首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nod-like receptor protein 3 (NLRP3) inflammasome has a critical role in cerebral ischemic injury, and autophagy is related to activation of the inflammasome under oxidative stress conditions. However, it is unclear how NLRP3 inflammasome activation is regulated. Glycogen synthase kinase 3β (GSK-3β) emerged as an important risk factor for brain ischemia reperfusion injury, and GSK-3β inhibits autophagic activity in many diseases. In this study, we examined whether NLRP3 inflammasome-derived inflammation could be ameliorated by GSK-3β inhibition in a cerebral ischemia reperfusion injury model and assessed whether autophagy is involved in this process. To establish ischemic reperfusion injury, we used a middle cerebral artery occlusion-reperfusion (MCAO/R) model in rats. A chemical inhibitor (SB216763) and GSK-3β siRNA were used to suppress GSK-3β activation and GSK-3β expression in vivo. The results demonstrated that SB216763 and GSK-3β siRNA improved neurological scores, reduced cerebral infarct volume, and decreased the levels of NLRP3 inflammasome, cleaved-caspase-1, IL-1β, and IL-18. Inhibiting GSK-3β activation enhanced autophagic activity (ratio of LC3B-II/LC3B-I and p62/SQSTM1), whereas treating with an autophagy inhibitor (3-MA) abrogated the inhibitory effect on NLRP3 inflammasome activation after GSK-3β inhibition. These results suggest that inhibiting GSK-3β downregulates NLRP3 inflammasome expression by increasing autophagic activity in cerebral ischemia reperfusion injury. GSK-3β might be an attractive specific target and that it functions by regulating the NLRP3 inflammasome.  相似文献   

2.
Dexamethasone (DEX) is the mainstay treatment for asthma, which is a common chronic airway inflammation disease. However, the mechanism of DEX resolute symptoms of asthma is not completely clear. Here, we aimed to analyze the effect of DEX on airway inflammation in OVA-induced mice and whether this effect is related to the inhibition of the activation of NLRP3 inflammasome. Female (C57BL/6) mice were used to establish the allergic airway inflammation model by inhalation OVA. The number of inflammatory cells in the bronchi alveolar lavage fluid (BALF) was counted by Swiss-Giemsa staining, and the contents of IL-1β, IL-18, IL-5 and IL-17 were detected by ELISA. The degree of inflammatory cells infiltration and mucous cells proliferation in lung tissue were separately observed by H&E and PAS staining. The proteins expression of NLRP3, pro-caspase-1, caspase-1, IL-1β, IL-6 and IL-17 in lung tissue were detected by Western blotting. We found that DEX significantly inhibited OVA-induced inflammatory cells infiltration, airway mucus secretion and goblet cell proliferation in mice. The total and classified numbers of inflammatory cells and the levels of IL-1β, IL-18, IL-5 and IL-17 in the BALF of the experimental group were significantly lower than those of the model group after DEX treatment. DEX also significantly inhibited the activity of NLRP3 inflammasome and reduced the protein contents of Pro-Caspase-1, Caspase-1, Capase-1/Pro-Caspase-1, IL-1β, IL-6 and IL-17 in lung tissues. Our study suggested that DEX alleviates allergic airway inflammation by inhibiting the activity of NLRP3 inflammasome and the levels of IL-1β and IL-18.  相似文献   

3.
4.
Ischemia/reperfusion (I/R) injury has been correlated with systemic inflammatory response. In addition, NLRP3 has been suggested as a cause in many inflammatory processes. Sulforaphane (SFN) is a naturally occurring isothiocyanate found in cruciferous vegetables, such as broccoli and cabbage. While recent studies have demonstrated that Sulforaphane has protective effects against cerebral ischemia/reperfusion injury, little is known about how those protective effects work. In this study, we focus our investigation on the role and process of Sulforaphane in the inhibition of NLRP3 inflammasome activation, as well as its effect on brain ischemia/reperfusion injury. Adult male Sprague–Dawley rats were injected with Sulforaphane (5 or 10 mg/kg) intraperitoneally at the beginning of reperfusion, after a 60 min period of occlusion. A neurological score and infarct volume were assessed at 24 h after the administration of Sulforaphane. Myeloperoxidase (MPO) activity was measured at 24 h to assess neutrophil infiltration in brain tissue. ELISA, RT-PCR and Western blot analyses were used to measure any inflammatory reaction. Sulforaphane treatment significantly reduced infarct volume and improved neurological scores when compared to a vehicle-treated group. Neutrophil infiltration was significantly higher in the vehicle-treated group than in the Sulforaphane treatment group. Sulforaphane treatment inhibits NLRP3 inflammasome activation and the downregulation of cleaved caspase-1, while reducing IL-1β and IL-18 expression. The inhibition of inflammatory response with Sulforaphane treatment improves outcomes after focal cerebral ischemia. This neuroprotective effect is likely exerted by Sulforaphane inhibited NLRP3 inflammasome activation caused by the downregulation of NLRP3, the induction of cleaved caspase-1, and thus the reduction of IL-1β and IL-18.  相似文献   

5.
Inflammasomes play an important role in neuroinflammation. However, their function during the secondary death of retinal cells after traumatic optic neuropathy and their dependence on pathogen stimuli remains unclear. Therefore, we evaluated the expression profiles of 10 different inflammasome-related mRNAs in the retina following an optic nerve crush (OPC) injury under both conventional sterile as well as non-sterile conditions, and validated two significantly varied ones on a protein level. While most factors were much more highly elevated in non-sterile conditions, both Nlrp1b and Nlrp3 inflammasome mRNAs were increased significantly on postoperative day 1 to day 7 in the mouse sterile OPC injury model. While production of the inflammation-associated cytokines IL-1β and IL-18 could be continuously detected on an mRNA level postoperatively, a clear peak could be seen on day 7 that coincided with maximal expression of caspase-1 mRNA and with observation of retinal ganglion cells death, despite the mice being held in specific-pathogen free conditions. As such, the pro-inflammatory cytokines activated by inflammasome activation during OPC injury may drive secondary cell death through pyroptosis, and inhibition of these delayed responses may be an important means of preventing worsened injury and loss of vision in trauma patients.  相似文献   

6.
Perioperative neurocognitive disorders (PND) are characterized by deficits in cognitive functions in the elderly following anesthesia and surgery. Effective clinical interventions for preventing this disease are limited. Growing evidence demonstrates that activation of NOD-like receptor protein3 (NLRP3) inflammasome is involved in neurodegenerative diseases. We therefore hypothesized that activation of NLRP3 inflammasome is linked to neuroinflammation and the subsequent cognitive impairments that occurred in an animal model of PND. In this study, 18-month-old C57BL/6 mice were subjected to an exploratory laparotomy under isoflurane anesthesia to mimic clinical human abdominal surgery. For interventional studies, mice received NLRP3 specific inhibitor MCC950 (10 mg/kg) or the vehicle only intraperitoneally. Behavioral studies were performed at 6 and 7 d after surgery using open field and fear conditioning tests, respectively. Interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor-α (TNF-α), ionized calcium-binding adaptor molecule-1 (IBA1) positive cells, glial fibrillary acidic protein (GFAP) positive cells, NLRP3, apoptosis-associated speck-like protein containing a CARD (ASC), and cleaved caspase-1 were measured at 3 days post-surgery. Brain-derived neurotrophic factor (BDNF) and postsynaptic density protein 95 (PSD95) were measured at 7 days post-surgery. Our data indicates that surgery-induced cognitive impairments were associated with significant increases in IL-1β, IL-18, TNF-α, NLRP3, ASC, cleaved caspase-1, IBA1-positive cells and GFAP-positive cells, and decreases in BDNF and PSD95 expression in the hippocampus. Notably, administration with MCC950 attenuated inflammatory changes and rescued surgery-induced cognitive impairments. Our study suggests that surgery induces neuroinflammation and cognitive deficits that are partly attributed to the activation of NLRP3 inflammasome in the hippocampus of aged mice.  相似文献   

7.
Depressive disorder is a kind of affective disturbance disease. Emerging evidence has suggested that inflammation may contribute to the pathologic process of depressive disorder. Senegenin (SEN), a major bioactive constituent in Polygala tenuifolia Willd, has much bioactivity including anti-inflammatory and neuroprotection effects. However, the mechanism of its anti-depressant effect in mice remains unknown. This study aimed to explore the anti-depressant effects of SEN on behavioral changes and inflammatory responses in mice induced by chronic un-predictable mild stress (CUMS). SEN treatment remarkably ameliorated CUMS-induced behavioral abnormalities, such as improving locomotor activity, decreasing immobility time in Tail suspension test (TST) and Forced swimming test (FST), and increasing sucrose intake in Sucrose preference test (SPT). Additionally, SEN improve protein levels of Brain-derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT-3) expression.In response to stress, p65 was activated to promote production of pro-IL-1β, and then cleaved to mature IL-1β by NOD-like receptor protein 3 (NLRP3) inflammasome pathway in hippocampus of CUMS mice. After SEN treatment, protein activation related to NLRP3 inflammasome pathway was down-regulated, which inhibited IL-1β secretion. These results demonstrate that SEN plays an important role in treatment CUMS-induced depression in mice, possibly via suppression of pathway activation associated with NLRP3 inflammasome.  相似文献   

8.
Acetaminophen (APAP) overdose is the leading cause of acute liver failure in the US and UK. Recent studies implied that APAP-induced injury is partially mediated by interleukin-1β (IL-1β), which can activate and recruit neutrophils, exacerbating injury. Mature IL-1β is formed by caspase-1, dependent on inflammasome activation. The objective of this invetstigation was to evaluate the role of the Nalp3 inflammasome on release of damage associated molecular patterns (DAMPs), hepatic neutrophil accumulation and liver injury (ALT, necrosis) after APAP overdose. Mice deficient for each component of the Nalp3 inflammasome (caspase-1, ASC and Nalp3) were treated with 300 mg/kg APAP for 24 h; these mice had similar neutrophil recruitment and liver injury as APAP-treated C57Bl/6 wildtype animals. In addition, plasma levels of DAMPs (DNA fragments, keratin-18, hypo- and hyper-acetylated forms of high mobility group box-1 protein) were similarly elevated with no significant difference between wildtype and gene knockout mice. In addition, aspirin treatment, which has been postulated to attenuate cytokine formation and the activation of the Nalp3 inflammasome after APAP, had no effect on release of DAMPs, hepatic neutrophil accumulation or liver injury. Together, these data confirm the release of DAMPs and a sterile inflammatory response after APAP overdose. However, as previously reported minor endogenous formation of IL-1β and the activation of the Nalp3 inflammasome have little impact on APAP hepatotoxicity. It appears that the Nalp3 inflammasome is not a promising therapeutic target to treat APAP overdose.  相似文献   

9.
Glyburide is a classic antidiabetic drug that is dominant in inflammation regulation, but its specific role in ozone‐induced lung inflammation and injury remains unclear. In order to investigate whether glyburide prevents ozone‐induced pulmonary inflammation and its mechanism, C57BL/6 mice were intratracheally pre‐instilled with glyburide or the vehicle 1 hour before ozone (1 ppm, 3 hours) or filtered air exposure. After 24 hours, the total inflammatory cells and total protein in bronchoalveolar lavage fluid (BALF) were detected. The pathological alternations in lung tissues were evaluated by HE staining. The expression of NLRP3, interleukin‐1β (IL‐1β), and IL‐18 protein in lung tissues was detected by immunohistochemistry. Western blotting was used to examine the levels of caspase‐1 p10 and active IL‐1β protein. Levels of IL‐1β and IL‐18 in BALF were measured using ELISA kits. Glyburide treatment decreased the total cells in BALF, the inflammatory score, and the mean linear intercept induced by ozone in lung tissues. In addition, glyburide inhibited the expression of NLRP3, IL‐18, and IL‐1β protein in lung tissues, and also suppressed NLRP3 inflammasome activation, including caspase‐1 p10, active IL‐1β protein in lung tissues, IL‐1β, and IL‐18 in BALF. These results demonstrate that glyburide effectively attenuates ozone‐induced pulmonary inflammation and injury via blocking the NLRP3 inflammasome.  相似文献   

10.
Epididymitis, one of the most common urological disease, is a significant cause of male infertility. Leptin is capable of modulating both reproduction and immune response. We analyzed the serum and seminal plasma levels of leptin in infertile patients with or without chronic epididymitis. Experimental epididymitis models were generated by administrating 200 μg Lipopolysaccharide (LPS) to Sprague-Dawley rats. The expression of leptin in epididymis were detected using qPCR, Western blots 6–72 h after injection, and using immunohistochemistry 72 h after injection. Besides, rat epididymal epithelial cells were isolated as an in vitro model and were treated with leptin (5–40 ng/ml, 6–48 h), LPS (1ug/ml, 6 h), and NLRP3 inflammasome inhibitor MCC950 (10 μM, 2 h). Cell Counting Kits-8 assay and Annexin V/PE assay were used to evaluate cell viability and apoptosis. Quantitive PCR and ELISA assay were used to detected inflammatory cytokines interleukin-1beta (IL-1β) production. Western Blots were used to detect molecular related to cell apoptosis, IL-1β maturation, and NLRP3 inflammasome. We found that patients with chronic epididymitis presented a significantly higher level of seminal plasma leptin and correlated declined sperm progressive motility. Leptin and leptin receptor expression in epididymis was significantly upregulated 24 h after LPS administration both in mRNA and protein level, and highly expressed in the epididymis epithelium 72 h after LPS administration. In epididymal epithelial cells, leptin reduced cell viability and promoted apoptosis in a concentration-dependent manner via cleavage of caspase-9, caspase-3, and PARP. Leptin enhanced the LPS-induced production of IL-1β, which was associated with increased IL-1β maturation and caspase-1 activation. Furthermore, NLRP3 inhibitor MCC950 attenuated the effects of leptin or co-treatment with LPS on NLRP3, ASC expression, IL-1β maturation, and caspase-1 activation, which indicated that leptin promotes IL-1β production via activating the NLRP3 inflammasome. These data suggested that leptin may act as a potential evaluation and treatment target for epididymitis and male subfertility.  相似文献   

11.
Rimulus cinnamon is the dried twig of Cinnamomum cassia Presl. It is widely used in China for the treatment of inflammatory processes, amenorrhea, and other diseases. We aimed to study the protective effects of ethyl acetate extracts of R. cinnamon (EAE) on systemic inflammation and lung injury in endotoxin-poisoned mice. EAE was administered 5 d prior to lipopolysaccharide (LPS) challenge with 15?mg/kg LPS. The administration of EAE increased the levels of interferon-γ (IFN-γ) and decreased the levels of interleukin-18 (IL-18) and tumor necrosis factor-α (TNF-α) in the serum. Additionally, EAE relieved the pathological changes in the tissues of the lungs and spleen, and significantly reduced the number of neutrophils in the lung tissues. In addition, treatment with EAE decreased the mRNA expression of the NLR family, pyrin domain-containing protein 3 (NLRP3), caspase-1, and interleukin-1β (IL-1β) in the lungs, as well as the expression of NLRP3, caspase-1 (p20), and pro-IL-1β proteins. These results demonstrated the promising anti-inflammatory effects of EAE in endotoxin-poisoned mice. Furthermore, EAE could alleviate the lung injury of endotoxin-poisoned mice by antagonizing the activation of the NLRP3 inflammasome.  相似文献   

12.
Studying and understanding the mechanism of inflammation in nucleus pulposus is the key to understand and prevent intervertebral disc degeneration. We propose a model of mechanical sensitive ion channel Piezo1 mediated inflammation of nucleus pulposus cells. Piezo1 can up-regulate the level of interleukin-1β (IL-1β) in nucleus pulposus cells once it is activated. It is suggested that Piezo1 may mediate inflammation by activating Nod-like receptor protein 3 (NLRP3) inflammasome to accelerate the production and maturation of IL-1β. The primary objective of this study was to explore whether Piezo1 activates NLRP3 inflammasome in nucleus pulposus cells. Piezo1 sensitization was induced by mechanical stretch following which we analyzed the priming and assembly of NLRP3 inflammasome and also studied if the downstream Ca2+/NF-κB pathway mediated this activation in nucleus pulposus cells. The expression of Piezo1 and NLRP3 inflammasome increased in a time-dependent manner upon mechanical stretch. Piezo1 activation promoted NLRP3 inflammasome assembly, which was demonstrated by the upregulation of caspase-1 activation and IL-1β production. Transfection of Piezo1-siRNA reversed this process. The inhibition of Ca2+/NF-κB pathway reduced Piezo1-dependent activation of NLRP3 inflammasome. Thus, we propose that activation of NLRP3 inflammasome in nucleus pulposus cells mediated by Piezo1 through the Ca2+/NF-κB pathway is a novel pathogenesis for the progress of intervertebral disc degeneration. As per our knowledge this is the first study which has provided evidence linking Piezo1-mediated inflammation in nucleus pulposus cells with the production of NLRP3 inflammasome.  相似文献   

13.
Inflammasomes promote the production of pro-inflammatory cytokines, such as interleukin (IL)-1β and IL-18, which are the representative mediators of inflammation. Abnormal activation of inflammasomes leads to the development of inflammatory diseases such as acute pancreatitis (AP). In this study, we demonstrate the inhibitory effects of a new natural compound fraxinellone on inflammasome formation and examine the role of inflammasomes in a mouse model of AP. AP was induced with hourly intraperitoneal injections of supramaximal concentrations of the stable cholecystokinin analogue cerulein (50 μg/kg) for 6 h. Mice were sacrificed 6 h after the final cerulein injection. Blood and pancreas samples were obtained for further experiments. Intraperitoneal injection of fraxinellone significantly inhibited the pancreatic activation of multiple inflammasome molecules such as NACHT, LRR and PYD domains-containing protein 3 (NLRP3), PY-CARD, caspase-1, IL-18, and IL-1β during AP. In addition, fraxinellone treatment inhibited pancreatic injury, elevation in serum amylase and lipase activities, and infiltration of inflammatory cells such as neutrophils and macrophages but had no effect on pancreatic edema. To investigate whether inflammasome activation leads to the infiltration of inflammatory cells, we used parthenolide, a well-known natural inhibitor, and IL-1 receptor antagonist mice. The inhibition of inflammasome activation by pharmacological/or genetic modification restricted the infiltration of inflammatory cells, but not edema, consistent with the results observed with fraxinellone. Taken together, our study highlights fraxinellone as a natural inhibitor of inflammasomes and that inflammasome inhibition may lead to the suppression of inflammatory cells during AP.  相似文献   

14.
OBJECTIVE To investigate the regulatory mechanisms of glycogen synthase kinase-3β(GSK-3β)on NLRP3 inflammasome activation. METHODS We conducted myocardial infarction(MI) model in male Sprague-Dawley(SD) rat during days 2-28. An in vitro investigation was performed using new-born rat/human cardiomyocyte and fibroblast cultures under typical inflammasome stimulation and hypoxia treatment. Further identification for possibility of GSK-3β active NLRP3 inflammasomes, GSK-3β immunoprecipitation was performed from the lysate of inflammasome stimulation-treated rat neonatal fibroblasts(RCFs) with or without GSK-3β inhibitor pretreatment. RESULTS Assessments of cardiac function, histochemical and biochemical assays for cardiac tissues, as well as detection of protein and m RNA expressions in heart tissues, showed that GSK-3β inhibition remarkably improves myocardial dysfunction and prevents remodeling with parallel reduction of the parameters of NLRP3 inflammasome activation after MI. The measurement of primary rats/human cells expounded that GSK-3β inhibition reduce NLRP3 inflammasome activation happens in cardiac fibroblasts, but not in cardiomyocytes. Futhermore, GSK-3β interacts with ASC and GSK-3β inhibition reduces cytoplasmic aggregates of ASC, NLRP3 and caspase-1 formation. CONCLUSION GSK-3β directly mediates NLRP3 inflammasome activation causing cardiac dysfunction in MI.  相似文献   

15.
Growing evidences indicate that inflammation induced by PM2.5 exposure has been considered as a major driving force for the development of cardiovascular diseases. However, the mechanisms underlying PM2.5‐induced cardiac injury remain unclear. This study aims to investigate the role of NLRP3 inflammasome in PM2.5‐induced cardiac functional and pathological injury in mice. In this study, BALB/c mice were intratracheally instilled with PM2.5 suspension (4.0 mg/kg BW) for 5 days to set up a cardiac injury model, which was evaluated by electrocardiogram monitoring, HE and Masson staining. Then, the effects of PM2.5 on the expression of α‐SMA, NLRP3, IL‐1β, and IL‐18 proteins and the activation of caspase‐1 and IL‐1β were investigated. The results showed that PM2.5 exposure induced characteristic abnormal ECG changes such as the abnormality of heart rhythm, tachycardia, and T‐wave reduction. Inflammatory cell infiltration and fibrosis were observed in the heart tissues of PM2.5‐exposed mice. Meanwhile, PM2.5 exposure increased the expression of α‐SMA. And, NLRP3 activation‐associated proteins of NLRP3, IL‐1β, IL‐18, Cleaved caspase‐1 p10, and Cleaved IL‐1β were upregulated in heart tissue of PM2.5‐induced mice. In summary, PM2.5 exposure could induce cardiac functional and pathological injury, which may be associated with the activation of NLRP3 inflammasome.  相似文献   

16.
Chlorogenic acid (CGA), a kind of polyphenol found in coffee, fruits and vegetables, has potent anti-oxidant and anti-inflammatory properties. Our previous studies showed CGA could efficiently alleviate liver fibrosis in rats. However, whether CGA regulates nuclear factor erythroid-2-related factor 2 (Nrf2) anti-oxidant pathway and NLRP3 inflammasome activation and protects against carbon tetrachloride (CCl4)-induced acute liver injury are unknown. We found that CGA could increase Nrf2 activation and expression of Nrf2-related anti-oxidant genes, including HO-1, NQO1 and GCLC. Pretreatment with CGA could reduce CCl4-induced elevation of serum transaminases and alleviate liver pathological abnormalities. CGA also reversed CCl4-induced increase in MDA level and decrease in the levels of GSH, SOD and CAT in liver tissues. Meanwhile, CGA inhibited NLRP3 inflammasome activation, as indicated by the reduced protein expression of NLRP3, Pro-Caspase-1, Caspase-1, Pro-IL-1β and IL-1β. Moreover, CGA reduced serum levels and liver mRNA expression of TNF-α, IL-6 and IL-1β. These results demonstrate that CGA protects against CCl4-induced acute liver injury probably through enhancing Nrf2-mediated anti-oxidant pathway and inhibiting NLRP3 inflammasome activation.  相似文献   

17.
The activation of NLRP3 inflammasome is closely related to ischemic brain injury and inhibition of NLRP3 inflammasome activation may be a new therapeutic strategy for ischemic stroke. Our previous studies showed that ligustilide (LIG) had a dose-dependent neuroprotective effect on various models of cerebral ischemia and dementia in vivo and in vitro. CD21, a kind of phthalide derivative, was modified from LIG. In this study, we established a global cerebral ischemia–reperfusion model in mice by bilateral common carotid artery ligation (2VO), and explored the neuroprotective effect of CD21 and its anti-inflammatory mechanism on cerebral ischemia mice. CD21 significantly improved weight loss, neurobehavioral deficits and neurons loss in hippocampal CA1 and caudate putamen (CPu) subregions, which were induced by 2VO in mice. CD21 significantly inhibited the overactivation of astrocyte and microglia, and decreased the mRNA level of IL-6, TNF-α and IL-1β. Moreover, CD21 significantly inhibited the activation of TLR4/NF-κB signaling pathway mediated by HMGB1 and NLRP3/ASC/Caspase-1 signaling pathway mediated by Cathepsin B, thus inhibiting the activation of NLRP3 inflammasome. Our results demonstrated that CD21 may exert a neuroprotection by inhibiting NLRP3 inflammasome activation after cerebral ischemia. These findings provide a new strategy for the treatment of ischemic stroke.  相似文献   

18.
Lysophosphatidylcholine (LPC), as the main active component of oxidized low-density lipoproteins (ox-LDLs), has significant effects in cerebrovascular disease. However, the complex mechanism by which LPC functions in brain microvascular endothelial cells (BMECs) is not clearly understood. In this study, BMECs were transfected with G protein-coupled receptor 4 (GPR4) siRNA or an NLRP3-overexpression plasmid, and GPR4 expression was identified by RT-qPCR and western blotting; IL-1β, IL-18, and IL-33 levels were evaluated by ELISA. Apoptosis was monitored by flow cytometry and Hoechst staining, while Caspase 3, ASC, NLRP3, and GPR4 protein expression were examined by western blotting. Our results showed that LPC significantly increased the levels of inflammatory cytokines (IL-1β, IL-18, and IL-33) and markedly induced apoptosis and NLRP3 inflammasome activation in BMECs. Moreover, LPC notably upregulated GPR4 in BMECs, and knockdown of GPR4 significantly attenuated the effects of LPC in BMECs. Above all, we also proved that LPC induced apoptosis and inflammatory injury in BMECs by causing GPR4 to activate NLRP3 inflammasomes. Therefore, GPR4-mediated activation of NLRP3 inflammasomes might be the underlying mechanism by which LPC promotes the progression of cerebrovascular disease. In summary we found that LPC is an important pathogenic factor in cerebrovascular disease, and can induce GPR4 to active NLRP3 inflammasomes.  相似文献   

19.
Heat-labile enterotoxin (LT) can cause animal enteritis and diarrhea. However, the possible association of LT with embryo survival in pregnant animals and the mechanisms involved remain unknown. To investigate the effects of LT on embryo survival, we treated mouse early embryos in vitro and pregnant mice in vivo with recombinant LT. LT significantly decreased mouse embryo survival, and induced IFN-γ, IL-2 and IL-1β production in the serum and placental tissue. LT also triggered IL-1β release from LPS-primed microphages, suggesting LT can activate inflammasomes. To determine the pathway involved in LT-induced inflammasome activation, small interfering RNAs were used to knockdown NLRP3 and ASC, the key components of NLRP3 inflammasome pathway. Ablation of NLRP3 and ASC abolished LT-induced IL-1β release, confirming the involvement of NLRP3 inflammasome. By comparing two subunits of LT, only LTA but not LTB subunit was identified to activate the NLRP3 inflammasome.  相似文献   

20.
Acute lung injury (ALI) is a common lung disease accompanied by acute and persistent pulmonary inflammatory response syndrome, which leads to alveolar epithelial cells and capillary endothelial cell damage. Yam glycoprotein, separated from traditional Chinese yam, has been shown to have anti-inflammatory and immunomodulatory effects. In this experiment, we mainly studied the therapeutic effect and mechanism of a glycoprotein on the lipopolysaccharide (LPS)-induced ALI mice. An oral glycoprotein method was used to treat the mouse ALI model induced by LPS injection in the peritoneal cavity. Afterward, we measured the wet/dry (W/D) ratio, the activity of myeloperoxidase (MPO), the oxidative index superoxide dismutase (SOD), malondialdehyde (MDA), glutathione peroxidase (GSH-PX) and the production of inflammatory cytokines interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), and interleukin-6 (IL-6) to evaluate the effect of yam glycoprotein on lung tissue changes. We examined the protein expression of TLR4, ASC, NF-κBp65, p-NF-κBp65, Caspase-1, IκB, NLRP3, p-IκB, and β-actin by western blot analysis. Immunohistochemical analyses of NLRP3 and p-p65 in lung tissue were carried out to assess the mechanism of glycoprotein action. This result suggests that glycoprotein markedly depressed LPS-induced lung W/D ratio, MPO activity, MDA content SOD and GSH-Px depletion, and the contents of inflammatory cytokines IL-1β, IL-6, and TNF-α. Moreover, glycoprotein blocked TLR4/NF-κBp65 signaling activation and NLRP3inflammasome expression in LPS-induced ALI mice. As this particular study shows, glycoprotein has a safeguarding effects on LPS-induced ALI mice, possibly via activating NLRP3inflammasome and TLR4/NF-κB signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号