首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Spinocerebellar ataxia type 2 (SCA2) is caused by the expansion of a polyglutamine (polyQ) repeat in ataxin-2, the SCA2 gene product. In contrast to other polyQ diseases, intranuclear inclusions are not prominent in SCA2. In animal models with expression of mutant ataxin-2 targeted to Purkinje cells, neuronal dysfunction and morphologic changes are observed without the formation of intranuclear aggregates. In this report, we investigated the mechanisms underlying SCA2 pathogenesis using cellular models. We confirmed that the SCA2 gene product, ataxin-2, was predominantly located in the Golgi apparatus. Deletion of ER-exit and trans-Golgi signals in ataxin-2 resulted in an altered subcellular distribution. Expression of full-length ataxin-2 with an expanded repeat disrupted the normal morphology of the Golgi complex and colocalization with Golgi markers was lost. Intranuclear inclusions were only seen when the polyQ repeat was expanded to 104 glutamines, and even then were only observed in a small minority of cells. Expression of ataxin-2 with expanded repeats in PC12 and COS1 cells increased cell death compared with normal ataxin-2 and elevated the levels of activated caspase-3 and TUNEL-positive cells. These results suggest a link between cell death mediated by mutant ataxin-2 and the stability of the Golgi complex. The formation of intranuclear aggregates is not necessary for in vitro cell death caused by expression of full-length mutant ataxin-2.  相似文献   

2.
3.
Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder characterized by ataxia and selective neuronal cell loss caused by the expansion of a translated CAG repeat encoding a polyglutamine tract in ataxin-7, the SCA7 gene product. To gain insight into ataxin-7 function and to decipher the molecular mechanisms of neurodegeneration in SCA7, a two-hybrid assay was performed to identify ataxin-7 interacting proteins. Herein, we show that ataxin-7 interacts with the ATPase subunit S4 of the proteasomal 19S regulatory complex. The ataxin-7/S4 association is modulated by the length of the polyglutamine tract whereby S4 shows a stronger association with the wild-type allele of ataxin-7. We demonstrate that endogenous ataxin-7 localizes to discrete nuclear foci that also contain additional components of the proteasomal complex. Immunohistochemical analyses suggest alterations either of the distribution or the levels of S4 immunoreactivity in neurons that degenerate in SCA7 brains. Immunoblot analyses demonstrate reduced levels of S4 in SCA7 cerebella without evident alterations in the levels of other proteasome subunits. These results suggest a role for S4 and ubiquitin-mediated proteasomal proteolysis in the molecular pathogenesis of SCA7.  相似文献   

4.
5.
6.
7.
8.
9.
Spinocerebellar ataxia type 2 is an inherited neurodegenerative disorder that is caused by an expanded trinucleotide repeat in the SCA2 gene, encoding a polyglutamine stretch in the gene product ataxin-2. Although evidence has been provided that ataxin-2 is involved in RNA metabolism, the physiological function of ataxin-2 remains unclear. Here, we demonstrate that ataxin-2 interacts with two members of the endophilin family, endophilin-A1 and endophilin-A3. To elucidate the physiological implications of these interactions, we exploited yeast as a model system and discovered that expression of ataxin-2 as well as both endophilin proteins is toxic for yeast lacking the SAC6 gene product fimbrin, a protein involved in actin filament organization and endocytotic processes. Intriguingly, expression of huntingtin, another polyglutamine protein interacting with endophilin-A3, was also toxic in Deltasac6 yeast. These effects can be suppressed by simultaneous expression of one of the two human fimbrin orthologs, L- or T-plastin. Moreover, we have discovered that ataxin-2 associates with L- and T-plastin and that overexpression of ataxin-2 leads to accumulation of T-plastin in mammalian cells. Thus, our findings suggest an interplay between ataxin-2, endophilin proteins and huntingtin in plastin-associated cellular pathways.  相似文献   

10.
Transglutaminase type 2 (TG2) has recently been implicated in crosslinking of mutant huntingtin protein into aggregates. Here we show that TG2 also crosslinks spinocerebellar ataxia-1 (SCA1) gene product ataxin-1. HeLa cell lysates expressing GFP tagged ataxin-1 with 2, 30 or 82 glutamines showed covalent crosslinking of ataxin-1 when incubated with exogenously added TG2. This crosslinking was inhibited by TG2 inhibitor cystamine. SCA1 transgenic mice which overexpress the mutant ataxin-1 in cerebellar Purkinje cells showed elevated nuclear TG2 in the absence of ataxin-1 nuclear aggregates. The addition of purified TG2 to the nuclear extracts or addition of SCA1 nuclear TG2 to GFP-Q82 HeLa cell lysates resulted in the formation of insoluble aggregates. These data indicate that ataxin-1 is a substrate of TG2. Further, in SCA1 TG2 may translocate to the nucleus in response to nuclear accumulation of mutant ataxin-1 at early stages of the disease.  相似文献   

11.
12.
13.
Spinocerebellar ataxia 7 (SCA7) is an autosomal dominant neurodegenerative disorder caused by the expansion of a CAG-trinucleotide repeat in the coding region of the SCA7 gene. The expansion is translated into an extended polyglutamine stretch in the protein ataxin-7, a protein of unknown function. By Northern blot analysis expression of ataxin-7 was detected in numerous regions of human brain and some peripheral tissues. It is unknown, however, if ataxin-7 is enriched at sites of the SCA7 pathology. We studied the regional and cellular expression pattern of ataxin-7 at the mRNA level by in situ hybridization histochemistry in normal human brain. Furthermore we used a monoclonal and two polyclonal antibodies raised against the normal ataxin-7 to establish the distribution of this protein in brain, retina and peripheral organs. At the mRNA level ataxin-7 was preferentially expressed in neurons; the regional distribution reflected neuronal packing density. Ataxin-7 immunoreactivity (IR) was similarly widely expressed. In most neurons, ataxin-7 IR was preferentially localized to the cytoplasmatic compartment although some nuclear ataxin-7 IR was detected in most neurons. A more intense and more prominently nuclear ataxin-7 IR was observed in neurons of the pons and the inferior olive, brain regions severly affected by the disease, suggesting that the subcellular localization and abundance of ataxin-7 is regulated in a regionally specific way. Since neurons displaying more intense and more prominently nuclear ataxin-7 IR belonged to the class of susceptible cells in SCA7, an enrichment of normal ataxin-7 in the nuclear compartment may contribute to neurodegeneration. However not all sites of SCA7 pathology displayed a strong cytoplasmatic and nuclear immunoreactivity.  相似文献   

14.
15.
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by the expansion of a polyglutamine tract within the SCA1 gene product, ataxin-1. Expansion of this tract is believed to result in a gain of function by the mutant protein, perhaps through altered self-associations or interactions with other cellular proteins. We have used the yeast two hybrid system to determine if ataxin-1 is capable of multimerization. This analysis revealed that ataxin-1 does have the ability to self-associate, however, this association does not appear to be influenced by expansion of the polyglutamine tract. Consistent with this finding, deletion analysis excluded the involvement of the polyglutamine tract in ataxin- 1 self-association, and instead localized the multimerization region to amino acids 495-605 of the wild type protein. These results, while identifying an ataxin-1 self-interaction region, fail to support a proposed model of polar-zipper mediated multimerization involving the ataxin-1 polyglutamine tract.   相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号