首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Amyloid deposits within the islet of the pancreas have been known for a century. In 1987, the islet amyloid precursor polypeptide (IAPP) amylin (a 37 amino acid) was discovered. Recently there has been an explosion of amylin's importance in the development of type 2 diabetes mellitus (T2DM). This review is intended to share what is understood about amylin derived amyloid and the role it plays in T2DM. Whether islet amyloid is an epiphenomenona, a tombstone, or a trigger it leaves an indelible footprint in greater that 70% of the patients with T2DM. There is current data supporting the damaging role of intermediate sized toxic amyloid particles to the beta cell resulting in a beta cell defect which contributes to a relative deficiency or loss of insulin secretion. Within the islet there is an intense redox stress which may be associated with the unfolding of amylin's native secondary structure compounding its amyloidogenic properties. In addition to the beta cell defect there may be an absorptive defect as a result of amyloid deposition in the basement membranes which form an envelope around the inta-islet capillary endothelium. We have an opportunity to change our current treatment modalities with newer medications and we should attempt to diagnose T2DM earlier and use these newer treatment strategies in combination to decrease glucotoxicity without elevating endogenous insulin and amylin. In the 21st century our goal should be to prevent remodeling, save the pancreatic islet, conquer islet amyloid, and amyloid diabetes.  相似文献   

2.
Islet amyloid polypeptide and type 2 diabetes   总被引:9,自引:0,他引:9  
Type 2 diabetes is associated with progressive beta-cell failure manifest as a decline in insulin secretion and increasing hyperglycemia. A growing body of evidence suggests that beta-cell failure in type 2 diabetes correlates with the formation of pancreatic islet amyloid deposits, indicating that islet amyloid may have an important role in beta-cell loss in this disease. Islet amyloid polypeptide (IAPP; amylin), the major component of islet amyloid, is co-secreted with insulin from beta-cells. In type 2 diabetes, this peptide aggregates to form amyloid fibrils that are toxic to beta-cells. The mechanism(s) responsible for islet amyloid formation in type 2 diabetes is still unclear but it appears that an increase in the secretion of IAPP, per se, is not sufficient. Other factors, such as impairment in the processing of proIAPP, the IAPP precursor, have been proposed to contribute to the development of islet amyloid deposits. Inhibitors of islet amyloid fibril formation might prevent the progression to beta-cell failure in type 2 diabetes and should therefore be considered as a therapeutic approach to treat this disease.  相似文献   

3.
BACKGROUND: Type 2 diabetes mellitus (T2DM) is characterized by a deficit in beta-cell mass, increased beta-cell apoptosis, and islet amyloid derived from islet amyloid polypeptide (IAPP). Human IAPP (h-IAPP) applied to beta-cells forms toxic oligomers that induce apoptosis. Thiazolidinediones, ligands of peroxisome proliferator-activated receptor-gamma (PPAR-gamma), can delay the onset of T2DM. OBJECTIVE: We questioned whether activation of endogenous PPAR-gamma in human islets by rosiglitazone (RSG) inhibits h-IAPP-induced islet cell death and, if so, by which mechanism. METHODS AND RESULTS: Vehicle or h-IAPP was applied to human islets with or without RSG (10 and 50 microM) for 48 h. A 2-fold increase in the number of terminal deoxynucleotidyl transferase-mediated deoxy-UTP nick end labeling-positive nuclei was detected in h-IAPP-treated human islets (P < 0.001). RSG (10 and 50 microM) prevented h-IAPP-induced apoptosis in human islets (P < 0.001). Thioflavin T binding assays confirmed that this effect was not mediated by interference with h-IAPP oligomerization. Expression of dominant negative PPAR-gamma in human islets prevented the protective effect of RSG. RSG activation of PPAR-gamma resulted in downstream activation of the serine/threonine protein kinase Akt, an outcome that was inhibited by a specific phosphatidylinositol 3-kinase inhibitor, which ablated RSG protection against h-IAPP-induced islet cell apoptosis. CONCLUSION: We conclude that in human islets, activation of PPAR-gamma inhibits h-IAPP-induced islet cell apoptosis, and this action is at least in part mediated through activation of the phosphatidylinositol 3'-kinase-Akt cascade. If this action is present in vivo, then thiazolidinediones have the potential to decrease beta-cell apoptosis in T2DM and reduce loss of beta-cell mass.  相似文献   

4.
Ma Z  Westermark P  Westermark GT 《Pancreas》2000,21(2):212-218
Amyloid derived from the beta-cell product islet amyloid polypeptide (IAPP) has been implicated for a beta-cell lesion in Type II diabetes mellitus. The pathogenesis of islet amyloid is poorly understood, and in addition to an amyloidogenic IAPP molecule and possibly increased concentration of IAPP, other unknown factors seem to be included. It was shown previously that polyclonal rabbit IAPP antisera label beta cells close to amyloid only weakly. Whether this lack of immunoreactivity depends on lack of IAPP or on hidden epitopes is in question. In the present study, we show that the IAPP immunoreactivity of these beta cells is possible to retrieve. On the other hand, the monoclonal IAPP antibody 4A5, which labels IAPP in beta cells, does not label IAPP in its native amyloid form. We show evidence that this lack of immunoreactivity is not dependent on conformational change of the IAPP molecules in the amyloidogenesis but is likely owing to glycation of IAPP in human islet amyloid deposits.  相似文献   

5.
Islet amyloid polypeptide (IAPP, "amylin") has been proposed as having important roles in the pathogenesis of type 2 diabetes mellitus via its biological activity and by forming islet amyloid. The domestic cat develops a type of diabetes that closely resembles type 2 diabetes in humans, including the frequent formation of islet amyloid deposits in the impaired glucose tolerant (IGT) and diabetic state. With the aid of computerized image analysis and immunohistochemistry, we examined the IAPP and insulin content in pancreatic islets of normal, IGT and diabetic cats. IAPP immunoreactivity in beta cells from IGT cats was significantly stronger (p < 0.01) as compared with cells from normal cats, while the insulin labelling strength was unchanged. Overtly diabetic cats were usually almost devoid of beta cells. As in humans, cellular IAPP but not IAPP in islet amyloid deposits was labelled by the newly developed monoclonal antibody to IAPP 4A5, thus providing further evidence that IAPP is modified by a yet unknown mechanism during the amyloidogenic process. The study provides evidence that an increased beta cell storage of IAPP independent of insulin may be an important factor in the early phase of the development of islet amyloid in this form of diabetes.  相似文献   

6.
Clark A  Nilsson MR 《Diabetologia》2004,47(2):157-169
The role of islet amyloidosis in the onset and progression of Type 2 diabetes remains obscure. Islet amyloid polypeptide is a 37 amino-acid, beta-cell peptide which is co-stored and co-released with insulin. Human islet amyloid polypeptide refolds to a -conformation and oligomerises to form insoluble fibrils; proline substitutions in rodent islet amyloid polypeptide prevent this molecular transition. Pro-islet amyloid polypeptide (67 amino acids in man) is processed in secretory granules. Refolding of islet amyloid polypeptide may be prevented by intragranular heterodimer formation with insulin (but not proinsulin). Diabetes-associated abnormal proinsulin processing could contribute to de-stabilisation of granular islet amyloid polypeptide. Increased pro-islet amyloid polypeptide secretion as a consequence of islet dysfunction could promote fibrillogenesis; the propeptide forms fibrils and binds to basement membrane glycosamino-glycans. Islet amyloid polypeptide gene polymorphisms are not universally associated with Type 2 diabetes. Transgenic mice expressing human islet amyloid polypeptide gene have increased islet amyloid polypeptide concentrations but develop islet amyloid only against a background of obesity and/or high fat diet. In transgenic mice, obese monkeys and cats, initially small perivascular deposits progressively increase to occupy 80% islet mass; the severity of amyloidosis in animal models is related to the onset of hyperglycaemia, suggesting that islet amyloid and the associated destruction of islet cells cause diabetes. In human diabetes, islet amyloid can affect less than 1% or up to 80% of islets indicating that islet amyloidosis largely results from diabetes-related pathologies and is not an aetiological factor for hyperglycaemia. However, the associated progressive beta-cell destruction leads to severe islet dysfunction and insulin requirement.Abbreviations IAPP islet amyloid polypeptide - hIAPP human islet amyloid polypeptide - T2DM Type 2 diabetes - TM transgenic mice expressing the human IAPP gene - UKPDS United Kingdom Prospective Diabetes Study - GAGs glycosamino glycans  相似文献   

7.
The islet in non-insulin-dependent diabetes mellitus (NIDDM) is characterized by loss of beta cells and large local deposits of amyloid derived from the 37-amino acid protein, islet amyloid polypeptide (IAPP). We have hypothesized that IAPP amyloid forms intracellularly causing beta-cell destruction under conditions of high rates of expression. To test this we developed a homozygous transgenic mouse model with high rates of expression of human IAPP. Male transgenic mice spontaneously developed diabetes mellitus by 8 weeks of age, which was associated with selective beta-cell death and impaired insulin secretion. Small intra- and extracellular amorphous IAPP aggregates were present in islets of transgenic mice during the development of diabetes mellitus. However, IAPP derived amyloid deposits were found in only a minority of islets at approximately 20 weeks of age, notably after development of diabetes mellitus in male transgenic mice. Approximately 20% of female transgenic mice spontaneously developed diabetes mellitus at 30+ weeks of age, when beta-cell degeneration and both amorphous and amyloid deposits of IAPP were present. We conclude that overexpression of human IAPP causes beta-cell death, impaired insulin secretion, and diabetes mellitus. Large deposits of IAPP derived amyloid do not appear to be important in this cytotoxicity, but early, small amorphous intra- and extracellular aggregates of human IAPP were consistently present at the time of beta-cell death and therefore may be the most cytotoxic form of IAPP.  相似文献   

8.
Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes   总被引:12,自引:0,他引:12  
Islet amyloid deposition is a pathogenic feature of type 2 diabetes, and these deposits contain the unique amyloidogenic peptide islet amyloid polypeptide. Autopsy studies in humans have demonstrated that islet amyloid is associated with loss of beta-cell mass, but a direct role for amyloid in the pathogenesis of type 2 diabetes cannot be inferred from such studies. Animal studies in both spontaneous and transgenic models of islet amyloid formation have shown that amyloid forms in islets before fasting hyperglycemia and therefore does not arise merely as a result of the diabetic state. Furthermore, the extent of amyloid deposition is associated with both loss of beta-cell mass and impairment in insulin secretion and glucose metabolism, suggesting a causative role for islet amyloid in the islet lesion of type 2 diabetes. These animal studies have also shown that beta-cell dysfunction seems to be an important prerequisite for islet amyloid formation, with increased secretory demand from obesity and/or insulin resistance acting to further increase islet amyloid deposition. Recent in vitro studies suggest that the cytotoxic species responsible for islet amyloid-induced beta-cell death are formed during the very early stages of islet amyloid formation, when islet amyloid polypeptide aggregation commences. Interventions to prevent islet amyloid formation are emerging, with peptide and small molecule inhibitors being developed. These agents could thus lead to a preservation of beta-cell mass and amelioration of the islet lesion in type 2 diabetes.  相似文献   

9.
Islet transplantation is a promising treatment for diabetes but long-term success is limited by progressive graft loss. Aggregates of the beta cell peptide islet amyloid polypeptide (IAPP) promote beta cell apoptosis and rapid amyloid formation occurs in transplanted islets. Porcine islets are an attractive alternative islet source as they demonstrate long-term graft survival. We compared the capacity of transplanted human and porcine islets to form amyloid as an explanation for differences in graft survival. Human islets were transplanted into streptozotocin-diabetic immune-deficient mice. Amyloid deposition was detectable at 4 weeks posttransplantation and was associated with islet graft failure. More extensive amyloid deposition was observed after 8 weeks. By contrast, no amyloid was detected in transplanted neonatal or adult porcine islets that had maintained normoglycemia for up to 195 days. To determine whether differences in IAPP sequence between humans and pigs could explain differences in amyloid formation and transplant viability, we sequenced porcine IAPP. Porcine IAPP differs from the human sequence at 10 positions and includes substitutions predicted to reduce its amyloidogenicity. Synthetic porcine IAPP was considerably less amyloidogenic than human IAPP as determined by transmission electron microscopy, circular dichroism, and thioflavin T binding. Viability assays indicated that porcine IAPP is significantly less toxic to INS-1 beta cells than human IAPP. Our findings demonstrate that species differences in IAPP sequence can explain the lack of amyloid formation and improved survival of transplanted porcine islets. These data highlight the potential of porcine islet transplantation as a therapeutic approach for human diabetes.  相似文献   

10.
Summary Islet amyloid polypeptide (IAPP) is over-expressed relative to insulin under several experimental conditions relevant to diabetes mellitus, including the immediate phase (7 days) following induction of streptozotocin diabetes. In the present study, IAPP and insulin gene expression were examined in chronic streptozotocin diabetes (3 weeks) in rats. Quantitative in situ hybridization, determining grain areas and optical densities of mRNA labelling, revealed that IAPP and insulin expression were reduced at the islet level at both low and high streptozotocin doses, partly due to reduced beta-cell mass. In contrast, the cellular levels of IAPP mRNA were either increased or unaffected at the low and high streptozotocin doses, respectively, whereas those of insulin mRNA were unaffected or reduced. When dexamethasone was administered to rats given the low streptozotocin dose, IAPP expression was increased, whereas that of insulin was markedly reduced. Immunocytochemistry revealed that IAPP predominantly occurred in insulin cells and to a lesser extent in somatostatin cells at all treatments examined. Our findings demonstrate that IAPP and insulin gene expression are differentially regulated; the over-expression of IAPP relative to insulin is augmented when the beta-cell insult is aggravated, in our experiments represented by massive beta-cell destruction (high streptozotocin dose) or a combination of moderate beta-cell damage and peripheral insulin resistance (low streptozotocin dose and dexamethasone). An over-expression of IAPP relative to insulin may therefore be involved in diabetes pathogenesis, contributing to its metabolic perturbations, possibly through the capacity of IAPP to restrain insulin release and action and to form islet amyloid.Abbreviations IAPP Islet amyloid polypeptide - IR immunoreactive - NIDDM non-insulin-dependent diabetes mellitus - OD optical density - FITC fluorescein isothiocyanate - TRITC tetramethyl rhodamine isothiocyanate - AMCA 7-amino-4-methyl coumarin-3-acetic acid  相似文献   

11.
Summary To determine whether chronic overproduction of islet amyloid polypeptide alters beta-cell function, we studied a line of transgenic mice which overexpress islet amyloid polypeptide in their beta-cells. At 3 months of age, these transgenic mice had greater pancreatic content of both islet amyloid polypeptide and insulin. Further, basal and glucose-stimulated secretion of both islet amyloid polypeptide and insulin were also elevated in the perfused pancreas of the transgenic animals. These findings demonstrate that chronic overproduction and secretion of islet amyloid polypeptide are associated with increased insulin storage and enhanced secretion of insulin in vitro. This increase in insulin storage and secretion may be due to a direct effect of islet amyloid polypeptide on the beta-cell or a betacell adaptation to islet amyloid polypeptide-induced insulin resistance.Abbreviations IAPP Islet amyloid polypeptide - bp base pair - TFA trifluoroacetic acid - IRI immunoreactive insulin - SLI somatostatin-like immunoreactivity - IAPP-LI IAPP-like immunoreactivity  相似文献   

12.
Aims/hypothesis. Type II (non-insulin-dependent) diabetes mellitus is a multifactorial disease in which pancreatic islet amyloid is a characteristic histopathological finding. Islet amyloid fibrils consist of the beta-cell protein “islet amyloid polypeptide” (IAPP)/“amylin”. Unlike human IAPP (hIAPP), mouse IAPP cannot form amyloid. In previously generated transgenic mice, high expression of hIAPP as such did not induce islet amyloid formation. To further explore the potential diabetogenic role of amyloidogenic IAPP, we introduced a diabetogenic trait (“ob” mutation) in hIAPP transgenic mice. Methods. Plasma concentrations of IAPP, insulin and glucose were determined at 3.5 (t1), 6 (t2), and 16–19 months of age (t3). At t3, the mice were killed and the pancreas was analysed (immuno)histochemically. Results. In non-transgenic ob/ob mice, insulin resistance caused a compensatory increase in insulin production, normalizing the initial hyperglycaemia. In transgenic ob/ob mice, concurrent increase in hIAPP production resulted in extensive islet amyloid formation (more often and more extensive than in transgenic non-ob/ob mice), insulin insufficiency and persistent hyperglycaemia: At t3, plasma insulin levels in transgenic ob/ob mice with amyloid were fourfold lower than in non-transgenic ob/ob mice (p < 0.05), and plasma glucose concentrations in transgenic ob/ob mice were almost twofold higher (p < 0.05). In addition, the degree of islet amyloid formation in ob/ob mice was positively correlated to the glucose:insulin ratio (r s = 0.53, p < 0.05). Conclusion/interpretation. Islet amyloid is a secondary diabetogenic factor which can be both a consequence of insulin resistance and a cause of insulin insufficiency. [Diabetologia (1999) 42: 427–434] Received: 8 October 1998 and in final revised form: 30 November 1998  相似文献   

13.
Protein aggregation into cytotoxic oligomers and fibrils in vivo is linked to cell degeneration and the pathogenesis of >25 uncurable diseases, whereas the high aggregation propensity and insolubility of several bioactive polypeptides and proteins in vitro prevent their therapeutic use. Aggregation of human islet amyloid polypeptide (IAPP) into pancreatic amyloid is strongly associated with the pathogenesis of type II diabetes. IAPP is a 37-residue polypeptide that acts as a neuroendocrine regulator of glucose homeostasis. However, IAPP misfolds and self-associates into cytotoxic aggregates and fibrils even at nanomolar concentrations. Because IAPP aggregation causes beta-cell death and prohibits therapeutic application of IAPP in diabetes, we pursued a minimalistic chemical design approach to generate a molecular mimic of a nonamyloidogenic and bioactive IAPP conformation that would still be able to associate with IAPP and thus inhibit its fibrillogenesis and cytotoxicity. We show that the double N-methylated full length IAPP analog [(N-Me)G24, (N-Me)I26]-IAPP (IAPP-GI) is a highly soluble, nonamyloidogenic, and noncytotoxic IAPP molecular mimic and an IAPP receptor agonist. Moreover, IAPP-GI binds IAPP with low nanomolar affinity and completely blocks IAPP cytotoxic self-assembly and fibrillogenesis with activity in the low nanomolar concentration range. Importantly, IAPP-GI dissociates cytotoxic IAPP oligomers and fibrils and is able to reverse their cytotoxicity. Bifunctional soluble IAPP mimics that combine bioactivity with the ability to block and reverse IAPP cytotoxic self-assembly are promising candidates for the treatment of diabetes. Moreover, our amyloid disease inhibitor design concept may be applicable to other protein aggregation diseases.  相似文献   

14.
In vivo demonstration that alpha-synuclein oligomers are toxic   总被引:1,自引:0,他引:1  
The aggregation of proteins into oligomers and amyloid fibrils is characteristic of several neurodegenerative diseases, including Parkinson disease (PD). In PD, the process of aggregation of α-synuclein (α-syn) from monomers, via oligomeric intermediates, into amyloid fibrils is considered the disease-causative toxic mechanism. We developed α-syn mutants that promote oligomer or fibril formation and tested the toxicity of these mutants by using a rat lentivirus system to investigate loss of dopaminergic neurons in the substantia nigra. The most severe dopaminergic loss in the substantia nigra is observed in animals with the α-syn variants that form oligomers (i.e., E57K and E35K), whereas the α-syn variants that form fibrils very quickly are less toxic. We show that α-syn oligomers are toxic in vivo and that α-syn oligomers might interact with and potentially disrupt membranes.  相似文献   

15.
Amyloid peptides are the major constituents of amyloid deposits in various amyloid diseases including Alzheimer's disease, type II diabetes mellitus, prion diseases and others. The hallmark of amyloid is the binding of the dye, Congo red, which creates characteristic staining due to the dye's ability to bind the beta sheet aggregates referred to as amyloid. Previous reports have demonstrated that several cytotoxic, amyloidogenic peptides can form ion channels in planar phospholipid bilayer membranes and have suggested that these channels may represent the pathogenic mechanism of cell and tissue destruction in amyloid disease. Furthermore, zinc and Congo red can ameliorate or prevent the pathogenic effect of certain amyloidpeptides. We report here that zinc at micromolar concentrations caused a reversible blockade of islet amyloid polypeptide (IAPP, amylin) and PrP 106-126 channels whereas calcium and magnesium did not. Congo red completely inhibited channel formation if preincubated with amyloid peptides, but had no effect on IAPP or PrP 106-126 channels once formed. These results suggest a requirement for aggregation for the formation of amyloid peptide channels and are consistent with the "channel hypothesis" of amyloid disease. They also suggest potential avenues for ameliorative therapy of these illnesses.  相似文献   

16.
17.
Amyloid forms within pancreatic islets in type 2 diabetes from aggregates of the β-cell peptide islet amyloid polypeptide (IAPP). These aggregates are toxic to β-cells, inducing β-cell death and dysfunction, as well as inciting islet inflammation. The β-cell is subject to a number of other stressors, including insulin resistance and hyperglycaemia, that may contribute to amyloid formation by increasing IAPP production by the β-cell. β-Cell dysfunction, evident as impaired glucose-stimulated insulin secretion and defective prohormone processing and exacerbated by metabolic stress, is also a likely prerequisite for islet amyloid formation to occur in type 2 diabetes. Islet transplants in patients with type 1 diabetes face similar stressors, and are subject to rapid amyloid formation and impaired proinsulin processing associated with progressive loss of β-cell function and mass. Declining β-cell mass is predicted to increase metabolic demand on remaining β-cells, promoting a feed-forward cycle of β-cell decline.  相似文献   

18.
Islet amyloid polypeptide (IAPP), a putative polypeptide hormone, is a product of pancreatic beta-cells and the major constituent of the amyloid deposits seen mainly in islets of type 2 diabetic humans and diabetic cats. The connection between IAPP amyloid formation and diabetes is unknown, but a limited segment of the IAPP molecule, positions 20-29, seems responsible for the aggregation to fibrils. Differences in the amino acid sequence of this region probably determine whether or not islet amyloid can develop in a particular species. Amyloid fibril formation can be mimicked in vitro with the aid of synthetic peptides. With this technique we show that peptides corresponding to IAPP positions 20-29 of human and cat, species that develop IAPP-derived islet amyloid, form amyloid-like fibrils in vitro. The corresponding IAPP segment from three rodent species that do not develop IAPP-derived amyloid did not give rise to fibrils. Substitution of the human IAPP-(20-29) decapeptide with one or two amino acid residues from species without islet amyloid generally reduced the capacity to form fibrils. We conclude that the sequence Ala-Ile-Leu-Ser-Ser, corresponding to positions 25-29 of human IAPP, is strongly amyloidogenic and that a proline-for-serine substitution in position 28, as in several rodents, almost completely inhibits formation of amyloid fibrils.  相似文献   

19.
Tomita T 《Islets》2011,3(6):344-351
Aims/hypothesis: Islet amyloid polypeptide is originally identified as the chief constituent of amyloid in insulinomas and type 2 diabetic islets. This study aimed to identify islet amyloid polypeptide by immunocytochemical staining in pancreatic endocrine tumors including 30 cases of insulinomas and non-β-cell pancreatic endocrine tumors. Results: In normal islets, 62% of islet cells and 52% of insulin cells were granularly positive for insulin and IAPP, respectively, with more insulin positive cells than IAPP positive cells and some densely positive staining for insulin and IAPP in irregularly shaped a nuclear, degenerating islet β-cells. In pancreatic endocrine tumors, all 10 insulinomas were positive for islet amyloid polypeptide but 2 glucogonomas, 1 somatostatinoma, 6 of 7 pancreatic polypeptidomas, all 7 gastrinomas and all 3 non-functioning pancreatic endocrine tumors were negative for islet amyloid polypeptide whereas one pancreatic polypeptidoma was positive for islet amyloid polypeptide. Methods: Using commercially available rabbit anti-islet amyloid polypeptide antibody, immunocytochemical staining was performed on 30 cases of pancreatic endocrine tumors, consisting of 10 insulinomas, 2 glucagonomas, 1 somatostatinoma, 7 pancreatic polypeptidomas, 7 gastrinomas and 3 non-functioning pancreatic endocrine tumors. Pancreatic tissues containing pancreatic endocrine tumors were systematically immunostained for insulin, glucagon, somatostatin, pancreatic polypeptide, gastrin and chromogranin A, in addition to islet amyloid polypeptide. When normal pancreatic tissues adjacent to pancreatic endocrine tumors were present, insulin, glucagon, somatostatin and islet amyloid polypeptide positive cells were counted for a total of 20 islets, which were divided into large islets and medium islets for each case. Conclusions/Interpretations: All 10 insulinomas and 1 pancreatic polypeptidoma were granularly positive for islet amyloid polypeptide, suggesting all 10 insulinomas contained enough insulin granules for IAPP whereas only one non-β-cell pancreatic endocrine tumor was co-localized with islet amyloid polypeptide in their secretary granules.  相似文献   

20.
《Islets》2013,5(6):344-351
Aims/hypothesis: Islet amyloid polypeptide is originally identified as the chief constituent of amyloid in insulinomas and type 2 diabetic islets. This study aimed to identify islet amyloid polypeptide by immunocytochemical staining in pancreatic endocrine tumors including 30 cases of insulinomas and non-β-cell pancreatic endocrine tumors.

Results: In normal islets, 62% of islet cells and 52% of insulin cells were granularly positive for insulin and IAPP, respectively, with more insulin positive cells than IAPP positive cells and some densely positive staining for insulin and IAPP in irregularly shaped a nuclear, degenerating islet β-cells. In pancreatic endocrine tumors, all 10 insulinomas were positive for islet amyloid polypeptide but 2 glucogonomas, 1 somatostatinoma, 6 of 7 pancreatic polypeptidomas, all 7 gastrinomas and all 3 non-functioning pancreatic endocrine tumors were negative for islet amyloid polypeptide whereas one pancreatic polypeptidoma was positive for islet amyloid polypeptide.

Methods: Using commercially available rabbit anti-islet amyloid polypeptide antibody, immunocytochemical staining was performed on 30 cases of pancreatic endocrine tumors, consisting of 10 insulinomas, 2 glucagonomas, 1 somatostatinoma, 7 pancreatic polypeptidomas, 7 gastrinomas and 3 non-functioning pancreatic endocrine tumors. Pancreatic tissues containing pancreatic endocrine tumors were systematically immunostained for insulin, glucagon, somatostatin, pancreatic polypeptide, gastrin and chromogranin A, in addition to islet amyloid polypeptide. When normal pancreatic tissues adjacent to pancreatic endocrine tumors were present, insulin, glucagon, somatostatin and islet amyloid polypeptide positive cells were counted for a total of 20 islets, which were divided into large islets and medium islets for each case.

Conclusions/Interpretations: All 10 insulinomas and 1 pancreatic polypeptidoma were granularly positive for islet amyloid polypeptide, suggesting all 10 insulinomas contained enough insulin granules for IAPP whereas only one non-β-cell pancreatic endocrine tumor was co-localized with islet amyloid polypeptide in their secretary granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号