l, lean; 11.7 +/- 0.6 mmol/l, obese) insulin-clamped (20 mU. min(-1). kg(-1) x 2 h) and saline-infused control anesthetized age-matched (20 weeks) lean and obese animals. Obese rats (445 +/- 5 g) were less responsive to insulin than lean animals (322 +/- 4 g) for GIR (7.7 +/- 1.4 vs. 22.2 +/- 1.1 mg. min(-1). kg(-1), respectively), and when compared with saline-infused controls there was no increase due to insulin by obese rats in FBF, HGE, HGU, and R(g) of soleus, plantaris, red gastrocnemius, white gastrocnemius, extensor digitorum longus (EDL), or tibialis muscles. In contrast, lean animals showed marked increases due to insulin in FBF (5.3-fold), HGE (5-fold), HGU (8-fold), and R(g) ( approximately 5.6-fold). Basal (saline) hindleg 1-MX metabolism was 1.5-fold higher in lean than in obese Zucker rats, and insulin increased in only that of the lean. Hindleg 1-MX metabolism in the obese decreased slightly in response to insulin, thus postinsulin lean was 2.6-fold that of the postinsulin obese. We conclude that muscle insulin resistance of obese Zucker rats is accompanied by impaired hemodynamic responses to insulin, including capillary recruitment and FBF.  相似文献   

7.
Inyard AC  Clerk LH  Vincent MA  Barrett EJ 《Diabetes》2007,56(9):2194-2200
We examined whether contraction-induced muscle microvascular recruitment would expand the surface area for insulin and nutrient exchange and thereby contribute to insulin-mediated glucose disposal. We measured in vivo rat hindlimb microvascular blood volume (MBV) using contrast ultrasound and femoral blood flow (FBF) using Doppler ultrasound in response to a stimulation frequency range. Ten minutes of 0.1-Hz isometric contraction more than doubled MBV (P < 0.05; n = 6) without affecting FBF (n = 7), whereas frequencies >0.5 Hz increased both. Specific inhibition of nitric oxide (NO) synthase with N(omega)-l-nitro-arginine-methyl ester (n = 5) significantly elevated mean arterial pressure by approximately 30 mmHg but had no effect on basal FBF or MBV. We next examined whether selectively elevating MBV without increasing FBF (0.1-Hz contractions) increased muscle uptake of albumin-bound Evans blue dye (EBD). Stimulation at 0.1 Hz (10 min) elicited more than twofold increases in EBD content (micrograms EBD per gram dry tissue) in stimulated versus contralateral muscle (n = 8; 52.2 +/- 3.8 vs. 20 +/- 2.5, respectively; P < 0.001). We then measured muscle uptake of EBD and (125)I-labeled insulin (dpm per gram dry tissue) with 0.1-Hz stimulation (n = 6). Uptake of EBD (19.1 +/- 3.8 vs. 9.9 +/- 1; P < 0.05) and (125)I-insulin (5,300 +/- 800 vs. 4,244 +/- 903; P < 0.05) was greater in stimulated muscle versus control. Low-frequency contraction increases muscle MBV by a NO-independent pathway and facilitates muscle uptake of albumin and insulin in the absence of blood flow increases. This microvascular response may, in part, explain enhanced insulin action in exercising skeletal muscle.  相似文献   

8.
Insulin increases glucose disposal into muscle. In addition, in vivo insulin elicits distinct nitric oxide synthase-dependent vascular responses to increase total skeletal muscle blood flow and to recruit muscle capillaries (by relaxing resistance and terminal arterioles, respectively). In the current study, we compared the temporal sequence of vascular and metabolic responses to a 30-min physiological infusion of insulin (3 mU. min(-1). kg(-1), euglycemic clamp) or saline in rat skeletal muscle in vivo. We used contrast-enhanced ultrasound to continuously quantify microvascular volume. Insulin recruited microvasculature within 5-10 min (P < 0.05), and this preceded both activation of insulin-signaling pathways and increases in glucose disposal in muscle, as well as changes in total leg blood flow. Moreover, l-NAME (N(omega)-nitro-l-arginine-methyl ester), a specific inhibitor of nitric oxide synthase, blocked this early microvascular recruitment (P < 0.05) and at least partially inhibited early increases in muscle glucose uptake (P < 0.05). We conclude that insulin rapidly recruits skeletal muscle capillaries in vivo by a nitric oxide-dependent action, and the increase in capillary recruitment may contribute to the subsequent glucose uptake.  相似文献   

9.
Troglitazone induces GLUT4 translocation in L6 myotubes   总被引:15,自引:0,他引:15  
A number of studies have demonstrated that insulin resistance in the skeletal muscle plays a pivotal role in the insulin resistance associated with obesity and type 2 diabetes. A decrease in GLUT4 translocation from the intracellular pool to the plasma membranes in skeletal muscles has been implicated as a possible cause of insulin resistance. Herein, we examined the effects of an insulin-sensitizing drug, troglitazone (TGZ), on glucose uptake and the translocation of GLUT4 in L6 myotubes. The prolonged exposure (24 h) of L6 myotubes to TGZ (10(-5) mol/l) caused a substantial increase in the 2-deoxy-[3H]D-glucose (2-DG) uptake without changing the total amount of the glucose transporters GLUT4, GLUT1, and GLUT3. The TGZ-induced 2-DG uptake was completely abolished by cytochalasin-B (10 micromol/l). The ability of TGZ to translocate GLUT4 from light microsomes to the crude plasma membranes was greater than that of insulin. Both cycloheximide treatment (3.5 x 10(-6) mol/l) and the removal of TGZ by washing reversed the 2-DG uptake to the basal level. Moreover, insulin did not enhance the TGZ-induced 2-DG uptake additively. The TGZ-induced 2-DG uptake was only partially reversed by wortmannin to 80%, and TGZ did not change the expression and the phosphorylation of protein kinase B; the expression of protein kinase C (PKC)-lambda, PKC-beta2, and PKC-zeta; or 5'AMP-activated protein kinase activity. a-Tocopherol, which has a molecular structure similar to that of TGZ, did not increase 2-DG uptake. We conclude that the glucose transport in L6 myotubes exposed to TGZ for 24 h is the result of an increased translocation of GLUT4. The present results imply that the effects of troglitazone on GLUT4 translocation may include a new mechanism for improving glucose transport in skeletal muscle.  相似文献   

10.
Insulin sensitivity of muscle capillary recruitment in vivo   总被引:7,自引:0,他引:7  
We have reported that insulin exerts two vascular actions in muscle; it both increases blood flow and recruits capillaries. In parallel hyperinsulinemic-euglycemic clamp studies, we compared the insulin dose response of muscle microvascular recruitment and femoral blood flow as well as hindleg glucose uptake in fed, hooded Wistar and fasted Sprague-Dawley rats. Using insulin doses between 0 and 30 mU(-1). min(-1). kg(-1), we measured microvascular recruitment at 2 h by 1-methylxanthine (1-MX) metabolism or contrast-enhanced ultrasound (CEU), and muscle glucose uptake was measured by either arteriovenous differences or using 2-deoxyglucose. We also examined the time course for reversal of microvascular recruitment following cessation of a 3 mU. min(-1). kg(-1) insulin infusion. In both groups, whether measured by 1-MX metabolism or CEU, microvascular recruitment was fully activated by physiologic hyperinsulinemia and occurred at lower insulin concentrations than those that stimulated glucose uptake or hindleg total blood flow. The latter processes were insulin dose dependent throughout the entire dose range studied. Upon stopping the insulin infusion, increases in microvascular volume persisted for 15-30 min after insulin concentrations returned to basal levels. We conclude that the precapillary arterioles that regulate microvascular recruitment are more insulin sensitive than resistance arterioles that regulate total flow.  相似文献   

11.
B J Rogers  M L Standaert  R J Pollet 《Diabetes》1987,36(11):1292-1296
The actions of sulfonylurea agents to increase peripheral glucose disposal have been classically ascribed to an ability to potentiate insulin action. However, in the BC3H-1 cultured muscle cell, tolbutamide, glipizide, and glyburide directly provoked more than a twofold increase in 2-deoxyglucose (2-DG) uptake in a dose-dependent manner in the absence of insulin. Tolbutamide (3 mM) enhanced 2-DG uptake by 130% in the presence or absence of insulin and did not significantly change insulin binding or the sensitivity of the insulin response. The onset of tolbutamide-stimulated hexose transport was seen after 30 min and reached a plateau after 12 h. Tolbutamide-stimulated glucose transport was associated with a twofold increase in the Vmax of 2-DG uptake and was completely blocked by 50 microM cytochalasin B, indicating that this action is mediated by increase in cell membrane glucose transporters. We show that sulfonylureas at therapeutic concentrations directly increase glucose transport into muscle cells. Because muscle is the major peripheral target tissue for glucose disposal, these results provide the basis for the therapeutic effect of these agents in improving peripheral glucose disposal in insulin-resistant type II (non-insulin-dependent) diabetes mellitus.  相似文献   

12.
Obese subjects exhibit a delay in insulin action and delivery of insulin to muscle interstitial fluid during glucose/insulin infusion. The aim of the present study was to follow the distribution of insulin to skeletal muscle after an oral glucose load in obese subjects. We conducted an oral glucose tolerance test (OGTT) in 10 lean and 10 obese subjects (BMI 23 +/- 0.6 vs. 33 +/- 1.2 kg/m(2); P < 0.001). Insulin measurements in muscle interstitial fluid were combined with forearm arteriovenous catheterization and blood flow measurements. In the obese group, interstitial insulin was significantly (35-55%) lower than plasma insulin (P < 0.05) during the 1st h after the OGTT, whereas in lean subjects, no significant difference was found between interstitial and plasma insulin levels during the same time period. The permeability surface area product for glucose, representing capillary recruitment, increased in the lean group (P < 0.05) but not in the obese group (NS). Obese subjects had a significantly higher plasma insulin level at 90-120 min after oral glucose (398 +/- 57 vs. 224 +/- 37 pmol/l in control subjects; P < 0.05). The significant gradient between plasma insulin and muscle interstitial insulin during the first hour after OGTT suggests a slow delivery of insulin in obese subjects. The hindered transcapillary transport of insulin may be attributable to a defect in insulin-mediated capillary recruitment.  相似文献   

13.
Clerk LH  Vincent MA  Jahn LA  Liu Z  Lindner JR  Barrett EJ 《Diabetes》2006,55(5):1436-1442
We have previously shown that skeletal muscle capillaries are rapidly recruited by physiological doses of insulin in both humans and animals. This facilitates glucose and insulin delivery to muscle, thus augmenting glucose uptake. In obese rats, both insulin-mediated microvascular recruitment and glucose uptake are diminished; however, this action of insulin has not been studied in obese humans. Here we used contrast ultrasound to measure microvascular blood volume (MBV) (an index of microvascular recruitment) in the forearm flexor muscles of lean and obese adults before and after a 120-min euglycemic-hyperinsulinemic (1 mU . min(-1) . kg(-1)) clamp. We also measured brachial artery flow, fasting lipid profile, and anthropomorphic variables. Fasting plasma glucose (5.4 +/- 0.1 vs. 5.1 +/- 0.1 mmol/l, P = 0.05), insulin (79 +/- 11 vs. 38 +/- 6 pmol/l, P = 0.003), and percent body fat (44 +/- 2 vs. 25 +/- 2%, P = 0.001) were higher in the obese than the lean adults. After 2 h of insulin infusion, whole-body glucose infusion rate was significantly lower in the obese versus lean group (19.3 +/- 3.2 and 37.4 +/- 2.6 mumol . min(-1) . kg(-1) respectively, P < 0.001). Compared with baseline, insulin increased MBV in the lean (18.7 +/- 3.3 to 25.0 +/- 4.1, P = 0.019) but not in the obese group (20.4 +/- 3.6 to 18.8 +/- 3.8, NS). Insulin increased brachial artery diameter and flow in the lean but not in the obese group. We observed a significant, negative correlation between DeltaMBV and BMI (R = -0.482, P = 0.027) in response to insulin. In conclusion, obesity eliminated the insulin-stimulated muscle microvascular recruitment and increased brachial artery blood flow seen in lean individuals.  相似文献   

14.
Overexpression of the PED/PEA-15 protein in muscle and adipose cells increases glucose transport and impairs further insulin induction. Like glucose transport, protein kinase C (PKC)-alpha and -beta are also constitutively activated and are not further stimulatable by insulin in L6 skeletal muscle cells overexpressing PED (L6(PED)). PKC-zeta features no basal change but completely loses insulin sensitivity in L6(PED). In these cells, blockage of PKC-alpha and -beta additively returns 2-deoxy-D-glucose (2-DG) uptake to the levels of cells expressing only endogenous PED (L6(WT)). Blockage of PKC-alpha and -beta also restores insulin activation of PKC-zeta in L6(PED) cells, with that of PKC-alpha sixfold more effective than PKC-beta. Similar effects on 2-DG uptake and PKC-zeta were also achieved by 50-fold overexpression of PKC-zeta in L6(PED). In L6(WT), fivefold overexpression of PKC-alpha or -beta increases basal 2-DG uptake and impairs further insulin induction with no effect on insulin receptor or insulin receptor substrate phosphorylation. In these cells, overexpression of PKC-alpha blocks insulin induction of PKC-zeta activity. PKC-beta is 10-fold less effective than PKC-alpha in inhibiting PKC-zeta stimulation. Expression of the dominant-negative K(281)-->W PKC-zeta mutant simultaneously inhibits insulin activation of PKC-zeta and 2-DG uptake in the L6(WT) cells. We conclude that activation of classic PKCs, mainly PKC-alpha, inhibits PKC-zeta and may mediate the action of PED on glucose uptake in L6 skeletal muscle cells.  相似文献   

15.
To identify abnormally expressed genes contributing to muscle insulin resistance in type 2 diabetes, we screened the mRNA populations from normal and diabetic human skeletal muscle using cDNA differential display and isolated abnormally expressed cDNA clones of mitochondrial-encoded NADH dehydrogenase 1 (ND1), cytochrome oxidase 1, tRNA(leu), and displacement loop. We then measured mRNA expression of these mitochondrial genes using a relative quantitative polymerase chain reaction method in biopsies taken before and after an insulin clamp in 12 monozygotic twin pairs discordant for type 2 diabetes and 12 matched control subjects and in muscle biopsies taken after an insulin clamp from 13 subjects with type 2 diabetes, 15 subjects with impaired glucose tolerance, and 14 subjects with normal glucose tolerance. Insulin infusion increased mRNA expression of ND1 from 1.02 +/- 0.04 to 2.55 +/- 0.30 relative units (P < 0.001) and of cytochrome oxidase 1 from 0.80 +/- 0.01 to 1.24 +/- 0.10 relative units (P < 0.001). The ND1 response to insulin correlated with glucose uptake (r = 0.46, P = 0.002). Although the rate of insulin-mediated glucose uptake was decreased in the diabetic versus the nondiabetic twins (5.2 +/- 0.7 vs. 8.5 +/- 0.8 mg x kg(-1) fat-free mass x min(-1), P < 0.01), insulin-stimulated ND1 expression was not significantly different between them (2.4 +/- 0.5 vs. 2.7 +/- 0.5 relative units). Neither was there any significant intrapair correlation of ND1 expression between the monozygotic twins (r = -0.15, NS). We conclude that insulin upregulates mitochondrial-encoded gene expression in skeletal muscle. Given the positive correlation between ND1 expression and glucose uptake and the lack of intrapair correlation between monozygotic twins, mitochondrial gene expression may represent an adaptation to intracellular glucose flux rather than an inherited trait.  相似文献   

16.
The objectives of this study were 1) to evaluate glucose transport and its regulation by insulin in easily accessible human cells, 2) to investigate the glucose transporter isoforms involved, and 3) to establish whether a defect in glucose transport is associated with peripheral insulin resistance, which is common in insulin-dependent diabetes mellitus (IDDM) patients. We measured 2-deoxyglucose (2-DG) uptake in circulating mononuclear cells from 23 nondiabetic adults, 16 adults with IDDM, and 10 children with IDDM. Circulating mononuclear cells were separated from whole blood by Ficoll gradients and incubated with +/- 1 nM insulin. 2-DG uptake was measured after incubation with [3H]2-DG and cell separation through corn oil-phthalate. Cytochalasin B-inhibitable 2-DG uptake (basal and insulin stimulated) was higher in control than in IDDM subjects (P less than 0.001). Insulin significantly increased 2-DG uptake or 3-O-methylglucose uptake in both groups. Basal and insulin-stimulated 2-DG uptake was similar for adults and children with IDDM and did not correlate with age or body mass index in any group or disease duration, insulin dosage, or HbA1c in IDDM. In separated monocytes and lymphocytes, 2-DG uptake increased in response to insulin only in the monocyte population. Insulin dose-response curves indicated maximal stimulation of hexose uptake at 1-2 nM insulin for both control and diabetic subjects and demonstrated a significant decrease in maximal insulin response in the latter. Immunoblotting with specific antibodies revealed that circulating mononuclear cells and separated monocytes express the GLUT1 but not the GLUT4 isoform of the glucose transporter.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Clustering of classical cardiovascular risk factors is insufficient to account for the excess coronary artery disease (CAD) of patients with diabetes, and chronic hyperglycemia and insulin resistance (IR) are obvious culprits. Whole-body and skeletal muscle IR is characteristic of patients with type 2 diabetes, but whether it extends to the normally contracting cardiac muscle is controversial. We investigated whether type 2 diabetes is associated with myocardial IR independent of CAD in a case-control series (n = 55) of male nondiabetic and diabetic (type 2 and type 1) patients with or without angiographically documented CAD. Baseline blood flow ((15)O-water) and insulin-stimulated glucose uptake ((18)F-fluoro-deoxyglucose) during euglycemic (5.6 mmol/l), physiological hyperinsulinemia (40 mU x min(-1) x m(-2) insulin clamp) were measured by positron emission tomography in skeletal muscle and normally contracting myocardium. Skeletal muscle glucose uptake was reduced in association with both CAD and type 2 diabetes. In regions with normal baseline perfusion, insulin-mediated myocardial glucose uptake was reduced in non-CAD type 2 diabetic (0.36 +/- 0.14 micro mol x min(-1). g(-1)) and nondiabetic CAD patients (0.44 +/- 0.15 micro mol x min(- 1) x g(-1)) in comparison with healthy control subjects (0.61 +/- 0.08) or with non-CAD type 1 diabetic patients (0.80 +/- 0.13; P < 0.001 for both CAD and diabetes). Neither basal skeletal muscle nor basal myocardial blood flow differed across groups; both skeletal muscle and myocardial IR were directly related to whole-body IR. We conclude that type 2 diabetes is specifically associated with myocardial IR that is independent of and nonadditive with angiographic CAD and proportional to skeletal muscle and whole-body IR.  相似文献   

18.
In vitro studies have shown that insulin and exercise stimulate glucose uptake in part via distinct mechanisms. We determined whether a high rate of insulin-stimulated glucose uptake (good insulin sensitivity) is associated with an enhanced ability of exercise to increase glucose uptake in vivo in humans. In our study, 22 normal subjects performed one-legged isometric exercise for 105 min (45-150 min) under intravenously maintained euglycemic-hyperinsulinemic conditions (0-150 min). Rates of oxygen consumption, blood flow, and glucose uptake were quantitated simultaneously in skeletal muscle of both legs using [15O]O2, [15O]H2O, [18F]fluoro-deoxy-glucose, and positron emission tomography. The one-legged exercise, performed at an intensity of 11% of maximal isometric force, was designed to induce similar increases in oxygen consumption in both groups. In the entire group, exercise increased oxygen consumption from 2.3 +/- 0.3 ml x kg(-1) muscle x min(-1) (insulin) to 34.2 +/- 3. ml x kg(-1) muscle x min(-1) (insulin and exercise) (P < 0.001) and muscle glucose uptake from 60 +/- 6 pmol x kg(-1) muscle x min(-1) (insulin) to 220 +/- 22 micromol x kg(-1) muscle x min(-1) (insulin and exercise) (P < 0.001). The exercise-induced increase in glucose uptake was due to marked increases in blood flow (36 +/- 5 ml x kg(-1) muscle x min(-1) [insulin] vs. 262 +/- 20 ml x kg(-1) muscle x min(-1) [insulin and exercise], P < 0.001) rather than glucose extraction, which decreased from 2.0 +/- 0.2 mmol/l (insulin) to 1.0 +/- 0.1 mmol/1 (insulin and exercise) (P < 0.001). The subjects were classified according to their mean rate of whole-body insulin-stimulated glucose uptake into those with high (49 +/- 3 micromol x kg(-1) x min(-1)) and normal (27 +/- 2 micromol x kg(-1) x min(-1)) rates of insulin-stimulated glucose uptake. Both insulin-stimulated (2.4 +/- 1.1 vs. 2.3 +/- 1.2 ml x kg(-1) muscle x min(-1), normal vs. high insulin sensitivity) and exercise- and insulin-stimulated (33 +/- 6 vs. 34 +/- 4 ml x kg(-1) muscle x min(-1)) rates of oxygen consumption were comparable between the groups. Exercise increased glucose uptake more in the group with high insulin sensitivity (195 +/- 25 pmol x kg(-1) muscle x min(-1)) than in the group with normal insulin sensitivity (125 +/- 19 micromol x kg(-1) muscle x min(-1)) (P < 0.05). Muscle blood flow was closely correlated with the rate of oxygen consumption (r = 0.91, P < 0.0001), and insulin-stimulated (30 +/- 5 vs. 35 +/- 6 ml x kg(-1) muscle x min(-1)) and exercise-induced increments (222 +/- 31 vs. 228 +/- 23 ml x kg(-1) muscle x min(-1)) in muscle blood flow were similar between the groups. Glucose extraction remained higher in the group with high insulin sensitivity (1.2 +/- 0.2 mmol/l) than in the group with normal insulin sensitivity (0.7 +/- 0.1 mmol/l, P < 0.05). We conclude that whereas acute exercise per se increases glucose uptake via increasing glucose delivery, good insulin sensitivity modulates exercise-induced increases in glucose uptake by enhancing cellular glucose extraction.  相似文献   

19.
The presence and biological significance of circulating glycated insulin has been evaluated by high-pressure liquid chromatography (HPLC), electrospray ionization mass spectrometry (ESI-MS), radioimmunoassay (RIA), receptor binding, and hyperinsulinemic-euglycemic clamp techniques. ESI-MS analysis of an HPLC-purified plasma pool from four male type 2 diabetic subjects (HbA(1c) 8.1 +/- 0.2%, plasma glucose 8.7 +/- 1.3 mmol/l [means +/- SE]) revealed two major insulin-like peaks with retention times of 14-16 min. After spectral averaging, the peak with retention time of 14.32 min exhibited a prominent triply charged (M+3H)(3+) species at 1,991.1 m/z, representing monoglycated insulin with an intact M(r) of 5,970.3 Da. The second peak (retention time 15.70 min) corresponded to native insulin (M(r) 5,807.6 Da), with the difference between the two peptides (162.7 Da) representing a single glucitol adduct (theoretical 164 Da). Measurement of glycated insulin in plasma of type 2 diabetic subjects by specific RIA gave circulating levels of 10.1 +/- 2.3 pmol/l, corresponding to approximately 9% total insulin. Biological activity of pure synthetic monoglycated insulin (insulin B-chain Phe(1)-glucitol adduct) was evaluated in seven overnight-fasted healthy nonobese male volunteers using two-step euglycemic-hyperinsulinemic clamps (2 h at 16.6 micro g x kg(-1) x min(-1), followed by 2 h at 83.0 micro g x kg(-1) x min(-1); corresponding to 0.4 and 2.0 mU x kg(-1) x min(-1)). At the lower dose, the exogenous glucose infusion rates required to maintain euglycemia during steady state were significantly lower with glycated insulin (P < 0.01) and approximately 70% more glycated insulin was required to induce a similar rate of insulin-mediated glucose uptake. Maximal responses at the higher rates of infusion were similar for glycated and control insulin. Inhibitory effects on endogenous glucose production, insulin secretion, and lipolysis, as indicated by measurements of C-peptide, nonesterified free fatty acids, and glycerol, were also similar. Receptor binding to CHO-T cells transfected with human insulin receptor and in vivo metabolic clearance revealed no differences between glycated and native insulin, suggesting that impaired biological activity is due to a postreceptor effect. The present demonstration of glycated insulin in human plasma and related impairment of physiological insulin-mediated glucose uptake suggests a role for glycated insulin in glucose toxicity and impaired insulin action in type 2 diabetes.  相似文献   

20.
Summary Insulin is a potent stimulator of collagen synthesis and other osteoblastic cell functions. In various insulin-sensitive tissues, stimulation of glucose transport and glycolytic metabolism are hallmarks of insulin action and may play a role in insulin regulation of cellular function. However, the effects of insulin on glucose metabolism in osteoblastlike cells have not been defined. We therefore characterized 2-deoxy-D-glucose (2-DG) transport in UMR-106-01 rat osteoblastic osteosarcoma cells and examined its regulation by insulin. 2-DG (0.1 mM) uptake was shown to be linear with time over 45 minutes, temperature-sensitive, and inhibited by phloridzin. Competitive inhibition studies against other hexoses demonstrated a transport system stereospecificity for 2-DG similar to that previously demonstrated in fat and muscle cells. Kinetic analysis of 15 minute 2-DG uptake at 25°C demonstrated a saturable transport mechanism with a Km (1.9 mM) similar to that observed for 2-DG transport in other tissues. Insulin stimulated 2-DG transport in a dose-related manner, with significant stimulation observed at 0.5 nM and maximal effect observed at 50 nM insulin. The stimulatory effect of insulin was reversibly inhibited by cytochalasin B (50 μM). Insulin stimulation of 2-DG transport was associated with a 1.7-fold increase in Vmax, while Km remained constant. When insulin effects on glucose transport were inhibited by the addition of 5 mM phloridzin, stimulatory effects on DNA and collagen synthesis were diminished, suggesting that stimulation of glucose transport may play a role in insulin effects on replication and function in osteoblast-like cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号