首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic E. coli (EHEC) possess a filamentous type III secretion system (TTSS) employed to deliver effector proteins into host cells. EspA is a type III secreted protein which forms the filamentous extension to the TTSS and which interacts with host cells during early stages of attaching and effacing (A/E) lesion formation. By immunofluorescence, a polyclonal antibody previously raised to EspA from EPEC strain E2348/69 (O127:H6) stained approximately 12-nm-diameter EspA filaments produced by this strain but did not stain similar filaments produced by EHEC serotype O157:H7. Similarly, an antibody that we subsequently raised to EHEC strain 85-170 (O157:H7) EspA stained approximately 12-nm-diameter EspA filaments produced by strain 85-170 but did not stain E2348/69 EspA filaments. Given such heterogeneity between EPEC and EHEC EspA filaments, we examined polymorphisms of functional EspA filaments among different EPEC and EHEC serotypes. With use of the EPEC EspA antiserum, EspA filaments were observed only with EPEC serotypes O127:H6 and O55:H6, serotypes which encode an identical EspA protein. When stained with the EHEC EspA antiserum, EspA filaments were detected only on EHEC strains belonging to serotype O157:H7; the EHEC antiserum did, however, stain EspA filaments produced by the closely related EPEC serotype O55:H7 but not filaments of any other EPEC serotype tested. Such polymorphisms among functional EspA filaments of EPEC and EHEC would be expected to have important implications for the development of broad-range EspA-based vaccines.  相似文献   

2.
In enteropathogenic Escherichia coli, the eaeA gene produces a 94-kDa outer membrane protein called intimin which has been shown to be necessary but not sufficient to produce the attaching-and-effacing lesion. The purpose of this study was to characterize the intimin specified by the eaeA allele of the enterohemorrhagic E. coli (EHEC) serotype O157:H7 strain CL8 and to determine its role in adherence. The carboxyl-terminal 266 amino acids of the CL8 intimin were expressed as a protein fusion with glutathione S-transferase, which was used to raise antiserum in rabbits. The antiserum reacted in Western immunoblots with a 97-kDa outer membrane protein of EHEC strains of serogroups O5, O26, O111, and O157 and enteropathogenic E. coli strains of serogroups O55 and O127. Surface labelling of CL8 with 125I showed that intimin was surface exposed. An eaeA insertional inactivation mutant of CL8 was produced and was designated CL8-KO1. Total adherence of CL8-KO1 to HEp-2 cells was not significantly different from that of CL8, but CL8-KO1 gave a negative result in the fluorescent actin staining test. The eaeA gene expressed alone in E. coli HB101 also gave a negative fluorescent actin staining test result. The eaeA gene of CL8 was able to complement the eaeA deletion mutation in CVD206. We conclude that the product of the EHEC eaeA gene is a 97-kDa surface-exposed protein and propose that it be designated intiminO157. Sherman et al. described a 94-kDa outer membrane protein which played an important role in adherence of E. coli O157:H7 (Infect. Immun. 59:890-899, 1991). Western immunoblotting and indirect fluorescent antibody studies showed that the protein described by Sherman et al. is not intimin.  相似文献   

3.
Eighty strains of pathogenic Escherichia coli, representing each of the major diarrheal disease-causing groups, were examined by direct enzyme-linked immunosorbent assay (ELISA) for the presence of proteins associated with a 60-MDa plasmid from E. coli serotype O157:H7. Antiserum specific for plasmid-encoded proteins was prepared by immunizing a rabbit with a wild-type E. coli O157:H7 strain (strain 7785) and absorbing the serum with a plasmid-cured derivative (strain 2-45). Use of this antiserum in Western immunoblot analysis detected two proteins of 82 and 92 kDa in strain 7785 but not in strain 2-45. All 16 wild-type E. coli O157:H7 strains and all 10 Shiga-like toxin (SLT)-producing E. coli strains of serotypes other than O157 were ELISA positive. Thirteen of 14 enterotoxigenic and all of 24 enteroinvasive E. coli strains were ELISA negative, as were all of 16 E. coli strains isolated from healthy persons. Of 16 traditional enteropathogenic E. coli (EPEC) serotypes, 10 were ELISA positive, including 10 of 12 strains carrying the EPEC adherence factor gene. Absorption of the serum with an EPEC adherence factor-positive EPEC eliminated EPEC reactivity. This study demonstrates that two plasmid-mediated proteins are common to E. coli O157:H7 strains and to SLT-producing strains of other serotypes. Detection of these proteins by ELISA provides a sensitive and specific screening test for identifying SLT-producing E. coli of both O157 and non-O157 serotypes. Identification of the cross-reactive proteins found in EPEC could provide the basis for a single assay to detect both EPEC and SLT-producing E. coli.  相似文献   

4.
Immunological characterization of Escherichia coli O157:H7 intimin gamma1.   总被引:3,自引:0,他引:3  
Portions of the intimin genes of Escherichia coli O157:H7 strain E319 and of the enteropathogenic E. coli O127:H6 strain E2348/69 were amplified by PCR and cloned into pET-28a+ expression vectors. The entire 934 amino acids (aa) of E. coli O157:H7 intimin, the C-terminal 306 aa of E. coli O157:H7 intimin, and the C-terminal 311 aa of E. coli O127:H6 intimin were expressed as proteins fused with a six-histidine residue tag (six-His tag) in pET-28a+. Rabbit antisera raised against the six-His tag-full-length E. coli O157:H7 intimin protein fusion cross-reacted in slot and Western blots with outer membrane protein preparations from the majority of enterohemorrhagic and enteropathogenic E. coli serotypes which have the intimin gene. The E. coli strains tested included isolates from humans and animals which produce intimin types alpha (O serogroups 86, 127, and 142), beta1 (O serogroups 5, 26, 46, 69, 111, 126, and 128), gamma 1 (O serogroups 55, 145, and 157), gamma 2 (O serogroups 111 and 103), and epsilon (O serogroup 103) and a nontypeable intimin (O serogroup 80), results based on intimin type-specific PCR assays. Rabbit antisera raised against the E. coli O157:H7 C-terminal fusion protein were much more intimin type-specific than those raised against the full-length intimin fusion protein, but some cross-reaction with other intimin types was also observed for these antisera. In contrast, the monoclonal antibody Intgamma1.C11, raised against the C-terminal E. coli O157 intimin, reacted only with preparations from intimin gamma 1-producing E. coli strains such as E. coli O157:H7.  相似文献   

5.
Isolates of enterohemorrhagic Escherichia coli (EHEC) of serotype O104:H21 implicated in a 1994 outbreak of hemorrhagic colitis in Montana were analyzed for the presence of trait EHEC virulence markers. By using a multiplex PCR that specifically amplifies several genes, the O104:H21 strains were found to carry only the Shiga toxin 2 gene (stx2) and to express Stx2. They did not have the eaeA gene for gamma-intimin, which is typically found in O157:H7, or the alpha- or beta-intimin derivatives, which are common in other EHEC and enteropathogenic E. coli serotypes. Results of the multiplex PCR also indicated that the ehxA gene for enterohemolysin was absent from O104:H21. This, however, was not consistent with the results of a phenotypic assay that showed them to be hemolytic or a PCR analysis with another set of ehxA-specific primers, which indicated the presence of ehxA. To resolve this discrepancy, the ehxA region in O104:H21 and O157:H7 strains, to which the multiplex PCR primers anneal, was cloned and sequenced. Comparison of the sequences showed that the upstream primer binding site in the ehxA gene of O104:H21 was not identical to that of O157:H7. Specifically, there were several base mutations, including an A-to-G substitution at the 3' end of the primer binding site. These base mutations are presumably not unique to O104:H21, since other enterohemolytic serotypes were also not detected with the ehxA primers used in the multiplex PCR. Comparison of the ehxA sequences of O104:H21 strains with those of other Stx-producing E. coli strains showed that they more closely resembled those of O8:H19 strains, which have cluster II ehxA genes, than those of O157:H7 strains, which have cluster I ehxA sequences. By modifying the upstream ehxA primer, the multiplex PCR was able to detect ehxA genes in both O157:H7 and O104:H21 strains.  相似文献   

6.
Verocytotoxin-producing Escherichia coli causes zoonotic food- or waterborne infection that may be associated with massive outbreaks and with the serious complication of hemolytic uremic syndrome (HUS). Serotypes O157:H7 and O157:NM are more commonly associated with HUS and outbreaks than other serotypes, such as O26:H11. To determine whether a genetic basis exists for why serotype O157:H7/NM causes HUS and outbreaks more often than other serotypes, such as O26:H11, we conducted suppression subtractive hybridization (SSH) between the genomes of the sequenced O157:H7 strain EDL933 and CL1, a clinical serotype O26:H11 isolate. Genes from four EDL933 fimbria-encoding genomic O islands (OIs) (OI-1, -47, -141, and -154) were identified in the SSH library. OI-47 encodes several additional putative virulence factors, including secreted and signaling proteins, a hemolysin locus, a lipoprotein, an ABC transport system, and a lipid biosynthesis locus. The distribution of the OIs was investigated by PCR and Southern hybridization (when PCR was negative) with 69 VTEC strains belonging to 39 different serotypes corresponding to 5 seropathotypes that differ in their disease and epidemic potential. The four OIs described here were distributed almost exclusively in serotypes O157:H7 and O157:NM, which indicates that they may be associated with the ability of these strains to colonize human and/or animal intestinal tracts and to cause epidemic and serious disease more frequently than other serotypes. The occurrence of the four OIs in enteropathogenic E. coli O55:H7 strains is consistent with their vertical inheritance by VTEC O157:H7/NM from this clonally related ancestor.  相似文献   

7.
Sera from 13 patients with hemolytic uremic syndrome (HUS) and 8 healthy control subjects were examined for antibodies specific for bacterial antigens of Eschericia coli serotype O157:H7. Bacterial components, including outer membrane proteins (OMPs), lipopolysaccharide (LPS), and flagella, were reacted with sera by sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by immunoblotting and by enzyme-linked immunosorbent assay. All 13 serum samples from HUS patients contained high-titered antibodies of the immunoglobulin M class against O157 LPS and some OMPs. These same sera reacted weakly with some of the major OMPs, but not the LPS, of non-O157 strains of E. coli. Sera from patients did not contain antibodies to non-O157 LPS or H7 flagella. The possibility of using E. coli serotype O157 LPS in an enzyme-linked immunosorbent assay for the routine diagnostic testing of sera from HUS patients for evidence of O157:H7 infection is discussed.  相似文献   

8.
Shiga toxin-producing Escherichia coli (STEC), a cause of food-borne colitis and hemolytic-uremic syndrome in children, can be serotype O157:H7 (O157) or other serotypes (non-O157). E. coli O157 can be detected by culture with sorbitol-MacConkey agar (SMAC), but non-O157 STEC cannot be detected with this medium. Both O157 and non-O157 STEC can be detected by immunoassay for Shiga toxins 1 and 2. The objectives of this study were first to compare the diagnostic utility of SMAC to that of the Premier EHEC enzyme immunoassay (Meridian Diagnostics) for detection of STEC in children and second to compare the clinical and laboratory characteristics of children with serotype O157:H7 STEC and non-O157:H7 STEC infections. Stool samples submitted for testing for STEC between April 2004 and September 2009 were tested by both SMAC culture and the Premier EHEC assay at Children's Hospital Boston. Samples positive by either test were sent for confirmatory testing and serotyping at the Hinton State Laboratory Institute (HSLI). Chart review was performed on children with confirmed STEC infection. Of 5,110 children tested for STEC, 50 (0.9%) had STEC infection confirmed by culture; 33 were O157:H7 and 17 were non-O157:H7. The Premier EHEC assay and SMAC culture detected 96.0% and 58.0% of culture-confirmed STEC isolates (any serotype), respectively, and 93.9% and 87.9% of STEC O157:H7 isolates, respectively. There were no significant differences in disease severity or laboratory manifestations of STEC infection between children with O157:H7 and those with non-O157 STEC. The Premier EHEC assay was significantly more sensitive than SMAC culture for diagnosis of STEC, and O157:H7 and non-O157:H7 STEC caused infections of similar severity in children.  相似文献   

9.
Sections of kidney, trachea, ileum, colon, rectum and rumen were removed at post mortem from a neonatal calf and, with the exception of the rumen, primary cell lines were established for each of the cell types. The adherence of enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, enteropathogenic E. coli (EPEC) serotype O111, E. coli K12 (a laboratory adapted non-pathogenic strain) and Salmonella enterica serotype Typhimurium was assayed on each cell type. For all adherence assays on all cell lines, EHEC O157:H7 adhered to a significantly greater extent than the other bacteria. S. Typhimurium and EPEC O111 adhered to a similar extent to one another, whereas E. coli K12 was significantly less adherent by 100-fold. In all cell types, >10% of adherent S. Typhimurium bacteria invaded, whereas c. 0.01-0.1% of adherent EHEC O157:H7 and EPEC O111 bacteria invaded, although they are regarded as non-invasive. EHEC O157 generated actin re-arrangements in all cell types as demonstrated by fluorescent actin staining (FAS) under densely packed bacterial micro-colonies. EPEC O111 readily generated the localised adherent phenotype on bovine cells but generated only densely packed micro-colonies on HEp-2 cells. The intensity of actin re-arrangements induced in bovine cells by EPEC O111 was less than that induced by EHEC O157:H7. The intimate attachment on all cell types by both EHEC O157:H7 and EPEC O111 was clearly demonstrated by scanning electron microscopy.  相似文献   

10.
Enterohemorrhagic Escherichia coli (EHEC) is a food-borne cause of bloody diarrhea and the hemolytic-uremic syndrome (HUS) in humans. Most strains of EHEC belong to a group of bacterial pathogens that cause distinctive lesions on the host intestine termed attaching-and-effacing (A/E) lesions. A/E strains of EHEC, including the predominant serotype, O157:H7, are responsible for the majority of HUS outbreaks worldwide. However, several serotypes of EHEC are not A/E pathogens because they lack the locus of enterocyte effacement (LEE) pathogenicity island. Nevertheless, such strains have been associated with sporadic cases and small outbreaks of hemorrhagic colitis and HUS. Of these LEE-negative organisms, O113:H21 is one of the most commonly isolated EHEC serotypes in many regions. Clinical isolates of LEE-negative EHEC typically express Shiga toxin 2 and carry an approximately 90-kb plasmid that encodes EHEC hemolysin, but in the absence of LEE, little is known about the way in which these pathogens colonize the host intestine. In this study we describe the identification of a novel fimbrial gene cluster related to long polar fimbriae in EHEC O113:H21. This chromosomal region comprises four open reading frames, lpfA to lfpD, and has the same location in the EHEC O113:H21 genome as O island 154 in the prototype EHEC O157:H7 strain, EDL933. In a survey of EHEC of other serotypes, homologues of lpfA(O113) were found in 26 of 28 LEE-negative and 8 of 11 non-O157:H7 LEE-positive EHEC strains. Deletion of the putative major fimbrial subunit gene, lpfA, from EHEC O113:H21 resulted in decreased adherence of this strain to epithelial cells, suggesting that lpf(O113) may function as an adhesin in LEE-negative isolates of EHEC.  相似文献   

11.
Most illnesses caused by Shiga toxin-producing Escherichia coli (STEC) have been attributed to E. coli serotype O157:H7, but non-O157 STEC infections are now increasingly recognized as public health problems worldwide. The O121:H19 serotype is being isolated more frequently from clinical specimens and has been implicated in one waterborne outbreak. We used multilocus virulence gene profiling, a PCR-based assay, to characterize the virulence gene content of 24 isolates of serotype O121:H19 and nonmotile variants. We also performed multilocus enzyme electrophoresis and multilocus sequencing to establish the clonal relatedness of O121 isolates and to elucidate the relationship of O121 to common STEC clones. The 24 isolates were found to represent a single bacterial clone, as there was no allelic variation across 18 enzyme loci among the isolates. The complete nucleotide sequence of the intimin gene differed by four substitutions from that of the epsilon (Int- epsilon ) allele of O103:H2 strain PMK5. The typical O121 virulence gene profile was similar to the profiles of enterohemorrhagic E. coli (EHEC) clones of E. coli: it included a Shiga toxin 2 gene (stx(2)), two genes on the EHEC plasmid (toxB and ehxA), and the gene encoding intimin (eae). Despite the similarities, putative virulence genes distributed on O islands-large chromosomal DNA segments present in the O157:H7 genome-were useful for discriminating among STEC serotypes and the O121:H19 clone had a composite profile that was distinct from the profiles of the other major EHEC clones of pathogenic E. coli. On the basis of sequencing analysis with 13 housekeeping genes, the O121:H19 clone did not fall into any of the four classical EHEC and enteropathogenic E. coli groups but instead was closely related to two eae-negative STEC strains.  相似文献   

12.
Recent transposon mutagenesis studies with two enterohemorrhagic Escherichia coli (EHEC) strains, a sero- type O26:H- strain and a serotype O157:H7 strain, led to identification of a putative fimbrial operon that promotes colonization of young calves (1 to 2 weeks old). The distribution of the gene encoding the major fimbrial subunit present in O-island 61 of EHEC O157:H7 in a characterized set of 78 diarrheagenic E. coli strains was determined, and this gene was found in 87.2% of the strains and is therefore not an EHEC-specific region. The cluster was amplified by long-range PCR and cloned into the inducible expression vector pBAD18. Induced expression in E. coli K-12 led to production of fimbriae, as demonstrated by transmission electron microscopy and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The fimbriae were purified, and sera to the purified major subunit were raised and used to demonstrate expression from wild-type E. coli O157:H7 strains. Induced expression of the fimbriae, designated F9 fimbriae, was used to characterize binding to bovine epithelial cells, bovine gastrointestinal tissue explants, and extracellular matrix components. The fimbriae promoted increases in the levels of E. coli K-12 binding only to bovine epithelial cells. In contrast, induced expression of F9 fimbriae in E. coli O157:H7 significantly reduced adherence of the bacteria to bovine gastrointestinal explant tissue. This may have been due to physical hindrance of type III secretion-dependent attachment. The main F9 subunit gene was deleted in E. coli O157:H7, and the resulting mutant was compared with the wild-type strain for colonization in weaned cattle. While the shedding levels of the mutant were reduced, the animals were still colonized at the terminal rectum, indicating that the adhesin is not responsible for the rectal tropism observed but may contribute to colonization at other sites, as demonstrated previously with very young animals.  相似文献   

13.
Escherichia coli strains isolated from adults with diarrhea in Bangkok, Thailand, were examined for hybridization with DNA probes for genes that code for Shiga-like toxin (SLT)-I, SLT-II, and serogroup O157 enterhemorrhagic E. coli (EHEC) fimbriae. Seven isolates that hybridized with the SLT-I, SLT-II, and O157 EHEC fimbria probes and produced verocytotoxin (VT; group A) were isolated from two patients with diarrhea. Two strains that hybridized with only the SLT-II probe and the O157 EHEC fimbria probe and were VT+ (group B) were isolated from two patients with diarrhea, 7 strains that hybridized with only the SLT-II probe and were VT+ (group C) were isolated from two patients with diarrhea, and 26 strains that hybridized with only the O157 EHEC fimbria probe and were VT- (group D) were isolated from four patients with diarrhea. Seven strains in group A had serotypes O2:H1 (n = 1), O110:H19 (n = 1), and Ont:H8 (n = 5); 2 strains in group B were O112ab:H21 (n = 1) and O113:H21 (n = 1); 7 strains in group C were O6:H28 (n = 1), O22:H16 (n = 1), O52:H25 (n = 1), O112ab:H21 (n = 1), OR:H45 (n = 2), and OR:H11 (n = 1); and 26 strains in group D were O76:H7 (n = 18), O146:H3 (n = 2), O146:H10 (n = 1), O146:Hnt (n = 1), OR:H16 (n = 1), Ont:H2 (n = 1), Ont:H8 (n = 1) and Ont:H16 (n = 1). In Thailand, E. coli strains that hybridized with SLT-I, SLT-II, and O157 EHEC fimbria probes were of a variety of serotypes, none of which were O157:H7.  相似文献   

14.
Cattle are an important reservoir of Shiga toxin-producing enterohemorrhagic Escherichia coli (EHEC) O157:H7 strains, foodborne pathogens that cause hemorrhagic colitis and hemolytic uremic syndrome in humans. EHEC O157:H7 strains are not pathogenic in calves >3 weeks old. Our objective was to determine if EHEC O157:H7 strains are pathogenic in neonatal calves. Calves <36 h old inoculated with EHEC O157:H7 developed diarrhea and enterocolitis with attaching and effacing (A/E) lesions in both the large and small intestines by 18 h postinoculation. The severity of diarrhea and inflammation, and also the frequency and extent of A/E lesions, increased by 3 days postinoculation. We conclude that EHEC O157:H7 strains are pathogenic in neonatal calves. The neonatal calf model is relevant for studying the pathogenesis of EHEC O157:H7 infections in cattle. It should also be useful for identifying ways to reduce EHEC O157:H7 infections in cattle and thus reduce the risk of EHEC O157:H7 disease in humans.  相似文献   

15.
Enterohemorrhagic Escherichia coli (EHEC) and specifically serotype O157:H7 are a significant cause of hemorrhagic gastrointestinal disease and the hemolytic uremic syndrome. Methods currently used in clinical microbiology labs, such as sorbitol-MacConkey (SMAC) agar, reliably detect only O157:H7. We have evaluated a two-step method that has the potential to identify and isolate all EHEC serotypes, including serotype O157:H7. This method utilizes a chromogenic selective-differential medium for the isolation of E. coli together with an enzyme-linked immunosorbent assay (ELISA) that detects the Shiga-like toxins Stx1 and Stx2. Both are commercially available and usable in a wide range of clinical microbiology laboratories. Compared to a Vero cell cytotoxic assay, SMAC had sensitivities of 23.5% for the identification of all EHEC serotypes and of 50.0% for the identification of O157:H7 alone. The two-step method had sensitivities of 76.5 and 100%, respectively. The ELISA alone had a sensitivity of 82.4% in the detection of Stx1 and Stx2. The specificity was 100% in all cases. Overall, 14 EHEC isolates were obtained: 8 (58%) O157:H7, 2 (14%) O26, 2 (14%) O111:NM, 1 (7%) O103:H2, and 1 (7%) O121:H19. All but one were isolated during the months of May to September. The two-step method was found to be considerably more expensive than SMAC for both positive and negative samples.  相似文献   

16.
Within the species Escherichia coli, there are commensal strains and a variety of pathogenic strains, including enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC), enterotoxigenic E. coli (ETEC), enteroinvasive E. coli (EIEC), and urinary tract infection (UTI) strains. The pathogenic strains are identified by serotype and by possession of specific virulence determinants (toxins and adhesions, etc.) encoded by either monocistronic genes, plasmids, or pathogenicity islands. Although there are studies on the relationships between selected pathogenic strains, the relatedness among the majority of the pathogenic forms to each other, to commensal E. coli, and to the genus Shigella (which has often been suggested to be part of E. coli) has not been determined. We used multilocus enzyme electrophoresis (MLEE) at 10 enzyme loci and the sequence of the mdh housekeeping gene to study the genetic relationships of pathogenic E. coli strains (including Shigella clones), namely, 5 EPEC strains (serotypes O111 and O55), 3 EHEC strains (serotype O157), 6 ETEC strains (serotypes O78, O159, and O148), 5 EIEC strains (serotypes O124, O28, and O112), and 13 Shigella strains representing clones Flexneri, Dysenteriae, Boydii, and Sonnei, to commensal E. coli strains. Both the MLEE and mdh sequence trees reveal that EPEC, EHEC, ETEC, EIEC, and UTI strains are distributed among the ECOR set groups, with no overall clustering of EPEC, ETEC, EIEC, or UTI strains. The genus Shigella is shown to comprise a group of closely related pathogenic E. coli strains. Six pathogenic strains, i.e., M502 (EIEC; O112ac:NM), M503 (EPEC; O111:H12), M526 (ETEC; O159:H4), M522 (EPEC; O111ac:H12), M524 (ETEC; O78:H11), and M506 (ETEC; O78:H11), were found to have mdh sequences identical to those of five ECOR group A strains (ECOR5, ECOR10, ECOR14, ECOR6, and K-12). All 11 strains are closely related by MLEE. The results indicate that pathogenic strains of E. coli do not have a single evolutionary origin within E. coli but have arisen many times. The results also suggest the possibility that any E. coli strain acquiring the appropriate virulence factors may give rise to a pathogenic form.  相似文献   

17.
We identified a cytolethal distending toxin (cdt) gene cluster in 87, 6, and 0% of sorbitol-fermenting (SF) enterohemorrhagic Escherichia coli (EHEC) O157:H(-), EHEC O157:H7, and E. coli O55:H7/H(-) strains, respectively. The toxin was expressed by the wild-type EHEC O157 strains and by a cdt-containing cosmid from a library of SF EHEC O157:H(-) strain 493/89. The cdt flanks in strain 493/89 were homologous to bacteriophages P2 and lambda. Our data demonstrate that cdt, encoding a potential virulence factor, is present in the EHEC O157 complex and suggest that cdt may have been acquired by phage transduction.  相似文献   

18.
Intimins are outer membrane proteins expressed by enteric bacterial pathogens capable of inducing intestinal attachment-and-effacement lesions. A eukaryotic cell-binding domain is located within a 280-amino-acid (Int280) carboxy terminus of intimin polypeptides. Polyclonal antiserum was raised against Int280 from enteropathogenic Escherichia coli (EPEC) serotypes O127:H6 and O114:H2 (anti-Int280-H6 and anti-Int280-H2, respectively), and Western blot analysis was used to explore the immunological relationship between the intimin polypeptides expressed by different clinical EPEC and enterohemorrhagic E. coli (EHEC) isolates, a rabbit diarrheagenic E. coli strain (RDEC-1), and Citrobacter rodentium. Anti-Int280-H6 serum reacted strongly with some EPEC serotypes, whereas anti-Int280-H2 serum reacted strongly with strains belonging to different EPEC and EHEC serotypes, RDEC-1, and C. rodentium. These observations were confirmed by using purified Int280 in an enzyme-linked immunosorbent assay and by immunogold and immunofluorescence labelling of whole bacterial cells. Some bacterial strains were recognized poorly by either antiserum (e.g., EPEC O86:H34 and EHEC O157:H7). By using PCR primers designed on the basis of the intimin-encoding eae gene sequences of serotype O127:H6, O114:H2, and O86:H34 EPEC and serotype O157:H7 EHEC, we could distinguish between different eae gene derivatives. Accordingly, the different intimin types were designated α, β, δ, and γ, respectively.  相似文献   

19.
The isolation and characterization of Escherichia coli O157:H7 and non-O157 Shiga toxin-producing E. coli (STEC) strains from sheep are described. One flock was investigated for E. coli O157:H7 over a 16-month period that spanned two summer and two autumn seasons. Variation in the occurrence of E. coli O157:H7-positive sheep was observed, with animals being culture positive only in the summer months but not in the spring, autumn, or winter. E. coli O157:H7 isolates were distinguished by pulsed-field gel electrophoresis (PFGE) of chromosomal DNA and toxin gene restriction fragment length polymorphism (RFLP) analysis. Ten PFGE patterns and five RFLP patterns, identified among the isolates, showed that multiple E. coli O157:H7 strains were isolated from one flock, that a single animal simultaneously shed multiple E. coli O157:H7 strains, and that the strains shed by individuals changed over time. E. coli O157:H7 was isolated only by selective enrichment culture off 10 g of ovine feces. In contrast, strains of eight STEC serotypes other than O157:H7 were cultured from feces of sheep from a separate flock without enrichment. The predominant non-O157 STEC serotype found was O91:NM (NM indicates nonmotile), and others included O128:NM, O88:NM, O6:H49, and O5:NM. Irrespective of serotype, 98% of the ovine STEC isolates possessed various combinations of the virulence-associated genes for Shiga toxin(s) and the attaching-and-effacing lesion (stx1, stx2, and eae), suggesting their potential for human pathogenicity. The most common toxin-eae genotype was positive for stx1, stx2, and eae. A Vero cell cytotoxicity assay demonstrated that 90% of the representative STEC isolates tested expressed the toxin gene. The report demonstrates that sheep transiently shed a variety of STEC strains, including E. coli O157:H7, that have potential as human pathogens.  相似文献   

20.
Flagellar (H) antigens are mostly encoded by genes at the fliC locus in E. coli. We have sequenced 11 H7 fliC genes from Escherichia coli strains that belong to seven O serotypes. These sequences, together with those of nine other H7 fliC genes (from strains of three different O serotypes) sequenced recently (S. D. Reid, R. K. Selander, and T. S. Whittam, J. Bacteriol. 181:153-160, 1999), include 10 different sequences. The differences between these 10 sequences range from 0.06 to 3.12%. By comparison with other E. coli flagellin genes, we have identified primer length sequences specific for H7 genes in general and others specific for H7 genes of O157 and O55 strains: the specificity was confirmed by PCR testing the type strains for all 53 E. coli H types. We have previously identified genes specific for the E. coli O157 antigen, and use of the combination of O157- and H7-specific primers allows the sensitive and rapid detection of O157:H7 E. coli strains, which cause the majority of hemorrhagic colitis cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号