首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gametogenesis and embryogenesis are dynamic developmental stages marked by extensive modifications in the organization of the genome and nuclear architecture. In the literature it is conveyed that only B-type lamins are required in these early stages of development and that A-type lamins are not present or required until differentiation of specific cell types associated with specialized tissue is initiated. To assess the presence of nuclear structures that are putatively involved in genome regulation, we investigated the distribution of lamin proteins throughout the early stages of porcine embryonic development, using testes tissue sections, oocytes and in-vitro fertilized (IVF) porcine embryos and employing anti-lamin antibodies. We have shown that anti-lamin A staining is present at the one-cell, two-cell, four-cell, and six- to eight-cell stages of early porcine embryo development, but diminishes at the morulae and blastocyst stages. Large intranuclear anti-lamin A foci are prominent in the early preimplantation stages. Both anti-lamin A/C and anti-lamin B staining were clearly present in all embryonic stages. Immature porcine oocytes revealed lamin rings using the monoclonal anti-lamin A/C antibody and many immature oocytes exhibited a pale rim staining pattern with anti-lamin A antibody. A-type lamins were not observed in sperm precursor cells. Thus, we have shown that A-type lamins and B-type lamins are present at the nuclear envelope in very early porcine embryos and that lamin A is also found in large intranuclear aggregates in two-cell to eight-cell embryos but is lacking from later embryonic stages. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

3.
Mutations within LMNA, encoding A-type nuclear lamins, are associated with multiple tissue-specific diseases, including Emery-Dreifuss (EDMD2/3) and Limb-Girdle muscular dystrophy (LGMD1B). X-linked EDMD results from mutations in emerin, a lamin A-associated protein. The mechanisms through which these mutations cause muscular dystrophy are not understood. Here we show that most, but not all, cultured muscle cells from lamin A/C knockout mice exhibit impaired differentiation kinetics and reduced differentiation potential. Similarly, normal muscle cells that have been RNA interference (RNAi) down-regulated for either A-type lamins or emerin have impaired differentiation potentials. Replicative myoblasts lacking A-type lamins or emerin also have decreased levels of proteins important for muscle differentiation including pRB, MyoD, desmin, and M-cadherin; up-regulated Myf5; but no changes in Pax3, Pax7, MEF2C, MEF2D, c-met, and beta-catenin. To determine whether impaired myogenesis is linked to reduced MyoD or desmin levels, these proteins were individually expressed in Lmna(-/-) myoblasts that were then induced to undergo myogenesis. Expression of either MyoD or, more surprisingly, desmin in Lmna(-/-) myoblasts resulted in increased differentiation potential. These studies indicate roles for A-type lamins and emerin in myogenic differentiation and also suggest that these effects are at least in part due to decreased endogenous levels of other critical myoblast proteins. The delayed differentiation kinetics and decreased differentiation potential of lamin A/C-deficient and emerin-deficient myoblasts may in part underlie the dystrophic phenotypes observed in patients with EDMD.  相似文献   

4.
5.
Nuclear A- and B-type lamins are differentially expressed in tissues, depending on the degree of cellular differentiation and proliferative status. By studying lamin expression in testis parenchyma and testicular germ cell tumours, further insight may be gained into the degree of cellular differentiation in normal testis and into the whole spectrum of differentiation lineages found in testicular germ cell tumours. Frozen tissue sections of normal testis and the different types of testicular germ cell tumours were immunostained with monoclonal antibodies to distinct lamin subtypes. Lamin reactivity was evaluated in relation to the lineage and degree of cellular differentiation and the reactivity patterns were compared with each other and with those in normal testis. In normal testis, both A- and B-type lamins were expressed in Sertoli, Leydig, and peritubular cells, while in spermatogonia only B-type lamins were found and spermatocytes showed weak reactivity with the A-type lamin antibodies. Carcinoma in situ was most often positive for both of the B-type lamins and negative for the A-type lamins (lamins A and C). In testicular germ cell tumours, B-type lamins were always expressed, while A-type lamins were differentially expressed. Differentiated non-seminomas were positive for both of the A-type lamins, whereas embryonal carcinomas were positive for lamin C and negative for lamin A. Seminomas were negative for both of the A-type lamins, with the exception of seminomas containing a Ras mutation. Spermatogonia and seminoma cells, which follow a differentiation pathway along the spermatogenic lineage and show characteristics of germ cells, do not express A-type lamins. Non-seminomas, showing embryonal or extraembryonal differentiation, express A-type lamins to varying degrees, distinguishing embryonal carcinoma cells from other non-seminomatous components. This may aid in the evaluation of the percentage of embryonal carcinoma in non-seminomatous testicular germ cell tumours as a prognostic parameter. © 1997 John Wiley & Sons, Ltd.  相似文献   

6.
Pluripotent mesenchymal stem cells (MSCs) are bone marrow stromal progenitor cells that can differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. Several signaling pathways have been shown to regulate the lineage commitment and terminal differentiation of MSCs. Here, we conducted a comprehensive analysis of the 14 types of bone morphogenetic protein (BMPs) for their abilities to regulate multilineage specific differentiation of MSCs. We found that most BMPs exhibited distinct abilities to regulate the expression of Runx2, Sox9, MyoD, and PPARgamma2. Further analysis indicated that BMP-2, BMP-4, BMP-6, BMP-7, and BMP-9 effectively induced both adipogenic and osteogenic differentiation in vitro and in vivo. BMP-induced commitment to osteogenic or adipogenic lineage was shown to be mutually exclusive. Overexpression of Runx2 enhanced BMP-induced osteogenic differentiation, whereas knockdown of Runx2 expression diminished BMP-induced bone formation with a decrease in adipocyte accumulation in vivo. Interestingly, overexpression of PPARgamma2 not only promoted adipogenic differentiation, but also enhanced osteogenic differentiation upon BMP-2, BMP-6, and BMP-9 stimulation. Conversely, MSCs with PPARgamma2 knockdown or mouse embryonic fibroblasts derived from PPARgamma2(-/-) mice exhibited a marked decrease in adipogenic differentiation, coupled with reduced osteogenic differentiation and diminished mineralization upon BMP-9 stimulation, suggesting that PPARgamma2 may play a role in BMP-induced osteogenic and adipogenic differentiation. Thus, it is important to understand the molecular mechanism behind BMP-regulated lineage divergence during MSC differentiation, as this knowledge could help us to understand the pathogenesis of skeletal diseases and may lead to the development of strategies for regenerative medicine.  相似文献   

7.
8.
Mutations in LMNA, the gene that encodes A-type lamins, cause multiple diseases including dystrophies of the skeletal muscle and fat, dilated cardiomyopathy, and progeria-like syndromes (collectively termed laminopathies). Reduced A-type lamin function, however, is most commonly associated with skeletal muscle dystrophy and dilated cardiomyopathy rather than lipodystrophy or progeria. The mechanisms underlying these diseases are only beginning to be unraveled. We report that mice deficient in Lmna, which corresponds to the human gene LMNA, have enhanced mTORC1 (mammalian target of rapamycin complex 1) signaling specifically in tissues linked to pathology, namely, cardiac and skeletal muscle. Pharmacologic reversal of elevated mTORC1 signaling by rapamycin improves cardiac and skeletal muscle function and enhances survival in mice lacking A-type lamins. At the cellular level, rapamycin decreases the number of myocytes with abnormal desmin accumulation and decreases the amount of desmin in both muscle and cardiac tissue of Lmna(-/-) mice. In addition, inhibition of mTORC1 signaling with rapamycin improves defective autophagic-mediated degradation in Lmna(-/-) mice. Together, these findings point to aberrant mTORC1 signaling as a mechanistic component of laminopathies associated with reduced A-type lamin function and offer a potential therapeutic approach, namely, the use of rapamycin-related mTORC1 inhibitors.  相似文献   

9.
Hutchinson-Gilford progeria syndrome (HGPS) is a dominant autosomal premature aging syndrome caused by the expression of a truncated prelamin A designated progerin (Pgn). A-type and B-type lamins are intermediate filament proteins that polymerize to form the nuclear lamina network apposed to the inner nuclear membrane of vertebrate somatic cells. It is not known if in vivo both type of lamins assemble independently or co-assemble. The blebbing and disorganization of the nuclear envelope and adjacent heterochromatin in cells from patients with HGPS is a hallmark of the disease, and the ex vivo reversal of this phenotype is considered important for the development of therapeutic strategies. Here, we investigated the alterations in the lamina structure that may underlie the disorganization caused in nuclei by Pgn expression. We studied the polymerization of enhanced green fluorescent protein- and red fluorescent protein-tagged wild-type and mutated lamins in the nuclear envelope of living cells by measuring fluorescence resonance energy transfer (FRET) that occurs between the two fluorophores when tagged lamins interact. Using time domain fluorescence lifetime imaging microscopy that allows a quantitative analysis of FRET signals, we show that wild-type lamins A and B1 polymerize in distinct homopolymers that further interact in the lamina. In contrast, expressed Pgn co-assembles with lamin B1 and lamin A to form a mixed heteropolymer in which A-type and B-type lamin segregation is lost. We propose that such structural lamina alterations may be part of the primary mechanisms leading to HGPS, possibly by impairing functions specific for each lamin type such as nuclear membrane biogenesis, signal transduction, nuclear compartmentalization and gene regulation.  相似文献   

10.
11.
A new panel of anti-A-type lamin monoclonal antibodies was generated. Epitope mapping was performed by immunoblotting against GST—lamin fusion peptides. Epitopes were mapped to four different regions of human lamin A and three different regions of human lamin C. The distribution of A-type lamins was compared with the distribution of the proliferation marker Ki67 in proliferating and quiescent cultures of human dermal fibroblasts (HDFs) using a double indirect immunofluorescence assay. Antibodies that had been mapped to a region of the lamin C tail stained the nuclear envelope of proliferating and quiescent cells equally brightly. In contrast, antibodies recognizing epitopes in the head domain and rod domain of lamins A and C and the tail domain of lamin A stained the nuclear envelope of quiescent cells strongly but reacted poorly or not at all with the nuclear envelope of proliferating cells. Changes in the level of expression of lamins A and C were not detected in immunoblotting assays. However, epitope masking was revealed, and this occurred by two distinct mechanisms. Epitope masking in the head domain of lamins A and C occurred as a result of protein phosphorylation. Epitope masking in the rod domain of lamins A and C and in the tail domain of lamin A occurred through a physical association between the lamin and chromatin and/or other nuclear proteins. The cell cycle timing of epitope masking was investigated in HDFs that had been restimulated after serum starvation. Extensive epitope masking in restimulated cells only occurred after cells had passed through mitosis. These results are consistent with the hypothesis that rearrangement of A-type lamin filaments, as cells progress from a quiescent to a proliferating state, results in altered lamina associations.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

12.
Mutations in LMNA, which encodes nuclear lamins A and C, cause a broad range of diseases, including autosomal dominant Emery-Dreifuss muscular dystrophy (EDMD) and related disorders with a predominant cardiomyopathy. Homozygous Lmna model "knock-in" and null mice develop cardiomyopathy, whereas heterozygous mice do not. Overexpression of lamin A mutants that cause cardiomyopathy in cultured cells induces morphological abnormalities in the nuclear envelope and lamina; however, effects on tissue and organ pathology have not been determined. We used the heart-selective alpha-myosin heavy chain promoter to drive expression in transgenic mice of human wild-type and M371K lamin A, which causes EDMD. Mice expressing M371K lamin A were born at approximately 0.07 of the expected frequency and those born typically died at 2-7 weeks of age. Histological analysis showed increased eosinophilia and fragmentation of cardiomyofibrils, nuclear pyknosis and edema without fibrosis or significant inflammation, indicative of acute or subacute injury. Mice expressing human wild-type lamin A were born at only slightly less than the expected frequency and had normal life spans. Confocal immunofluorescence microscopy demonstrated abnormal nuclear envelopes with intranuclear foci of lamins in cardiac cells expressing M371K lamin A. Electron microscopy revealed extensively convoluted nuclear envelopes, intranuclear inclusions and chromatin clumps in cardiomyocyte nuclei. These results demonstrate that expression of a lamin A mutant that induces alterations in nuclear morphology can cause tissue and organ damage in mice with a normal complement of wild-type lamins.  相似文献   

13.
14.
Mutations in the human LMNA gene, encoding A-type lamins, give rise to laminopathies, which include several types of muscular dystrophy. Here, heterozygous sequence variants in LMNA, which result in single amino-acid substitutions, were identified in patients exhibiting muscle weakness. To assess whether the substitutions altered lamin function, we performed in vivo analyses using a Drosophila model. Stocks were generated that expressed mutant forms of the Drosophila A-type lamin modeled after each variant. Larvae were used for motility assays and histochemical staining of the body-wall muscle. In parallel, immunohistochemical analyses were performed on human muscle biopsy samples from the patients. In control flies, muscle-specific expression of the wild-type A-type lamin had no apparent affect. In contrast, expression of the mutant A-type lamins caused dominant larval muscle defects and semi-lethality at the pupal stage. Histochemical staining of larval body wall muscle revealed that the mutant A-type lamin, B-type lamins, the Sad1p, UNC-84 domain protein Klaroid and nuclear pore complex proteins were mislocalized to the cytoplasm. In addition, cytoplasmic actin filaments were disorganized, suggesting links between the nuclear lamina and the cytoskeleton were disrupted. Muscle biopsies from the patients showed dystrophic histopathology and architectural abnormalities similar to the Drosophila larvae, including cytoplasmic distribution of nuclear envelope proteins. These data provide evidence that the Drosophila model can be used to assess the function of novel LMNA mutations and support the idea that loss of cellular compartmentalization of nuclear proteins contributes to muscle disease pathogenesis.  相似文献   

15.
The LMNA gene encodes for lamins A and C as major products, which are involved in nuclear stability, chromatin structure, and gene expression. Several LMNA mutations cause an insulin-resistant lipodystrophy that shares features with HIV-related lipodystrophy. Some HIV-treatment agents alter lamin A/C maturation, organization, and stability in 3T3-L1. We aimed to test the hypothesis that human adipose tissue LMNA expression can be altered in highly active antiretroviral therapy (HAART)-treated HIV-positive patients with lipodystrophy. We have also analyzed both isoforms and explored if their expression is associated with insulin resistance or inflammation in these patients. A cross-sectional study that analyzed abdominal subcutaneous adipose tissue from 39 treated HIV-positive patients (25 of whom had lipodystrophy) and 21 uninfected control subjects was performed. We have observed lower levels of lamin A isoform but normal levels of lamin C isoform in all HIV-infected patients, irrespective of the presence or absence of lipodystrophy, which reinforces the idea that an altered lamin A/C ratio could reflect a pathogenic condition. We have also found a correlation between LMNA adipose expression and several cytokine and adipogenic gene markers in HIV-positive patients, regardless of the presence or absence of lipodystrophy. Hence, in the present study, the lower lamin A expression observed in HIV-positive patients is related to HIV itself or to treatments rather than to the presence of lipodystrophy.  相似文献   

16.
Thymopoietin or TMPO (indicated by its alternative gene symbol, LAP2, in this work) has been proposed as a candidate disease gene for dilated cardiomyopathy (DCM), since a LAP2 product associates with nucleoplasmic lamins A/C, which are encoded by the DCM gene LMNA. We developed a study to screen for genetic mutations in LAP2 in a large collection of DCM patients and families. A total of 113 subjects from 88 families (56 with familial DCM (FDC) and 32 with sporadic DCM) were screened for LAP2 mutations using denaturing high-performance liquid chromatography and sequence analysis. We found a single putative mutation affecting the LAP2alpha isoform in one FDC pedigree. The mutation predicts an Arg690Cys substitution (c.2068C>T; p.R690C) located in the C-terminal domain of the LAP2alpha protein, a region that is known to interact with lamin A/C. RT-PCR, Western blot analyses, and immunolocalization revealed low-level LAP2alpha expression in adult cardiac muscle, and localization to a subset of nuclei. Mutated Arg690Cys LAP2alpha expressed in HeLa cells localized to the nucleoplasm like wild-type LAP2alpha, with no effect on peripheral and nucleoplasmic lamin A distribution. However, the in vitro interaction of mutated LAP2alpha with the pre-lamin A C-terminus was significantly compromised compared to the wild-type protein. LAP2 mutations may represent a rare cause of DCM. The Arg690Cys mutation altered the observed LAP2alpha interaction with A-type lamins. Our finding implicates a novel nuclear lamina-associated protein in the pathogenesis of genetic forms of dilated cardiomyopathy.  相似文献   

17.
Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by point mutation in LMNA encoding A-type nuclear lamins. The mutations in LMNA activate a cryptic splice donor site, resulting in expression of a truncated, prenylated prelamin A called progerin. Expression of progerin leads to alterations in nuclear morphology, which may underlie pathology in HGPS. We generated transgenic mice expressing progerin in epidermis under control of a keratin 14 promoter. The mice had severe abnormalities in morphology of skin keratinocyte nuclei, including nuclear envelope lobulation and decreased nuclear circularity not present in transgenic mice expressing wild-type human lamin A. Primary keratinocytes isolated from these mice had a higher frequency of nuclei with abnormal shape compared to those from transgenic mice expressing wild-type human lamin A. Treatment with a farnesyltransferase inhibitor significantly improved nuclear shape abnormalities and induced the formation of intranuclear foci in the primary keratinocytes expressing progerin. Similarly, spontaneous immortalization of progerin-expressing cultured keratinocytes selected for cells with normal nuclear morphology. Despite morphological alterations in keratinocyte nuclei, mice expressing progerin in epidermis had normal hair grown and wound healing. Hair and skin thickness were normal even after crossing to Lmna null mice to reduce or eliminate expression of normal A-type lamins. Although progerin induces significant alterations in keratinocyte nuclear morphology that are reversed by inhibition of farnesyltransferasae, epidermal expression does not lead to alopecia or other skin abnormalities typically seen in human subjects with HGPS.  相似文献   

18.
Nuclear A-type and B-type lamin expression was investigated in the major human lung cancer subtypes: small cell lung cancer (SCLC), squamous cell carcinomas, and adenocarcinomas (both non-SCLC). Twenty-two human lung cancer cell lines and 46 fresh frozen human lung cancer specimens were examined. Expression of B-type lamins was found in all the different cell lines. A-type lamins were expressed in all non-SCLC cell lines but were absent or only weakly expressed in 14 out of 16 SCLC cell lines. The immunocytochemical results were confirmed by immunoblotting and Northern blot analyses. In sections of SCLCs and non-SCLCs, B-type lamins were found to be expressed in all tumors. However, in some non-SCLCs, particularly in adenocarcinomas, a considerable proportion of the tumor cells were negative for B-type lamins. A-type lamin expression in SCLCs was weakly positive or negative in 14 out of 15 cases. In contrast, all non-SCLCs displayed A-type lamins, but in several of these samples, both cytoplasmic and nuclear staining was observed.  相似文献   

19.
20.
Mesenchymal stem cell (MSC) has drawn much attention in the aspect of tissue renewal and wound healing because of its multipotency. We initially observed that bone marrow-derived human MSCs (hMSCs) divided poorly and took flat and enlarged morphology after expanded in culture over a certain number of cell passage, which resembled characteristic features of senescent cells, well-studied in human diploid fibroblasts (HDFs). More interestingly, adipogenic differentiation potential of hMSCs sharply declined as they approached the end of their proliferative life span. In this study, altered hMSCs were verified to be senescent by their senescence-associated beta-galactosidase (SA-beta-gal) activity and the increased expression of cell cycle regulating proteins (p16(INK4a), p21(Waf1) and p53). Similar as in HDFs, basal phosphorylation level of ERK was also significantly increased in senescent hMSCs, implying altered signal paths commonly shared by the senescent cells. Insulin, a major component of adipogenesis inducing medium, did not phosphorylate ERK 1/2 more in senescent hMSCs after its addition whereas it did in young cells. In senescent hMSCs, we also found a significant increase of caveolin-1 expression, previously reported as a cause for the attenuated response to growth factors in senescent HDFs. When we overexpressed caveolin-1 in young hMSC, not only insulin signaling but also adipogenic differentiation was significantly suppressed with down-regulated PPARgamma2. These data indicate that loss of adipogenic differentiation potential in senescent hMSC is mediated by the over-expression of caveolin-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号