首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVES: To compare the image quality and lesion contrast of lung MRI using 5 different pulse sequences at 1.5 T and 3 T. MATERIALS AND METHODS: Lung MRI was performed at 1.5 T and 3 T using 5 pulse sequences which have been previously proposed for lung MRI: 3D volumetric interpolated breath-hold examination (VIBE), true fast imaging with steady-state precession (TrueFISP), half-Fourier single-shot turbo spin-echo (HASTE), short tau inversion recovery (STIR), T2-weighted turbo spin-echo (TSE). In addition to 4 healthy volunteers, 5 porcine lungs were examined in a dedicated chest phantom. Lung pathology (nodules and infiltrates) was simulated in the phantom by intrapulmonary and intrabronchial injections of agarose. CT was performed in the phantom for correlation. Image quality of the sequences was ranked in a side-by-side comparison by 3 blinded radiologists regarding the delineation of pulmonary and mediastinal anatomy, conspicuity of pulmonary nodules and infiltrates, and presence of artifacts. The contrast of nodules and infiltrates (CNODULES and CINFILTRATES) defined by the ratio of the signal intensities of the lesion and adjacent normal lung parenchyma was determined. RESULTS: There were no relevant differences regarding the preference for the individual sequences between both field strengths. TSE was the preferred sequence for the visualization of the mediastinum at both field strengths. For the visualization of lung parenchyma the observers preferred TrueFISP in volunteers and TSE in the phantom studies. At both field strengths VIBE achieved the best rating for the depiction of nodules, whereas HASTE was rated best for the delineation of infiltrates. TrueFISP had the fewest artifacts in volunteers, whereas STIR showed the fewest artifacts in the phantom. For all but the TrueFISP sequence the lesion contrast increased from 1.5 T to 3 T. At both field strengths VIBE showed the highest CNODULES (6.6 and 7.1) and HASTE the highest CINFILTRATES (6.1 and 6.3). CONCLUSION: The imaging characteristics of different pulse sequences used for lung MRI do not substantially differ between 1.5 T and 3 T. A higher lesion contrast can be expected at 3 T.  相似文献   

2.
To compare the clinical usefulness of T2-weighted breath-hold sequences for imaging the liver, 33 patients with 97 focal hepatic lesions were studied with a 1.0-T scanner by using T2-weighted breath-hold turbo spin-echo (SE) sequences and T2-weighted breath-hold half-Fourier single-shot turbo SE (HASTE) sequences with and without fat suppression. Images were quantitatively analyzed for liver signal-to-noise ratio (SNR) and lesion-to-liver contrast-to-noise ratios (CNR). Qualitative analysis was performed for lesion conspicuity, motion artifacts, and anatomic sharpness of extrahepatic structures. Breath-hold turbo SE imaging with fat suppression showed the highest CNR for cystic lesions and the best lesion conspicuity for cystic and solid lesions among the four sequences. For solid lesions, there was no significant difference of lesion-to-liver CNR between them. HASTE sequence was superior to turbo SE sequences in terms of motion artifacts; however, the usefulness for evaluating focal hepatic lesions was limited compared with turbo SE sequence with fat suppression. Addition of fat suppression was not helpful for HASTE imaging because of decreased lesion conspicuity and extrahepatic details without the advantage of reducing motion artifacts. This study suggests that turbo SE sequence with fat suppression is most useful for breath-hold T2-weighted liver imaging at 1.0 T. Addition of imaging without fat suppression can be considered for evaluating extrahepatic structures. HASTE sequence may have a role for imaging uncooperative patients due to absence of motion artifacts.  相似文献   

3.
Our purpose was to analyze and compare the image quality and contrast-to-noise ratio (CNR) of different fast T1- and T2-weighted sequences with conventional spin-echo sequences in renal MRI. Twenty-three patients with focal renal lesions were examined with a T2-weighted ultrafast turbo spin-echo (UTSE) sequence with and without frequency selective fat suppression (SPIR), a combined gradient-and-spin-echo sequence (GraSE), and a conventional spin-echo sequence (SE). In addition, T1-weighted images were obtained pre-and postcontrast, using a fast spin-echo sequence (TSE) with and without SPIR and the conventional SE sequence. Among the T2-weighted images, the highest CNR and the best image quality were obtained with the UTSE sequence, followed by the fat-suppressed UTSE sequence. GraSE and conventional SE sequences showed a significantly lower CNR and image quality (p < 0.05). The T1-weighted sequences did not show significant differences, in either precontrast or postcontrast measurements. T2-weighted UTSE with and without fat suppression combined excellent image quality and high CNR for imaging and detection of renal lesions. The T1-weighted fast sequences provided no alternative to the gradient-echo or to the conventional SE sequences. The results of this systematic study suggest the use of T2-weighted fast techniques for improved diagnostic accuracy of renal MRI.  相似文献   

4.
Respiratory and cardiac motion correction may result in better turbo spin-echo (SE) imaging of the lung. To compare breath-hold cardiac-gated black-blood T2-weighted turbo SE and turbo short-inversion-time inversion-recovery (STIR) magnetic resonance (MR) imaging pulse sequences with conventional breath-hold turbo SE and half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences for lesion conspicuity of focal lung lesions, 42 patients with focal lung lesions were prospectively studied with MR imaging at 1.5 T. Helical computed tomography was used as a reference. In comparison with the conventional breath-hold turbo SE sequence, all black-blood sequences had fewer image artifacts arising from the heart and blood flow. The overall image quality for the black-blood turbo SE and turbo STIR sequences was superior to that for the breath-hold turbo SE and HASTE sequence (P < 0.01). Not only focal lung lesions but also surrounding inflammatory changes were clearly visualized with these two sequences. With the HASTE sequence, although several slices could be obtained in one breath-hold, both the tumor and vessels appeared blurred. We conclude that T2-weighted turbo SE and turbo STIR imaging of the lung with effective suppression of flow and motion artifacts provide high-quality images in patients with focal lung lesions.  相似文献   

5.
Purpose: To compare the diagnostic values of fluid-attenuated inversion recovery (FLAIR) and gradient spin-echo (GRASE) with those of conventional spin-echo (SE) and fast SE T2-weighted sequences in the evaluation of acute cerebrovascular lesions at 0.5 T.Material and Methods: Twenty-two consecutive patients with the clinical diagnosis of acute cerebrovascular accident were examined by MR imaging within the first 48 h of ictus. MR examination included 5-mm axial conventional SE and turbo SE (TSE) T2-weighted, dual-echo GRASE and FLAIR sequences. The patients also had pre- and postcontrast T1-weighted axial images. Two examiners evaluated the images and scored the conspicuity of the acute lesions.Results: Regardless of location, FLAIR provided the best lesion conspicuity in the detection of acute infarcts, followed by the GRASE sequence. In the posterior fossa, TSE and SE demonstrated the lesions better than GRASE and FLAIR techniques. In the detection of hemorrhagic elements within the ischemic region, TSE demonstrated statistically significant superiority over other sequences.Conclusion: In the detection of acute ischemic lesions in locations other than the posterior fossa, FLAIR provided the best lesion conspicuity among four T2-weighted sequences, including SE, TSE, GRASE and FLAIR. However, for the posterior fossa examination, preference of SE or TSE T2-weighted sequences is suggested.  相似文献   

6.
The efficacy of the superparamagnetic contrast agent magnetic starch microspheres (MSM) was evaluated in vitro by NMR relaxometry and in vivo by MR imaging using T2-weighted spin-echo (SE) and turbo spin-echo (TSE) sequences at 0.5 T and 1.5 T in 60 normal rats who received MSM in doses of 10–50 μmol/kg. MR imaging was performed using T2-weighted SE and TSE sequences. The relaxation rates 1/T1 and 1/T2 for liver and spleen increased linearly with MSM concentrations up to 30 μmol/kg body weight, and approached almost constant levels for higher doses. The slopes in the linear part of the 1/T2 diagram were 0.62 Hz ± 0.03 for the liver and 0.51 Hz ± 0.06 × kg/μmol for the spleen. On all T2-weighted sequences at 0.5 T and 1.5 T, liver signal-to-noise ratio (SNR) decreased by a factor of 2-3 already at the lowest dose of 10 μmol/kg. SNR values of TSE sequences exceeded values for SE sequences by 50–80%. The SNR decrease was not significantly different between SE and TSE sequences. Our results show that MSM is well suited as a T2 contrast agent at both magnetic field strengths when using conventional SE and fast TSE sequences.  相似文献   

7.
So that we might evaluate the ultrafast half-Fourier single-shot turbo spin-echo (HASTE) sequence in T2-weighted MRI of the female pelvis and compare it with the turbo spin-echo (TSE) sequence, we prospectively studied 60 consecutive females with suspected abnormalities of the pelvis. For all MR examinations, we used a 1.5-T superconductive magnet with a phased array coil. The HASTE sequence was applied with TR/effective TE/echo train = ∞/90/64 and a 128 × 256 matri× (acquisition time: .3 sec/slice), conventional TSE imaging with 3,400 to 5,000/132/15 and a 128 × 256 matri× (mean acquisition time: 2 min 4 sec), and high-resolution TSE imaging with 3,400 to 5,000/132/15 and a 300 × 512 matri× (6 min 4 sec). Although the lesion conspicuity for the HASTE sequence was less than that for the high-resolution TSE sequences, artifacts (including ghosting, bowel motion, susceptibility difference, and chemical shift) were negligible on HASTE images of all patients. The lesion conspicuity for the HASTE sequence was significantly better than for the conventional TSE sequence. In spite of the very short acquisition time, the subjective scoring of the overall image quality for the HASTE sequence was significantly higher than for the conventional TSE sequence (P < .01) and were slightly lower than for the high-resolution TSE sequence. Compared with high-resolution TSE, HASTE provided clearer visualization of large leiomyomas and ovarian tumors but slightly poorer visualization of uterine cancer. In occlusion, HASTE sequence generates higher contrast and is free from motion and chemical shift artifact with much higher time efficacy. Because of limited image resolution, the HASTE sequence should be used when the high-resolution TSE imaging is suboptimal.  相似文献   

8.
Our purpose was to evaluate and compare the performance of ultra-fast single-shot T2-weighted sequences: echo-planar imaging (EPI) versus half-Fourier single-shot turbo spin-echo (HASTE) and to assess the usefulness of their combined reading. Comparative experiments on a phantom as well as a prospective clinical study in 47 patients were done. Axial images acquired with the following methods were compared: (a) HASTE; (b) segmented HASTE (s-HASTE); (c) single-shot spin-echo EPI (SE-EPI); and (d) gradient-echo EPI (GREEPI). Quantitative and qualitative criteria as well as lesion detectability were analyzed against the "gold standard" fast spin-echo (FSE) sequence. For contrast and contrast-to-noise ratio (CNR) between gray and white matter, GRE-EPI was best. The visibility of small markedly hyperintense lesion was best with HASTE and s-HASTE in the clinical study. Small hyperintense lesions were detected equally well with all four sequences, although all performed significantly worse than FSE. The two HASTE variants were better than the EPIs for the extraaxial lesions. The combination of the GRE-EPI and s-HASTE was judged best, and sometimes superior to the FSE image. HASTE or EPI alone cannot substitute for FSE in the screening evaluation of the brain. However, together, EPI and HASTE could provide comparable diagnostic information to that of FSE because their combination compensates for their individual limitations.  相似文献   

9.
The performance of breath-hold MR imaging using two T2-weighted hybrid sequences (TSE, TGSE), two T2-weighted single-shot sequences (HASTE, EPI-SE), and one T1-weighted gradientecho sequence (FLASH) was compared with a standard conventional T2-weighted SE sequence in 20 patients with focal liver lesions. Liver signal-to-noise ratio was highest spleen-liver contrast-to-noise ratio (54.3 ± 8.3) and thee HASTE (41.1 ± 12.5) sequence, whereas the highest spleen-liver contrast-noise-ratio was obtained by the TSE sequence (38.9 ± 20.7). Lesion-liver CNR was highest with the TSE sequence (63.9 ± 21.4). With both TSE and HASTE significantly (p < 0.01) more lesions were detected as compared with SE and EPE-SE sequences. Our results indicate that breath-hold TSE and HASTE sequences will eventually replace conventional T2-weighted SE techniques due to their insensitivity to motion artifacts, superior lesion detectability and inherently short acquisitions times.Correspondence to: J. Gaa  相似文献   

10.
PURPOSE: The value of the fast half-Fourier single-shot turbo spin echo (HASTE) sequence in T2-weighted MRI of the kidney was evaluated as a substitute for the conventional turbo spin echo (TSE) sequence. METHOD: Forty-five patients with suspected abnormalities of the kidney underwent MRI with a 1.5 T system. Breath-hold HASTE and respiratory-triggered TSE sequences were performed. Qualitative and quantitative analyses were performed for comparison of these sequences. RESULTS: The signal-to-noise ratio (SNR) with HASTE was higher than that with TSE. The lesion-to-kidney contrast-to-noise ratio for solid masses with HASTE was almost equal to that with TSE. For cystic masses, the CNR with HASTE was significantly higher than that with TSE (p < 0.05). Respiratory and chemical shift artifacts were significantly smaller on HASTE than on TSE (p < 0.01). However, the blurring artifact was higher on HASTE than on TSE (p = 0.01). CONCLUSION: The HASTE sequence generates high contrast images and is free of motion and chemical shift artifacts, with much better time efficacy. The sequence provides comparable diagnostic information to TSE sequences.  相似文献   

11.
PURPOSETo compare an ultrafast T2-weighted (half-Fourier acquisition single-shot turbo spin-echo [HASTE]) pulse sequence with fast spin-echo T2-weighted sequences in MR imaging of brain lesions.METHODSFast spin-echo and HASTE images of 34 consecutive patients over the age of 50 years or with suspected demyelinating disease were reviewed independently by two neuroradiologists for the number of lesions less than 5 mm and greater than or equal to 5 mm, and for lesion conspicuity, gray-white matter differentiation, and extent of periventricular confluent signal abnormality. The reviewers also assessed for the presence of hemosiderin and extent of motion artifacts.RESULTSPer patient, the mean number of 5-mm or larger lesions detected on fast spin-echo images (1.4) relative to the number detected on HASTE images (0.8) was not statistically significant. For lesions less than 5 mm, fast spin-echo images showed more lesions (7.5) than HASTE images did (2.4). The fast spin-echo images were better at depicting gray-white matter differentiation, conspicuity of lesions, and periventricular signal abnormality. Of four T2 hypointense lesions seen on fast spin-echo images, none was detected on HASTE images.CONCLUSIONAlthough the HASTE technique might be useful for rapid imaging of the brain, our study shows a diminished sensitivity for the detection of lesions less than 5 mm in diameter and for T2 hypointense lesions.  相似文献   

12.
Purpose: To determine the detectability of intracerebral hematomas with MR imaging at 1.5 T and 0.5 T with fluid attenuated inversion recovery turbo spin-echo (FLAIR) and gradient-echo sequences.Material and Methods: Twenty-seven intracerebral hematomas were created in 25 piglets by injection of venous blood into the brain through a burr hole. All were imaged with T2*-weighted gradient echo sequences (fast field echo, FFE), T2-weighted fluid attenuated inversion recovery turbo spin-echo sequences (FLAIR), T2-weighted turbo spin-echo (TSE) and T1-weighted spin-echo sequences. Follow-up was performed on the 2nd, 4th and 10th postoperative days. Ten animals were additionally investigated with similar sequences at 0.5 T. Histologic correlation was obtained in all cases.Results: T2* FFE sequences detected all acute intracerebral hematomas and demonstrated the size correctly at 1.5 T and 0.5 T. The conspicuity was better at 1.5 T. FLAIR sequences were unreliable in the hyperacute phase at 1.5 T. However, subarachnoid and intraventricular extension was best appreciated with FLAIR images. T2 TSE images were incapable of detecting paraventricular and subarachnoid hemorrhages, but clearly demonstrated intracerebral blood in other locations. T1-weighted images were insensitive to hemorrhage in the acute state but very useful in subacute and chronic hematomas.Conclusion: The safe and reliable diagnosis of intracerebral hemorrhage is probably possible with MR imaging at 1.5 T and 0.5 T even of hematomas less than 90 min old, but requires the application of at least FLAIR, T2* FFE and T1 sequences and is therefore time consuming.  相似文献   

13.
MRI of the liver: Can true FISP replace HASTE?   总被引:7,自引:0,他引:7  
PURPOSE: To determine the diagnostic accuracy of two fast breath-hold magnetic resonance (MR) imaging sequences, half-Fourier acquired single turbo spin-echo (HASTE) and true fast imaging with steady state precession (TrueFISP), for the detection and characterization of focal liver lesions MATERIALS AND METHODS: A total of 186 patients with suspected focal liver lesions were enrolled in this study. All patients underwent the same standardized study protocol including HASTE and TrueFISP. A consensus reading based on all available image data served as a standard of reference for classifying lesions into cysts, hemangiomas, focal nodular hyperplasia, or malignant/other lesions. All malignant lesions, as well as hepatic adenomas and abscesses, were histologically verified. Each separated by an eight-week interval, HASTE and TrueFISP images were retrospectively reviewed in random order for the detection and characterization of focal hepatic lesions. Finally, a receiver operating characteristic (ROC) analysis was calculated. RESULTS: HASTE images had an overall sensitivity of 0.86 and a specificity of 0.91, whereas TrueFISP showed an overall sensitivity and specificity of 0.79 and 0.83, respectively (p>0.1). CONCLUSION: Neither HASTE nor TrueFISP alone are sufficient for the detection and characterization of hepatic lesions.  相似文献   

14.
We examined six patients with isolated venous thrombosis (n = 2), or venous thrombosis combined with sinus thrombosis (n = 4) (CVT). The clinical symptoms were non-specific (acute cephalea, paresis, epileptic seizure, progressive speech disorder). All examinations were performed on a 1.5 T system (Magnetom Symphony, Siemens, Erlangen, Germany), maximum gradient field strength 30 mT/m, minimal gradient rise time 450 micros, according to the following protocol: Transverse T2-weighted turbo spin-echo (TSE), fluid attenuated inversion recovery (FLAIR), T1-weighted spin-echo (SE), before and after administration of contrast medium, T2*-weighted conventional gradient-echo (GRE), T2*-weighted spin-echo echo planar imaging (SE EPI), both without and with diffusion weighting as well as two-dimensional (2D) venous time-of-flight (TOF) MRA. The venous thromboses were best detectable in the T2*-weighted conventional GRE sequence in all patients. In two patients, the CVT was discernible only in this sequence. The sinus thrombosis was well discernible only in the T2*-weighted GRE sequence in only one case; in the remaining cases it was detectable only with difficulty. For these cases, other sequences such as SE, diffusion-weighted, or 2D-TOF-MRA sequence were superior. The T2*-weighted conventional GRE sequence was superior to the T2*-weighted SE EPI sequence in all patients. To sum up, it can be concluded, that T2*-weighted conventional GRE sequences are possibly the best method of detection of acute cortical vein thromboses. Therefore, it seems to be of benefit to integrate a T2*-weighted conventional GRE sequence into the MR-protocol for the diagnosis of isolated cortical vein thrombosis.  相似文献   

15.
OBJECTIVE: To compare fast T1-weighted fluid-attenuated inversion recovery (FLAIR) and T1-weighted turbo spin-echo (TSE) imaging of the degenerative disc disease of the lumbar spine. MATERIALS AND METHODS: Thirty-five consecutive patients (19 females, 16 males; mean age 41 years, range 31-67 years) with suspected degenerative disc disease of the lumbar spine were prospectively evaluated. Sagittal images of the lumbar spine were obtained using T1-weighted TSE and fast T1-weighted FLAIR sequences. Two radiologists compared these sequences both qualitatively and quantitatively. RESULTS: On qualitative evaluation, CSF nulling, contrast at the disc-CSF interface, the disc-spinal cord (cauda equina) interface, and the spinal cord (cauda equina)-CSF interface of fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P<0.001). On quantitative evaluation of the first 15 patients, signal-to-noise ratios of cerebrospinal fluid of fast T1-weighted FLAIR imaging were significantly lower than those for T1-weighted TSE images (P<0.05). Contrast-to-noise ratios of spinal cord/CSF and normal bone marrow/disc for fast T1-weighted FLAIR images were significantly higher than those for T1-weighted TSE images (P<0.05). CONCLUSION: Results in our study have shown that fast T1-weighted FLAIR imaging may be a valuable imaging modality in the armamentarium of lumbar spinal T1-weighted MR imaging, because the former technique has definite superior advantages such as CSF nulling, conspicuousness of the normal anatomic structures and changes in the lumbar spinal discogenic disease and image contrast and also almost equally acquisition times.  相似文献   

16.
PURPOSE: To evaluate image quality and accuracy for the detection of focal hepatic lesions depicted on T2-weighted images obtained with two high-resolution free-breathing techniques (navigator-triggered turbo spin-echo [TSE] and respiratory-triggered TSE) and two standard-resolution breath-hold techniques (breath-hold TSE with restore pulse and half-Fourier acquisition single-shot TSE [HASTE]). MATERIALS AND METHODS: Our institutional review board approved this study, and written informed consent was obtained from all patients. Two readers independently reviewed 200 T2-weighted imaging sets obtained with four sequences in 50 patients. Both readers identified all focal lesions in session 1 and only solid lesions in session 2. The readers' confidence was graded using a scale of 1-4 (1 or= 95%). The diagnostic accuracies of the four MR sequences were evaluated using the free-response receiver operating characteristic (ROC) method. Region-of-interest (ROI) measurements were performed for the mean signal intensity (SI) in the liver, spleen, hepatic lesions, and background noise. RESULTS: The accuracy of navigator-triggered TSE and respiratory-triggered TSE was superior to that of breath-hold TSE with restore pulse and HASTE for the detection of all focal or solid hepatic lesions. The mean lesion-to-liver contrast-to-noise ratio (CNR) of solid lesions in navigator-triggered (P < 0.001) and respiratory-triggered TSE (P < 0.005) was significantly higher than that in HASTE. CONCLUSION: High-resolution, free-breathing, T2-weighted MRI techniques can significantly improve the detectability of focal hepatic lesions and provide higher lesion-to-liver contrast of solid lesions compared to breath-hold techniques.  相似文献   

17.
T2-weighted MRI of edema in acute myocardial infarction (MI) provides a means of differentiating acute and chronic MI, and assessing the area at risk of infarction. Conventional T2-weighted imaging of edema uses a turbo spin-echo (TSE) readout with dark-blood preparation. Clinical applications of dark-blood TSE methods can be limited by artifacts such as posterior wall signal loss due to through-plane motion, and bright subendocardial artifacts due to stagnant blood. Single-shot imaging with a T2-prepared SSFP readout provides an alternative to dark-blood TSE and may be conducted during free breathing. We hypothesized that T2-prepared SSFP would be a more reliable method than dark-blood TSE for imaging of edema in patients with MI. In patients with MI (22 acute and nine chronic MI cases), T2-weighted imaging with both methods was performed prior to contrast administration and delayed-enhancement imaging. The T2-weighted images using TSE were nondiagnostic in three of 31 cases, while six additional cases rated as being of diagnostic quality yielded incorrect diagnoses. In all 31 cases the T2-prepared SSFP images were rated as diagnostic quality, correctly differentiated acute or chronic MI, and correctly determined the coronary territory. Free-breathing T2 prepared SSFP provides T2-weighted images of acute MI with fewer artifacts and better diagnostic accuracy than conventional dark-blood TSE.  相似文献   

18.
PURPOSE: To assess in vivo distal colon wall magnetic resonance imaging (MRI) feasibility on rabbits using an endoluminal radio frequency (RF) coil on a 1.5-T clinical scanner. MATERIALS AND METHODS: The endoluminal coil signal-to-noise ratio (SNR) was compared to a clinical four-element phased-array body coil. High-resolution (HR) MRI of rabbit colon walls was performed on six rabbits. The imaging protocol combined T1-weighted fast low-angle-shot (FLASH) sequences with and without fat saturation (FS), T2-weighted True-Fast imaging with steady state precession (Fisp), turbo spin-echo (TSE), and T1-weighted FLASH FS after contrast media injection. Images were compared to histological sections. Catheter tracking using an endoluminal coil in addition to external coils was also evaluated on two rabbits. RESULTS: HR images allow visualization and identification of rabbit colon wall layers. Real-time tracking allows a clear visualization and a good positioning of the endoluminal coil within the rabbit. CONCLUSION: Compared to a clinical multielement array coil, a dedicated endoluminal RF coil provides an important SNR increase at the region of interest (ROI). Very HR images of in vivo rabbit colon walls were achieved providing detailed information on the different wall layers. This technique could be considered on humans for accurate tumoral and inflammatory bowel disease diagnosis.  相似文献   

19.
This study was undertaken to determine whether phased array breath-hold T1- and T2-weighted sequences can replace non-breath-hold spin echo (SE) sequences in the imaging of focal liver lesions by comparing overall image quality, liver-lesion contrast, and artifact. Both breath-hold and non-breath-hold T1-weighted and T2-weighted imagings of focal liver lesions were prospectively compared in 120 patients with suspected focal liver lesions imaged at 1.5 T with use of a body phased array multicoil. Breath-hold images were acquired with T1-weighted fast low-angle shot (FLASH) and T2-weighted turbo spin echo (TSE) sequences, and non-breath-hold images were made with conventional T1- and T2-weighted SE sequences. Qualitative image analysis was done by three blinded readers, and quantitative analysis was done. The highest signal-to-noise ratios were obtained with breath-hold T1-weighted FLASH sequence. The signal-to-noise ratios of breath-hold T2-weighted TSE sequence were slightly inferior to those of non-breath-hold SE sequence. Both T1-weighted and T2-weighted breath-hold sequences had less image artifact. Overall image quality of breath-hold sequences was better than that of non-breath-hold sequences for both T1- and T2-weighted sequences (P < .01). The tissue contrast of T1-weighted FLASH sequence was superior to that of SE sequence (P < .01). On T2-weighted imaging, tissue contrast of solid lesions was better on conventional SE sequence than that on breath-hold TSE sequence (P < .01). Respiratory ghost artifact was less prominent on T1-weighted FLASH sequence, although this artifact was occasionally seen on breath-hold T2-weighted TSE sequence. In a state-of-art MR unit with use of a phased array multicoil, conventional T1-weighted can be replaced by breath-hold sequences. On T2-weighted imaging, because solid tumor-liver contrast on breath-hold TSE imaging is inferior to that on non-breath-hold SE image, breath-hold imaging may not replace conventional non-breath-hold T2-weighted SE sequence.  相似文献   

20.
The purpose of our study was to describe the imaging findings of juxtapapillary diverticulum on magnetic resonance imaging (MRI). The MRI and magnetic resonance cholangiopancreatography (MRCP) examinations of 14 patients with juxtapapillary diverticula that were diagnosed on endoscopic retrograde cholangiopancreatography (ERCP) (N = 8) or endoscopy (N = 6) were retrospectively evaluated. T1-weighted spoiled gradient-echo, T2-weighted half Fourier single shot fast spin-echo (HASTE), and T2-weighted True FISP (fast imaging with steady state precession) images and thin-slice MRCP images were obtained on all patients. In five patients, diluted gadolinium DPTA (1/100) was used as an oral contrast. T2-weighted True FISP and HASTE images demonstrated air-fluid levels within all diverticula. Hyperintense oral contrast on T1-weighted spoiled gradient-echo images aided detection of the smaller diverticula. MRCP images obtained in the coronal plane best demonstrated the relationship of the diverticula to the papilla. MRI with the use of HASTE, True FISP, and oral contrast-enhanced T1-weighted sequences was able to depict juxtapapillary diverticula in our series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号