首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Expression of the Parkinson's disease-associated protein alpha-synuclein causes formation of aggregates and cytotoxicity in a great diversity of transgenic model organisms, in the case of Drosophila melanogaster affecting specific dopaminergic neuron clusters. The relative contribution of alpha-synuclein misfolding and phosphorylation for neurodegeneration was elucidated in these systems. In transgenic mice, typical neuropathologic inclusions formed concomitant with behavioral deficits, reminiscent of Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy. Neuronal degeneration was cell-autonomous in the Lewy body disease models, whereas gliotic changes accompanied neurodegeneration caused by (oligodendro)glial cytoplasmic inclusions. These recent findings provided major insights into the molecular mechanisms of alpha-synucleinopathies.  相似文献   

2.
Previous studies in other laboratories have shown that alpha4beta2 nicotinic acetylcholine receptor (nAChR) exhibits a biphasic concentration-response relationship for ACh with low and high EC50 components, and that the low EC50 component can be augmented by decreasing the alpha4:beta2 message ratio or incubating overnight in nicotine or at low temperature (Zwart and Vijverberg, 1998; Covernton and Connolly, 2000; Buisson and Bertrand, 2001; Nelson et al., 2003; Zhou et al., 2003). In the process of cloning ferret nAChR subunits, we found alpha4 and beta2 messages with long untranslated regions (UTRs), as well as those with no UTRs. Combinations of these messages revealed that the presence of UTRs influenced the ability to exclusively express high-sensitivity subforms of alpha4beta2 and alpha3beta2 nAChRs. Injection of oocytes with alpha4 and beta2 RNAs lacking UTRs (1:1 ratio) led to expression of a biphasic concentration-response relationship for ACh with EC50 values of 0.5 (high sensitivity) and 114 microM(low sensitivity). Decreasing the alpha4:beta2 message ratio to as much as 1:120 increased the high-sensitivity component slightly, but the ACh concentration response remained biphasic. In contrast, injection of messages with UTRs (1:1 ratio) led to expression of a monophasic concentration response to ACh and a high-sensitivity EC50 value of 2.3 microM, as shown in Fig. 1.  相似文献   

3.
The neuronal nicotinic acetylcholine receptor (nAChR) alpha4 and beta2 subunits expressed in heterologous expression systems assemble into high- and low-affinity receptors (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003), which reflects the assembly of two distinct subunit stoichiometries of alpha4beta2 receptor (Nelson et al., 2003). The high-affinity receptor ([alpha4]2[beta2]3) is about 100-fold more sensitive to ACh than the low-affinity receptor ([alpha4]3[beta2]2) (Zwart and Vijverberg, 1998; Buisson and Bertrand, 2001; Houlihan et al., 2001; Nelson et al., 2003). Recent evidence implicated 14-3-3 proteins as modulators of the relative abundance of nAChR subunits in the endoplasmic reticulum (ER), where ligand-gated ion channels assemble. The 14-3-3 proteins influence ER-to-plasma membrane trafficking of multimeric cell-surface proteins (O'Kelly et al., 2002). 14-3-3 proteins bind components of these multimeric proteins, and this interaction overrides dibasic COP1 retention signal to permit forward transport of the protein (O'Kelly et al., 2002). In the case of alpha4beta2 nAChRs, 14-3-3 binds the alpha4 subunit, and this association is dependent on phosphorylation of a serine residue within a protein kinase A(PKA) consensus sequence in the large cytoplasmic domain of the alpha4 subunit, which is also a binding motif recognized by 14-3-3 (Jeancloss et al., 2001; O'Kelly et al., 2002). The interplay among PKA, alpha4 subunits, and 14-3-3 proteins increases cell-surface expression of alpha4beta2 nAChRs by increasing steady-state levels of the alpha4 subunit available for assembly with beta2 subunits (Jeancloss et al., 2001). Because it is not known how 14-3-3-dependent changes in the steady-state levels of the alpha4 subunit might affect the functional type of alpha4beta2 receptors, we have investigated the effects of mutations of the 14-3-3 binding motif in the alpha4 subunit on alpha4beta2 nAChR function.  相似文献   

4.
Woodruff CC  Daut R  Brower M  Bragg A 《Neuroreport》2011,22(15):744-748
Perspective-taking and personal distress are argued to play contrasting roles in empathic processing, with perspective-taking promoting empathic concern and personal distress promoting egoistic motivations. Previous research has shown that emotionally negative valence imagery induced α and β power changes relative to neutral imagery and that α activity relates inversely to empathy. We therefore investigated the hypothesis that enhanced β is associated with personal distress and is accompanied by a correlation between α and perspective-taking. Participants viewed negative and neutral valence images from the International Affective Picture System and made judgments about their levels of concern for humans in each image. As predicted, greater β enhancement was associated with higher personal distress, whereas greater α-band suppression was associated with lower perspective-taking abilities. We suggest that these data support Batson's Empathy-Altruism hypothesis in which failure to adopt another person's perspective is related to greater personal distress.  相似文献   

5.

Background

The alpha2-adrenergic receptor (α2-AR) mediates physiological responses to endogenous catecholamine, and genetic variants of α2-AR may predispose to clinical vascular diseases. We evaluated whether common genetic variants of each three subtype of alpha2-adrenergic receptor (ADRA2A, ADRA2B, and ADRA2C) were associated with ischemic stroke.

Methods

A total of 616 patients with ischemic stroke and 512 controls were genotyped for the ADRA2A 1780G>A, ADRA2B 301–303 I/D, and ADRA2C 322–325 I/D polymorphisms. Logistic regression analyses, adjusting for multiple comparisons, were used to determine the association between the minor allele of each of three ADRA2 genes and the risk of ischemic stroke and pathophysiological subtypes.

Results

The ADRA2B 301–303 D allele was more prevalent in the stroke group, compared to controls (DD vs. II, OR: 1.78, 95% CI: 1.18–2.69; recessive, OR: 1.55, 95% CI: 1.06–2.26). A subgroup analysis revealed that this association was found only in the small vessel diseases (SVD) type (DD vs. II, OR: 1.92, 95% CI: 1.11–3.33). The ADRA2A and ADRA2C polymorphisms did not contribute to an increased risk of ischemic stroke or any pathophysiological subtype.

Conclusions

The ADRA2B 301–303 D allele confers an increased risk of overall ischemic stroke and SVD subtype.  相似文献   

6.
Summary Bromocriptine and lergotrile, which are clinically used as antiparkinsonian (AP) agents, compete for the binding of H3-dopamine, H3-apomorphine, and H3-haloperidol to striatal membrane sites. Lergotrile has a higher affinity for the H3-dopamine binding to bovine striatal membranes than bromocriptine. Lergotrile and bromocriptine are almost equipotent in competing for the binding of H3-apomorphine to rat striatal membranes, but bromocriptine is more potent in competing for the binding of H3-haloperidol than lergotrile. These results indicate that lergotrile and bromocriptine are mixed putative agonist-antagonist with respect to the postsynaptic dopamine receptors. Lergotrile and bromcriptine at higher concentrations inhibit synaptosomal tyrosine hydroxylase activity, and reverse the apomorphine elicited enzyme inhibition. Thus, these ergot alkaloids behave as mixed agonist-antagonist also with respect to the presynaptic dopamine receptors. Bromocriptine and lergotrile, as well as other tested DH-ergot alkaloids and neuroleptics, compete for the binding of the-antagonist H3-WB-4101 to rat cerebral cortical membranes. The displacing potencies of the tested DH-ergot alkaloids and of the neuroleptics indicate that they have a high affinity for the-adrenoreceptors in the CNS.  相似文献   

7.
Fast excitatory synaptic transmission in sympathetic ganglia is mediated by nicotinic acetylcholine receptors (nAChRs). Although it is known that the nAChR alpha7-subunit occurs in sympathetic ganglia, the expression of the recently cloned subunit alpha10 (Elgoyhen et al., 2001; Lustig et al., 2001; Sgard et al., 2002) has not been analyzed. Until now, functional receptors containing alpha10-subunits have been found only in combination with alpha9-subunits (Elgoyhen et al., 2001; Lustig et al., 2001; Sgard et al., 2002). The alpha9-subunit exhibits a restricted expression pattern, whereas the alpha10-subunit is expressed more widely. This broad distribution resembles more closely that known for subunit alpha7 than for subunit alpha9. On this background, we investigated the distribution of nAChR subunits alpha7, alpha9, and alpha10 in rat sympathetic ganglia and studied a possible interaction between subunit alpha7 and potential partners by double-labeling immunofluorescence and fluorescence resonance energy transfer (FRET) (Kam et al., 1995; Jares-Erijman and Jovin, 2003).  相似文献   

8.
Summary Groups of rats were injected i.p. with 0.407 or 1.02 mmoles/kg of D, L--methyl-p-tyrosine methylester HCl (-MT). The time-courses for-MT in plasma and brain were followed together with the endogenous brain dopamine (DA) and noradrenaline (NA) contents.The elimination of-MT from plasma and brain was markedly delayed after the high-MT dose compared with the low dose. At 40 hours after the injection of 1.02 mmoles/kg of-MT both plasma and brain levels were high, whereas no-MT could be detected in plasma or brain at 16 hours after the lower dose.The brain catecholamines were decreased to very low values after the higher-MT dose (DA 14% and NA 10% of controls at 8 and 24 hours respectively). There was no complete recuperation at 40 hours of any of the amines. After the lower-MT dose, the DA concentration was back to control levels at 16 hours and NA at 12 hours. Between 16–40 hours after the high-MT dose a majority of the rats showed prominent signs of sedation, weight loss and dehydration. No such signs were observed in rats receiving 0.407 mmoles/kg. During the first hour after the-MT injection the declines of DA and NA respectively were almost identical for both-MT doses. When the whole time-course (0–8 hours) after the high dose was considered, biphasic declines were obtained for both DA and NA, suggesting at least two different catecholamine pools. However, due to toxic effects after the high-MT dose, turnover data have to be interpreted with caution.  相似文献   

9.
10.
A number of the lysosomal storage diseases that have now been characterized are associated with intra-lysosomal accumulation of lipids, caused by defective lysosomal enzymes. We have previously reported neuronal accumulation of both α- and β-synucleins in brain tissue of a GM2 gangliosidosis mouse model. Although α-synuclein has been implicated in several neurodegenerative disorders including Parkinson’s disease, dementia with Lewy bodies and multiple system atrophy, its functions remain largely unclear. In our present study, we have examined a cohort of human lipidosis cases, including Sandhoff disease, Tay–Sachs disease, metachromatic leukodystrophy, β-galactosialidosis and adrenoleukodystrophy, for the expression of α- and β-synucleins and the associated lipid storage levels. The accumulation of α-synuclein was found in brain tissue in not only cases of lysosomal storage diseases, but also in instances of adrenoleukodystrophy, which is a peroxisomal disease. α-synuclein was detected in both neurons and glial cells of patients with these two disorders, although its distribution was found to be disease-dependent. In addition, α-synuclein-positive neurons were also found to be NeuN-positive, whereas NeuN-negative neurons did not show any accumulation of this protein. By comparison, the accumulation of β-synuclein was detectable only in the pons of Sandhoff disease cases. This differential accumulation of α- and β-synucleins in human lipidoses may be related to functional differences between these two proteins. In addition, the accumulation of α-synuclein may also be a condition that is common to lysosomal storage diseases and adrenoleukodystrophies that show an enhanced expression of this protein upon the elevation of stored lipids.  相似文献   

11.
Parkinson's disease (PD) is a neurodegenerative disease with multiple etiologies. Advanced glycation end products (AGEs) accumulate in the aging brain and could be one of the reasons for age-related diseases like PD. Oxidative stress also leads to the formation of AGEs and may be involved in neurodegeneration by altering the properties of proteins. α-Synuclein is involved in pathogenesis of PD and there are limited studies on the role of AGE-α-synuclein in neurodegeneration. We studied the aggregation and DNA binding ability of AGE-α-synuclein in vitro. α-Synuclein is glycated using methylglyoxal and formation of AGE-α-synuclein is characterized using fluorescence studies, intrinsic tyrosine fluorescence, and fructosamine estimation. The results indicated that AGE-α-synuclein aggregates into smaller globular-like aggregates compared to fibrils formed with native α-synuclein. Further, it is found that AGE-α-synuclein induced conformational changes in scDNA from B-form to B-C-A mixed conformation. Additionally, AGE-α-synuclein altered DNA integrity as evidenced by the melting temperature, ethidium bromide, and DNAse I sensitivity studies. AGE-α-synuclein converted biphasic Tm to higher monophasic Tm. The Tm of AGE-α-synuclein-scDNA complex is more than that of native α-synuclein-scDNA complex, indicating that AGE-α-synuclein stabilized the uncoiled scDNA. AGE-α-synuclein could stabilize the uncoiled scDNA, as shown by the decrease in the number of ethidium bromide binding molecules per base pair of DNA. DNAse I sensitive studies indicated that both AGE-α-synuclein-scDNA and α-synuclein-scDNA are resistant to DNAse I digestion. The relevance of these findings to neuronal cell death is discussed.  相似文献   

12.
Development of relevant models of Parkinson's disease (PD) is essential for a better understanding of the pathological processes underlying the human disease and for the evaluation of promising targets for therapeutic intervention. To date, most pre-clinical studies have been performed in the well-established rodent and non-human primate models using injection of 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydroxypyridine (MPTP). Overexpression of the disease-causing protein α-synuclein (α-syn), using adeno-associated viral (AAV) vectors, has provided a novel model that recapitulates many features of the human disease. In the present study we compared the AAV-α-syn rat model with models where the nigro-striatal pathway is lesioned by injection of 6-OHDA in the striatum (partial lesion) or the medial forebrain bundle (full lesion). Examination of the behavioural changes over time revealed a different progression and magnitude of the motor impairment. Interestingly, dopamine (DA) neuron loss is prominent in both the toxin and the AAV-α-syn models. However, α-syn overexpressing animals were seen to exhibit less cell and terminal loss for an equivalent level of motor abnormalities. Prominent and persistent axonal pathology is only observed in the α-syn rat model. We suggest that, while neuronal and terminal loss mainly accounts for the behavioural impairment in the toxin-based model, similar motor deficits result from the combination of cell death and dysfunction of the remaining nigro-striatal neurons in the AAV-α-syn model. While the two models have been developed to mimic DA neuron deficiency, they differ in their temporal and neuropathological characteristics, and replicate different aspects of the pathophysiology of the human disease. This study suggests that the AAV-α-syn model replicates the human pathology more closely than either of the other two 6-OHDA lesion models.  相似文献   

13.
A consensus about the functions of human wild-type or mutated α-synuclein (αSYN) is lacking. Both forms of αSYN are implicated in Parkinson's disease, whereas the wild-type form is implicated in substance abuse. Interactions with other cellular proteins and organelles may meditate its functions. We developed a series of congenic mouse lines containing various allele doses or combinations of the human wild-type αSYN (hwαSYN) or a doubly mutated (A30P*A53T) αSYN (hm(2) αSYN) in a C57Bl/6J line spontaneously deleted in mouse αSYN (C57BL/6JOla). Both transgenes had a functional role in the nigrostriatal system, demonstrated by significant elevations in striatal catecholamines, metabolites and the enzyme tyrosine hydroxylase compared with null-mice without a transgene. Consequences occurred when the transgenes were expressed at a fraction of the endogenous level. Hemizygous congenic mice did not exhibit any change in the number or size of dopaminergic neurons in the ventral midbrain at 9 months of age. Human αSYN was predominantly located in neuronal cell bodies, neurites, synapses, and in intraneuronal/intraneuritic aggregates. The hm(2) αSYN transgene resulted in more aggregates and dystrophic neurites than did the hw5 transgene. The hwαSYN transgene resulted in higher expression of two striatal proteins, synaptogamin 7 and UCHL1, compared with the levels of the hm(2) αSYN transgene. These observations suggest that mutations in αSYN may impair specific functional domains, leaving others intact. These lines may be useful for exploring interactions between hαSYN and environmental or genetic risk factors in dopamine-related disorders using a mouse model.  相似文献   

14.
Potentiation of neuronal nicotinic acetylcholine receptors by exogenous ligands is a promising strategy for treatment of neurological disorders including Alzheimer's disease and schizophrenia. To gain insight into molecular mechanisms underlying potentiation, we examined ACh-induced single-channel currents through the human neuronal α7 acetylcholine receptor in the presence of the α7-specific potentiator PNU-120596 (PNU). Compared to the unusually brief single-channel opening episodes elicited by agonist alone, channel opening episodes in the presence of agonist and PNU are dramatically prolonged. Dwell time analysis reveals that PNU introduces two novel components into open time histograms, indicating at least two degrees of PNU-induced potentiation. Openings of the longest potentiated class coalesce into clusters whose frequency and duration change over a narrow range of PNU concentration. At PNU concentrations approaching saturation, these clusters last up to several minutes, prolonging the submillisecond α7 opening episodes by several orders of magnitude. Mutations known to reduce PNU potentiation at the whole-cell level still give rise to multisecond-long single-channel clusters. However mutation of five residues lining a cavity within each subunit's transmembrane domain abolishes PNU potentiation, defining minimal structural determinants of PNU potentiation.  相似文献   

15.
Parkinson’s disease (PD) is a progressive brain disorder that interferes with activities of normal life. The main pathological feature of this disease is the loss of more than 80% of dopamine-producing neurons in the substantia nigra (SN). Dopaminergic neuronal cell death occurs when intraneuronal, insoluble, aggregated proteins start to form Lewy bodies (LBs), the most important component of which is a protein called α-synuclein (α-syn). α-Syn structurally contains hexameric repeats of 11 amino acids, which are characteristic of apolipoproteins and thus α-syn can also be considered an apolipoprotein. Moreover, apolipoproteins seem to be involved in the incidence and development of PD. Some apolipoproteins such as ApoD have a neuroprotective role in the brain. In PD, apoD levels increase in glial cells surrounding dopaminergic cells. However, elevated levels of some other apolipoproteins such as ApaA1 and ApoE are reported as a vulnerability factor of PD. At present, when a clinical diagnosis of PD is made, based on symptoms such as shaking, stiff muscles and slow movement, serious damage has already been done to nerve cells of the SN. The diagnosis of PD in its earlier stages, before this irreversible damage, would be of enormous benefit for future treatment strategies designed to slow or halt the progression of PD. This review presents the roles of apolipoproteins and α-syn in PD and how some of them could potentially be used as biomarkers for PD.  相似文献   

16.
It is now well established that rhodopsin-like, family-A G protein-coupled receptors (GPCRs) can exist within homo- and heterodimeric/oligomeric complexes. However, limited information is currently available on the molecular basis of these interactions or their selectivity. Using the alpha1-adrenoceptor family as a model, this has been examined using assays including coimmunoprecipitation, saturation bioluminescence resonance energy transfer (BRET), time-resolved fluorescence resonance energy transfer (FRET), and bimolecular fluorescence complementation. We demonstrate key roles for transmembrane helices I and IV in homodimeric/oligomeric interactions of the alpha1b-adrenoceptor and suggest that other interactions indicate that this GPCR can exist as a higher-order oligomeric complex. Literature reports on heterodimerization between chemokine receptor family members and the effects or otherwise of agonist ligands are complex. It was recently indicated that although the CXCR2 receptor is able to homodimerize, this is not the case for the closely related CXCR1 receptor and that these two GPCRs do not heterodimerize. We have reinvestigated these issues using combinations of coimmunoprecipitation, saturation BRET, and a novel endoplasmic reticulum-trapping strategy. Unlike the previous report, we demonstrate that CXCR1 is able to both homodimerize and heterodimerize with the CXCR2 receptor and that the relative affinity of these interactions suggests that with coexpression of these two GPCRs a random mixture of homo- and heterodimers will be present.  相似文献   

17.
One of the prominent pathological features of Parkinson's disease (PD) is the abnormal accumulation of iron in the substantia nigra pars compacta (SNpc), in the reactive microglia, and in association with neuromelanin, within the melanin-containing dopamine (DA) neurons. Lewy body, the morphological hallmark of PD, is composed of lipids, redox-active iron, and aggregated alpha-synuclein, concentrating in its peripheral halo and ubiquitinated, hyperphosphorylated, neurofilament proteins. The capacity of free iron to enhance and promote the generation of toxic reactive oxygen radicals has been discussed numerous times. Recent observations, that iron induces aggregation of inert alpha-synuclein to toxic aggregates, have reinforced the critical role of iron in oxidative stress-induced pathogenesis of DA neuron degeneration and protein degradation via ubiquitination. N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)- and 6-hydroxydopamine-induced neurodegeneration in rodents and nonhuman primates is associated with increased presence of iron and alpha-synuclein in the SNpc. The accumulation of iron in MPTP-induced neurodegeneration has been linked to nitric oxide-dependent mechanism, resulting in degradation of prominent iron regulatory proteins by ubiquitination. Radical scavengers such as R-apomorphine and green tea catechin polyphenol (-)-epigallocatechin-3-gallate, as well as the recently developed brain-permeable VK-28 series derivative iron chelators, which are neuroprotective against these neurotoxins in mice and rats, prevent the accumulation of iron and alpha-synuclein in SNpc. This study supports the notion that a combination of iron chelation and antioxidant therapy, as emphasized on several occasions, might be a significant approach to neuroprotection in PD and other neurodegenerative diseases.  相似文献   

18.
Summary. A major step in the elucidation of the pathogenesis of neurodegenerative disorders was the identification of a mutation in the α-synuclein gene in autosomal dominant Parkinson's disease (PD). α-Synuclein is the main component of Lewy bodies (LB), the neuropathological hallmark of PD. Moreover, a fragment of α-synuclein (NAC) is the second major component of amyloid plaques in Alzheimer's disease (AD). Recent studies of other neurodegenerative disorders such as dementia with LB (DLB), multiple system atrophy (MSA) and amyotrophic lateral sclerosis (ALS) also revealed intracellular accumulations of α-synuclein in affected brain regions. This may indicate that these disorders partially share common pathogenic mechanisms. Recent data provide first insights into the physiological function of α-synuclein and support the concept of an essential role of α-synuclein in neurodegeneration. Increasing knowledge on the pathogenic molecular mechanisms of neurodegeneration and of the pathophysiological function of α-synuclein in particular may influence future development of therapeutic strategies in neurodegenerative disorders. Received April 9, 1999; accepted June 16, 1999  相似文献   

19.
Objective To clone the cDNA of rat α-Syn gene, investigate its prokaryotic expression and produce purified recombinant rat α-Syn protein. Methods Rat α-Syn cDNA was amplified from the rat brain total RNA by RT-PCR and was cloned into pGEX-4T-1, a prokaryotic expressing vector. The recombinant plasmid containing rat α-Syn gene was transformed into E. Coli BL21 to express a fusion protein with rat α-Syn protein tagged by glutathione-S-transferase (GST). The fusion protein was then cleaved by thrombin during passing through the GST-agarose 4B column to release the recombinant rat α-Syn protein. The recombinant rat α-Syn protein was further purified using Superdex S200 gel filtration. Results DNA sequencing confirmed that the cloned cDNA contained 420 base pairs encoding 140 amino acids, which was identical to the reported amino acid sequence of rat α-Syn. After transformation, the recombinant plasmid pGEX-ra-Syn expressed a soluble protein that was inducible by IPTG. The purified recombinant protein was shown to be single band on SDS-PAGE, with a molecular size of around 18000, which was identical to the reported molecular size of rat α-Syn. Western blot analysis demonstrated that the recombinant protein was recognized by specific antibody against α-Syn. Conclusion The rat α-Syn gene was successfully expressed in prokaryotic expression system and highly purified rat α-Syn recombinant protein was produced.  相似文献   

20.
Li X  Li YH  Han JY  Yu S  Chen B 《神经科学通报》2006,22(1):29-33
Objective To clone the cDNA of rat α-Syn gene, investigate its prokaryotic expression and produce purified recombinant rat α-Syn protein. Methods Rat α-Syn cDNA was amplified from the rat brain total RNA by RT-PCR and was cloned into pGEX-4T-1, a prokaryotic expressing vector. The recombinant plasmid containing rat α-Syn gene was transformed into E. Coli BL21 to express a fusion protein with rat α-Syn protein tagged by glutathione-S-transferase (GST). The fusion protein was then cleaved by thrombin during passing through the GST-agarose 4B column to release the recombinant rat α-Syn protein. The recombinant rat a-Syn protein was further purified using Superdex S200 gel filtration. Results DNA sequencing confirmed that the cloned cDNA contained 420 base pairs encoding 140 amino acids, which was identical to the reported amino acid sequence of rat α-Syn. After transformation, the recombinant plasmid pGEX-ra-Syn expressed a soluble protein that was inducible by IPTG. The purified recombinant protein was shown to be single band on SDS-PAGE, with a molecular size of around 18000, which was identical to the reported molecular size of rat α-Syn. Western blot analysis demonstrated that the recombinant protein was recognized by specific antibody against α-Syn. Conclusion The rat α-Syn gene was successfully expressed in prokaryotic expression system and highly purified rat α-Syn recombinant protein was produced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号