首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Proban® is a multiphase treatment of cotton fabrics based on the formation of pre-condensates using the flame retardant (FR) agent tetrakis (hydroxymethyl) phosphonium salts (THPx). The assessment of the durability of a product demands a preliminary understanding of how relevant it is to extend its lifetime. It is therefore important to minimize the risk of agents impacting: (1) the protection level, (2) shape and dimensions, and (3) additional comfort characteristics of the fabric. This research focused on the impact of washing conditions on the durability of FR properties and appearance of Proban® cotton fabrics, which was systematically arranged through the variation in the chemistry distribution in the Sinner’s circle. The chemical share was varied in laboratory conditions as a simulation of industrial washing based on component dosing, where the temperature, time and mechanical agitation were constant. The washing of cotton fabrics was performed through 10 cycles in four baths containing high alkali components, medium alkali components, high alkali reference detergent and water. The environmental acceptability of washing procedures through effluent analysis was assessed by physico–chemical and organic indicators. The limited oxygen index (LOI), calorimetric parameters (micro combustion calorimetry), thermal stability and evolved gases during thermal decomposition (thermogravimetric analyzer (TGA) coupled with an infrared spectrometer (TG–IR)), surface examination (FE-SEM), spectral characteristics and pH of the aqueous extract of the fabrics before and after 10 washing cycles were selected for proof of durability. The medium alkali bath was confirmed as a washing concept for Proban® cotton fabric through the preservation of FR properties examined through LOI, TGA, TG–IR and MCC parameters and appearance color and low level of fibrillation.  相似文献   

2.
Polyester/cotton (T/C) blend fabrics are highly flammable due to the particular “scaffolding effect”. In this work, an intumescent flame retardant (IFR) agent containing P, N, and B was designed and synthesized using bio-based phytic acid, pentaerythritol, boric acid, and urea. The IFR compounds were deposited onto a T/C blend fabric by the surface-coating route. The chemical structure of IFR agent and its potential cross-linking reactions with T/C fibers were characterized. The morphology, thermal stability, heat-release ability, flame retardancy, and mechanism of coated T/C blend fabrics were explored. The self-extinguishing action was observed for the coated T/C blend fabric with a weight gain of 13.7%; the limiting oxygen index (LOI) value increased to 27.1% versus 16.9% for a pristine one. Furthermore, the intumescent flame retardant (IFR) coating imparted T/C blend fabrics with high thermal stability and significantly suppressed heat release by nearly 50%. The char residue analyses on morphology and element content confirmed the intumescent FR action for coated T/C blend fabrics. The prepared IFR coating has great potential to serve as an eco-friendly approach for improving the flame retardancy of T/C blend textiles.  相似文献   

3.
Fireproof fabrics are commonly used for protection of fireguards. Such materials must be characterized by improved heat resistance, especially to radiation and flame. In this paper, fireproof fabric (NATAN and PROTON—trademark names) was covered with Ti-Si-N nanocomposite reflective coating using magnetron sputtering. The fabrics were subjected to heat radiation of heat flux density from 0.615 to 2.525 kW/m2. A testing stage equipped with a heat source, thermal imaging camera and thermocouples was used. Two variants of the coatings were studied: Ti-Si and (Ti,Si)N considering different thicknesses of layers. The temperature increment and time to reach the pain threshold (60 °C) which corresponds approximately to a 2nd-degree burn according to Henriques criterion were analyzed. In addition, the microstructural analysis of the samples using a scanning electron microscope (SEM) equipped with energy dispersive spectroscopy (EDS) system was performed. The improvement of heat resistance showed for Ti-Si-coated PROTON and NATAN for all tested heat flux densities. Time to reach 60 °C for PROTON fabric increased maximally from 11.23 s (without coating) to 13.13 s (Ti-Si coating) for heat flux density of 0.615 kW/m2 and for NATAN—maximally from 7.76 s (without coating) to 11.30 s (Ti-Si coating) for the same heat flux density.  相似文献   

4.
This study examined the moisture vapor permeability and thermal wear comfort of ecofriendly fiber-embedded woven fabrics in terms of the yarn structure and the constituent fiber characteristics according to two measuring methods. The moisture vapor permeability measured using the upright cup (CaCl2) method (JIS L 1099A-1) was primarily dependent on the hygroscopicity of the ecofriendly constituent fibers in the yarns and partly influenced by the pore size in the fabric because of the yarn structure. On the other hand, the moisture vapor resistance measured using the sweating guarded hot plate method (ISO 11092) was governed mainly by the fabric pore size and partly by the hygroscopicity of the constituent ecofriendly fibers. The difference between the two measuring methods was attributed to the different mechanisms in the measuring method. The thermal conductivity as a measure of the thermal wear comfort of the composite yarn fabrics was governed primarily by the pore size in the fabric and partly by the thermal characteristics of the constituent fibers in the yarns. Lastly, considering market applications, the Coolmax®/Tencel sheath/core fabric appears useful for winter warm feeling clothing because of its the good breathability with low thermal conductivity. The bamboo and Coolmax®/bamboo fabrics are suitable for summer clothing with a cool feel because of their high thermal conductivity with good breathability. Overall, ecofriendly fibers (bamboo and Tencel) are of practical use for marketing environmentallyfriendly high-performance clothing.  相似文献   

5.
Consumers expect high-performance functionality from sportswear. To meet athletic and leisure-time activity requirements, further research needs to be carried out. Sportswear layers and their specific thermal qualities, as well as the set and air layer between materials, are all important factors in sports clothing. This research aims to examine the thermal properties of sports fabrics, and how they are affected by structure parameters and maintained with different layers. Three inner and four outer layers of fabric were used to make 12 sets of sportswear in this study. Before the combination of outer and inner layers, thermal properties were measured for each individual layer. Finally, the thermal resistance, thermal conductivity, thermal absorptivity, peak heat flow density ratio, stationary heat flow density, and water vapor permeability of bi-layered sportswear were evaluated and analyzed. The findings show that sportswear made from a 60% cotton/30% polyester/10% elastane inner layer and a 100% polyester outer layer had the maximum thermal resistance of 61.16 (×103 K·m2 W−1). This performance was followed by the sample made from a 90% polyester/10% elastane inner layer and a 100% polyester outer layer, and the sample composed of a 100% elastane inner layer and a 100% polyester outer layer, which achieved a thermal resistance value of 60.41 and 59.41 (×103 K·m2 W−1), respectively. These results can be explained by the fact that thicker textiles have a higher thermal resistance. This high-thermal-resistance sportswear fabric is appropriate for the winter season. Sportswear with a 90% polyester/10% elastane inner layer had worse water vapor resistance than sportswear with a 60% cotton/30% polyester/10% elastane and a 100% elastane layer. Therefore, these sports clothes have a higher breathability and can provide the wearers with very good comfort. According to the findings, water vapor permeability of bi-layered sportswear is influenced by geometric characteristics and material properties.  相似文献   

6.
Cotton fabrics are highly popular because of their excellent properties such as regeneration, bio-degradation, softness, affinity to skin and hygroscopic properties. When in contact with the human body, cotton fabrics offer an ideal environment for microbial growth due to their ability to retain oxygen, moisture and warmth, as well as nutrients from spillages and body sweat. Therefore, an anti-microbial coating formulation (Microfresh and Microban together with zinc oxide as catalyst) was developed for cotton fabrics to improve treatment effectiveness. In addition, plasma technology was employed in the study which roughened the surface of the materials, improving the loading of zinc oxides on the surface. In this study, the low stress mechanical properties of plasma pre-treated and/or anti-microbial-treated cotton fabric were studied. The overall results show that the specimens had improved bending properties when zinc oxides were added in the anti-microbial coating recipe. Also, without plasma pre-treatment, anti-microbial-treatment of cotton fabric had a positive effect only on tensile resilience, shear stress at 0.5° and compressional energy, while plasma-treated specimens had better overall tensile properties even after anti-microbial treatment.  相似文献   

7.
The growth and reproduction of microorganisms on fabrics could not only affect the wearability of textiles but also cause harm to human health, and it is an important problem that should be solved to reduce the adsorption and growth of microorganisms on the surface of the fabric. A series of ω-vinyl betaine copolymers were synthesized by catalytic chain transfer polymerization (CCTP) and were modified by mercapto-vinyl click chemistry to synthesize silane-modified betaine copolymers, which were used to treat the cotton fabric. The hydrophilic–hydrophobic transition performance and anti-protein specific adhesion performance of cotton fabric with the betaine copolymer were systematically investigated. The copolymer was confirmed to be successfully finished on the cotton fabric via 1H–NMR and FTIR. The cotton fabric, which was treated by the betaine copolymer, presented temperature response performance in the range of 30–55 °C and had excellent anti-protein adsorption performance. The treated fabric had the best temperature-sensitive and anti-protein specific absorption performance among all the specimens when the mass fraction of G06B in DMAPS was 6 wt.%.  相似文献   

8.
Socks are an important part of our clothing used in everyday activities. In order to ensure thermal comfort during wear in cool outdoor or indoor conditions, and for health improvement, socks must have effective thermoregulation properties. Chemical far-infrared (FIR) fibers with different bio-ceramic compounds incorporated into socks’ structures can provide an improved thermoregulation effect to the wearer of the socks. Fibers with silver and carbon additives incorporated in their structures can also affect the thermoregulation properties of socks. Moreover, these conductive additives avoid the unpleasant effect of static electricity of socks. The main parts of the different investigated structures of the socks were made in a plush pattern. The plush loops were formed by using functional Resistex® Bioceramic, Shieldex® and two modifications of Nega-Stat® fiber yarns. The main thermal comfort (thermal efficiency, microclimate and heat exchange temperatures, thermal resistance, water vapor permeability) and electrostatic (surface and vertical resistances, shielding factor, half time decay of charge) properties of the socks were investigated. Based on the obtained results of the thermal comfort and electrostatic characteristics of the different investigated structures of socks, the optimal static dissipative (half-time decay <0.01 s, shielding factor—0.96) plush knitting structure with 55% Resistex® Bioceramic and 31% bicomponent Nega-Stat® P210 fibers yarns was selected. Comparing the control sample without FIR and the knitted structure with conductive additives, we can draw the conclusion that the heat retention capability of the selected socks was improved by 1.5 °C and the temperature of their created microclimate was improved by 2 °C.  相似文献   

9.
Preterm infants, due to immature and dysfunctional skin, have increased water loss through the skin and consequently a decreased body temperature. In order to develop protective garments for preterm infants, it is important to select materials that will protect the child against water and heat loss. The authors are currently involved in the development of protective garments for premature babies, which are similar to baby clothes and contain a membrane that is partially permeable for vapor in combination with textile materials. This article presents the study of materials intended for the production of protective garments for pre-term infants. Samples of materials were investigated to determine biophysical comfort (tests of heat resistance, vapor resistance according to PN-EN ISO 11092:2014-11 and air permeability according to PN-EN ISO 9237) and porosity, surface mass in accordance with PN-EN 12127, and thickness in accordance with PN-EN ISO 5084. In order to determine the porosity of materials and to visualize the structure, tests on computer microtomography were carried out. The mechanical properties of the tested materials and the evaluation of the total hand value were characterized; the samples were tested on the KES device. The aim of this study was to select the most suitable fabrics for protective garments for premature infants to prevent excessive heat and moisture loss from the body, which can lead to hypothermia. For laminates, the optimal results of vapor resistance and heat resistance were obtained for laminate (15 g·m−2 PE foil + 15 g·m−2 PP non-woven), with a level of thermal resistance of 0.0766 m2·K·W−1 and vapor resistance of 188.729 m2·Pa·W−1, and for laminate (15 g·m−2 PE foil + 10 g·m−2 PP non-woven), with a level of thermal resistance of 0.0683 m2·K·W−1 and vapor resistance of 164.085 m2·Pa·W−1. For knitted fabrics, knitwear single cotton 155 g·m−2 showed the highest thermal resistance (0.0296 m2·K·W−1), and knitwear interlock polyester 120 g·m−2 showed the lowest thermal resistance (0.0179 m2·K·W−1). Knitwear cotton 120 g·m−2 had the highest water vapor resistance (8.402 m2·Pa·W−1), while knitwear interlock polyester 130 g·m−2 sample had the lowest resistance (6.356 m2·Pa·W−1). Garments for premature babies should have moisture barrier properties and high thermal insulation. They should also be characterized by optimal air permeability properties. Sample two-layer laminate (15 g·m−2 PE foil + 15 g·m−2 PP non-woven) had the best vapor resistance and thermal insulation properties. Moreover, this sample was characterized by good air permeability and surface weight compared to the other laminate samples. During the design of garments for premature babies, it is important to reduce the surface weight to as low as possible. Among the knitted fabrics, a knitwear single cotton 120 g·m−2 knitwear polyester interlock 120 g·m−2 was selected for having the best THV or tactile comfort. In addition, these knits were chosen for their lower surface weight. Based on the conducted tests, two-layer laminate (15 g·m−2 PE foil + 15 g·m−2 PP non-woven), the knitwear single cotton 120 g·m−2, and knitwear polyester interlock 120 g·m−2 were selected for further research.  相似文献   

10.
In 2017, more than 60,000 firefighters and oilfield-workers injuries and fatalities occurred while they were working under various thermal hazards such as flame, radiant heat, steam, etc., or due to their significant heat stress related discomfort. The majority of these burn injuries and fatalities results from an inadequate protection and comfort provided by firefighters’ and oilfield-workers’ fire protective polymeric textile materials used in their workwear. Hence, both the thermal protective and thermo-physiological comfort performance of fabrics used in workwear significantly contribute to limit firefighters’ and oilfield-workers’ skin burns and heat stress. Considering this, previous studies have focused on characterizing and developing empirical models to predict the protective and comfort performance based on physical properties of the fabrics. However, there are still some technical knowledge gaps in the existing literature related to this. This paper critically reviewed the literature on characterization and modeling of thermal protective and thermo-physiological comfort performance of fire protective textile fabric materials. The key issues in this field have been indicated in order to provide direction for the future research and advance this scientific field for better protection and comfort of the firefighters and oilfield-workers.  相似文献   

11.
Various approaches are being pursued to physico-chemically modify the zirconia neck region of dental implants to improve the integration into the surrounding soft tissue. In this study, polished zirconia discs were laser microstructured with periodic cavities and convex waves. These zirconia samples were additionally activated by argon plasma using the kINPen®09. The surface topography was characterized by scanning electron microscopy and the surface wettability by water contact angle. The in vitro study with human gingival fibroblasts (HGF-1) was focused on cell spreading, morphology, and actin cytoskeleton organization within the first 24 h. The laser-induced microstructures were originally hydrophobic (e.g., 60 µm cavities 138.4°), but after argon plasma activation, the surfaces switched to the hydrophilic state (60 µm cavities 13.7°). HGF-1 cells adhered flatly on the polished zirconia. Spreading is hampered on cavity structures, and cells avoid the holes. However, cells on laser-induced waves spread well. Interestingly, argon plasma activation for only 1 min promoted adhesion and spreading of HGF-1 cells even after 2 h cultivation. The cells crawl and grow into the depth of the cavities. Thus, a combination of both laser microstructuring and argon plasma activation of zirconia seems to be optimal for a strong gingival cell attachment.  相似文献   

12.
The most important functional purpose of knitted fabrics used for the protective non-flammable underwear worn in contact with the skin is to ensure wearing comfort by creating and maintaining a constant and pleasant microclimate at the skin surface independently from the environmental conditions. Protective non-flammable underwear may be used by firefighters or sportsmen, e.g., racing (Formula) sportsmen, where a risk of burn injuries (when the car is on fire after a car crash) is present. In order to investigate the flammability and thermal comfort properties of two-layer knitted fabrics, two groups of aramids and flame-retardant (FR) viscose fiber fabrics of different combined patterns and surface structures (porosity and flatness) were designed and manufactured for this research. Aramid fiber spun yarns (METAFINE.X.95®) formed the inner layer (contacting with human skin) of fabrics and aramid/viscose FR fiber spun yarns (METALEN®) formed the outer layer. For the evaluation of the functional characteristics of the manufactured fabrics, the flammability and thermoregulating properties, such as liquid moisture management, water vapor and air permeability, and thermal resistance were investigated. The results show that all tested fabrics are non-flammable, breathable, permeable to air, and can be assigned to moisture management fabrics. Their obtained overall moisture management capacity (OMMC) values are in the range 0.59–0.88. The knitted fabrics with an embossed porous surface to skin had a higher OMMC (0.75–0.88). The thermoregulation comfort properties were mostly influenced by the structure of the fabrics, while the burning behavior was found to be independent from the structure, and the non-flammability properties were imparted by the fiber content of the knits.  相似文献   

13.
In the present study, cotton fabric was exposed to laser exposure at different energy levels and then the silver nanoparticles were coated on untreated and laser treated cotton fabrics. Methylene blue dye was used to detect the presence of carboxylic acid groups (-COO) on laser treated cotton and the dye absorption results were determined spectrophotometrically. ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy) analysis and antibacterial tests were carried out to investigate the silver ion content and bactericidal properties of silver nanoparticles on cotton fabrics. Infrared spectroscopy (FTIR/ATR) analysis and scanning electron microscopy (SEM) were used to identify chemical changes and to study the morphology of the surface of the fibers. EDAX (Energy Dispersive X-ray Spectroscopy) analysis was calculated for SEM micrographs. The results showed according to the higher uptake of methylene blue dye that the negative charge of the carboxylic acid groups had been created by laser treatment. Although the FTIR spectroscopy results did not show an increase in carboxylic acid groups, the cationic dye absorption increased. The durability of the Ag+ ion particles on repeated laundered laser treated cotton was proven by antibacterial and ICP tests, particularly when the laser energy was increased.  相似文献   

14.
The vinyl phytic acid (GPA) was prepared using biophytic acid (PA) and glycidyl methacrylate (GMA), in which double bonds were introduced into the phytic acid molecule to increase the active groups in the phytic acid molecule. Furthermore, itaconic acid (IA) containing two unsaturated double bonds and GPA was polymerized in situ and crosslinked on the surface of cotton fabrics, and flame retardant and crease-proofed fabrics were obtained. The effects of GPA, IA, and the initiator on the flame-retardant and crease-proofing properties of the fabrics were analyzed by a single-factor and double-dip double-nip experiment. A flame-retardant and wrinkle-resistant fabric was obtained when the limiting oxygen index (LOI) and wrinkle recovery angle (WRA) were 28% and 270°, respectively. During combustion, the thermal properties of the fabrics changed; typically, the extrapolated initial temperature (Te) decreased, and moisture release increased. After burning, the fabrics had good shape retention, and the carbon residue content increased to 48%, which effectively inhibited or slowed down the combustion and heat release of the textiles. However, the whiteness, mechanical properties, and washability of the products need to be further improved.  相似文献   

15.
MgF2-coated screws made of a Mg-2Y-1Mn-1Zn alloy, called NOVAMag® fixation screws (biotrics bioimplants AG), were tested in vitro for potential applications as biodegradable implants, and showed a controlled corrosion rate compared to non-coated screws. While previous studies regarding coated Mg-alloys have been carried out on flat sample surfaces, the present work focused on functional materials and final biomedical products. The substrates under study had a complex 3D geometry and a nearly cylindrical-shaped shaft. The corrosion rate of the samples was investigated using an electrochemical setup, especially adjusted to evaluate these types of samples, and thus, helped to improve an already patented coating process. A MgF2/MgO coating in the µm-range was characterized for the first time using complementary techniques. The coated screws revealed a smoother surface than the non-coated ones. Although the cross-section analysis revealed some fissures in the coating structure, the electrochemical studies using Hanks’ salt solution demonstrated the effective role of MgF2 in retarding the alloy degradation during the initial stages of corrosion up to 24 h. The values of polarization resistance (Rp) of the coated samples extrapolated from the Nyquist plots were significantly higher than those of the non-coated samples, and impedance increased significantly over time. After 1200 s exposure, the Rp values were 1323 ± 144 Ω.cm2 for the coated samples and 1036 ± 198 Ω.cm2 for the non-coated samples, thus confirming a significant decrease in the degradation rate due to the MgF2 layer. The corrosion rates varied from 0.49 mm/y, at the beginning of the experiment, to 0.26 mm/y after 1200 s, and decreased further to 0.01 mm/y after 24 h. These results demonstrated the effectiveness of the applied MgF2 film in slowing down the corrosion of the bulk material, allowing the magnesium-alloy screws to be competitive as dental and orthopedic solutions for the biodegradable implants market.  相似文献   

16.
Graphene oxide (GO) was deposited on a cotton fabric and then thermally reduced to reduced graphene oxide (rGO) with the assistance of L-ascorbic acid. The GO reduction imparted electrical conductivity to the fabric and allowed for electrochemical deposition of Ag° particles using cyclic voltammetry. Only the Ag°/rGO composite coating imparted antibacterial properties to the fabric against Escherichia coli and Staphylococcus aureus. Ag°/rGO-modified fibers were free of bacterial film, and bacterial growth inhibition zones around the material specimens were found. Moreover, Ag°/rGO-modified fabric became superhydrophobic with WCA of 161°.  相似文献   

17.
A new coating based on polymer-derived ceramics (PDC), oxides and refractory ceramic with a thickness of around 50 µm has been developed to improve the resistance corrosion of stainless steel substrate against molten aluminum alloy in a thermal energy storage (TES) system designed to run at high temperature (up to 600 °C). These coatings implemented by straightforward methods, like tape casting or paintbrush, were coated on planar and cylindrical stainless-steel substrates, pyrolyzed at 700 °C before being plunged for 600 and 1200 h in molten AlSi12 at 700 °C. The stainless-steel substrate appears healthy without intermetallic compounds, characteristic of molten aluminum alloy corrosion. The protective coating against AlSi12 corrosion shows excellent performance and appears interesting for TES applications.  相似文献   

18.
Hydrophobic and oleophilic Si-based cotton fabrics have recently gained a lot of attention in oil/water separation due to their high efficiency. In this study, we present the effect of O2 plasma pre-treatment on the final properties of two Si-based cotton membranes obtained from dip coating and plasma polymerization, using polydimethylsiloxane (PDMS) as starting polymeric precursor. The structural characterizations indicate the presence of Si bond on both the modified cotton surfaces, with an increase of the carbon bond, assuring the success in surface modification. On the other hand, employing O2 plasma strongly changes the cotton morphology, inducing specific roughness and affecting the hydrophobicity durability and separation efficiency. In particular, the wettability has been retained after 20 laundry tests at 40 °C and 80 °C, and, for separation efficiency, even after 30 cycles, an improvement in the range of 10–15%, both at room temperature and at 90 °C can be observed. These results clearly demonstrate that O2 plasma pre-treatment, an eco-friendly, non-toxic, solvent-free, and one-step method for inducing specific functionalities on surfaces, is very effective in enhancing the oil/water separation properties for Si-based cotton membranes, especially in combination with plasma polymerization procedure for Si-based deposition.  相似文献   

19.
TPU-coated polyester fabric was used as the substrate of a flexible temperature sensor and Ag nanoparticles were deposited on its surface as the temperature sensing layer by the magnetron sputtering method. The effects of sputtering powers and heat treatment on properties of the sensing layers, such as the temperature coefficient of resistance (TCR), linearity, hysteresis, drift, reliability, and bending resistance, were mainly studied. The results showed that the TCR (0.00234 °C−1) was the highest when sputtering power was 90 W and sputtering pressure was 0.8 Pa. The crystallinity of Ag particles would improve, as the TCR was improved to 0.00262 °C−1 under heat treatment condition at 160°. The Ag layer obtained excellent linearity, lower hysteresis and drift value, as well as good reliability and bending resistance when the sputtering power was 90 W. The flexible temperature sensor based on the coated polyester fabric improved the softness and comfortableness of sensor, which can be further applied in intelligent wearable products.  相似文献   

20.
In this work, a visible-light-driven BiOCl/Bi2WO6 photocatalyst was obtained via a facile hydrothermal method and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), ultraviolet/visible light diffuse reflection spectroscopy (UV/Vis), and photocurrent (PC). BiOCl/Bi2WO6 was modified with (3-chloro-2-hydroxypropyl) trimethyl ammonium chloride to obtain the cationized BiOCl/Bi2WO6. Cotton fabric was pretreated with sodium hydroxide (NaOH) and sodium chloroacetate solution to obtain carboxymethylated cotton fabric, which was further reacted with cationized BiOCl/Bi2WO6 to achieve finished cotton fabric. The cotton fabrics were characterized by Fourier-transform infrared spectroscopy (FT-IR), XRD, SEM, and EDS. The photocatalytic activity of the BiOCl/Bi2WO6 photocatalyst and cotton fabrics was assessed by photocatalytic degradation of MB (methylene blue) solution under simulated visible light. The self-cleaning property of cotton fabrics was evaluated by removing MB solution and red-wine stains. Results revealed that the coated cotton fabrics exhibited appreciable photocatalytic and self-cleaning performance. In addition, anti-UV studies showed that the finished cotton fabrics had remarkable UV blocking properties in the UVA and UVB regions. Therefore, the finished cotton fabric with BiOCl/Bi2WO6 can provide a framework for the development of multifunctional textiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号