首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Loer SA  Tarnow J 《Anesthesiology》2001,94(6):1045-1049
BACKGROUND: Hydrochloric acid aspiration increases pulmonary microvascular permeability. The authors tested the hypothesis that partial liquid ventilation has a beneficial effect on filtration coefficients in acute acid-induced lung injury. METHODS: Isolated blood-perfused rabbit lungs were assigned randomly to one of four groups. Group 1 (n = 6) served as a control group without edema. In group 2 (n = 6), group 3 (n = 6), and group 4 (n = 6), pulmonary edema was induced by intratracheal instillation of hydrochloric acid (0.1 N, 2 ml/kg body weight). Filtration coefficients were determined 30 min after this injury (by measuring loss of perfusate after increase of left atrial pressure). Group 2 lungs were gas ventilated, and group 3 lungs received partial liquid ventilation (15 ml perfluorocarbon/kg body weight). In group 4 lungs, the authors studied the immediate effects of bronchial perfluorocarbon instillation on ongoing filtration. RESULTS: Intratracheal instillation of hydrochloric acid markedly increased filtration coefficients when compared with non-injured control lungs (2.3 +/- 0.7 vs. 0.31 +/- 0.08 ml.min(-1). mmHg(-1).100 g(-1) wet lung weight, P < 0.01). Partial liquid ventilation reduced filtration coefficients of the injured lungs (to 0.9 +/- 0.3 ml.min(-1).mmHg(-1).100 g(-1) wet lung weight, P = 0.022). Neither pulmonary artery nor capillary pressures (determined by simultaneous occlusion of inflow and outflow of the pulmonary circulation) were changed by hydrochloric acid instillation or by partial liquid ventilation. During ongoing filtration, bronchial perfluorocarbon instillation (5 ml/kg body weight) immediately reduced the amount of filtered fluid by approximately 50% (P = 0.027). CONCLUSIONS: In the acute phase after acid injury, partial liquid ventilation reduced pathologic fluid filtration. This effect started immediately after bronchial perfluorocarbon instillation and was not associated with changes in mean pulmonary artery, capillary, or airway pressures. The authors suggest that in the early phase of acid injury, reduction of fluid filtration contributes to the beneficial effects of partial liquid ventilation on gas exchange and lung mechanics.  相似文献   

2.
Background: Remifentanil, a rapidly metabolized [micro sign]-opioid agonist, may offer advantages for neurosurgical procedures in which prolonged anesthetic effects can delay assessment of the patient. This study compared the effects of remifentanil-nitrous oxide on cerebral blood flow (CBF) and carbon dioxide reactivity with those of fentanyl-nitrous oxide anesthesia during craniotomy.

Methods: After institutional approval and informed patient consent were obtained, 23 patients scheduled to undergo supratentorial tumor surgery were randomly assigned to remifentanil or fentanyl infusion groups in a double-blinded manner. Midazolam, thiopental, and pancuronium induction was followed by equipotent narcotic loading infusions of remifentanil (1 [micro sign]g [middle dot] kg-1 [middle dot] min-1) or fentanyl (2 [micro sign]g [middle dot] kg-1 [middle dot] min-1) for 5-10 min. Patients were ventilated with 2:1 nitrous oxide-oxygen, and opioid rates were reduced and then titrated to a stable hemodynamic effect. After dural exposure, CBF was measured by the intravenous133 xenon technique at normocapnia and hypocapnia. Reactivity of CBF to carbon dioxide was calculated as the absolute increase in CBF per millimeters of mercury increase in the partial pressure of carbon dioxide (PaCO2). Data were analyzed by repeated-measures analysis of variance, unpaired Student's t tests, or contingency analysis.

Results: In the remifentanil group (n = 10), CBF decreased from 36 +/- 11 to 27 +/- 8 ml [middle dot] 100 g-1 [middle dot] min-1 as PaCO2 decreased from 33 +/- 5 to 25 +/- 2 mmHg. In the fentanyl group (n = 8), CBF decreased from 37 +/- 11 to 25 +/- 6 ml [middle dot] 100 g-1 [middle dot] min-1 as PaCO2 decreased from 34 +/- 3 to 25 +/- 3 mmHg. Absolute carbon dioxide reactivity was preserved with both agents: 1 +/- 1.2 ml [middle dot] 100 g-1 [middle dot] min-1 [middle dot] mmHg-1 for remifentanil and 1.5 +/- 0.5 ml [middle dot] 100 g-1 [middle dot] min-1 [middle dot] mmHg-1 for fentanyl (P = 0.318).  相似文献   


3.
Background: It has been proposed that partial liquid ventilation (PLV) causes a compression of the pulmonary vasculature by the dense perfluorocarbons and a subsequent redistribution of pulmonary blood flow from dorsal to better-ventilated middle and ventral lung regions, thereby improving arterial oxygenation in situations of acute lung injury.

Methods: After induction of acute lung injury by repeated lung lavage with saline, 20 pigs were randomly assigned to partial liquid ventilation with two sequential doses of 15 ml/kg perfluorocarbon (PLV group, n = 10) or to continued gaseous ventilation (GV group, n = 10). Single-photon emission computed tomography was used to study regional pulmonary blood flow. Gas exchange, hemodynamics, and pulmonary blood flow were determined in both groups before and after the induction of acute lung injury and at corresponding time points 1 and 2 h after each instillation of perfluorocarbon in the PLV group.

Results: During partial liquid ventilation, there were no changes in pulmonary blood flow distribution when compared with values obtained after induction of acute lung injury in the PLV group or to the animals submitted to gaseous ventilation. Arterial oxygenation improved significantly in the PLV group after instillation of the second dose of perfluorocarbon.  相似文献   


4.
Background: Partial liquid ventilation using perfluorocarbon liquids may be of therapeutic benefit in patients with acute respiratory failure. This study investigated the effects of prostaglandin E1 (PGE1) delivered intratracheally during partial liquid ventilation on lung function and pulmonary circulation in rabbits with acute respiratory distress syndrome.

Methods: Lung injury was induced by intravenous oleic acid in adult Japanese white rabbits, 1 h after which they were divided into four groups of 10 animals. Group 1 received mechanical ventilation alone, group 2 received aerosolized PGE1 (5 [micro sign]g followed by 0.1 [micro sign]g [middle dot] kg-1 [middle dot] min-1) under mechanical ventilation combined with 5 cm H2 O positive end-expiratory pressure, and groups 3 and 4 received partial liquid ventilation with 15 ml/kg perflubron. Group 4 received a 5-[micro sign]g bolus followed by 0.1 [micro sign]g [middle dot] kg-1 [middle dot] min-1 PGE1 instilled intratracheally (not by aerosol) in combination with partial liquid ventilation. Measurements were performed at 30-min intervals for 120 min after lung injury.

Results: After lung injury, hypoxemia, hypercapnia, acidosis, and pulmonary hypertension developed in all animals and were sustained in groups 1 and 2 throughout the experiment. The partial pressure of oxygen in arterial blood of animals in group 3 improved with initiation of treatment, with statistical significance achieved at the 30 and 60 min time points as compared with controls. Group 4 animals had immediate and sustained increases in the partial pressure of oxygen in arterial blood that were significant compared with all other groups during the experiment. Statistically significant reductions in mean pulmonary artery pressure were seen only in group 4 animals compared with all other groups.  相似文献   


5.
BACKGROUND: It has been proposed that partial liquid ventilation (PLV) causes a compression of the pulmonary vasculature by the dense perfluorocarbons and a subsequent redistribution of pulmonary blood flow from dorsal to better-ventilated middle and ventral lung regions, thereby improving arterial oxygenation in situations of acute lung injury. METHODS: After induction of acute lung injury by repeated lung lavage with saline, 20 pigs were randomly assigned to partial liquid ventilation with two sequential doses of 15 ml/kg perfluorocarbon (PLV group, n = 10) or to continued gaseous ventilation (GV group, n = 10). Single-photon emission computed tomography was used to study regional pulmonary blood flow. Gas exchange, hemodynamics, and pulmonary blood flow were determined in both groups before and after the induction of acute lung injury and at corresponding time points 1 and 2 h after each instillation of perfluorocarbon in the PLV group. RESULTS: During partial liquid ventilation, there were no changes in pulmonary blood flow distribution when compared with values obtained after induction of acute lung injury in the PLV group or to the animals submitted to gaseous ventilation. Arterial oxygenation improved significantly in the PLV group after instillation of the second dose of perfluorocarbon. CONCLUSIONS: In the surfactant washout animal model of acute lung injury, redistribution of pulmonary blood flow does not seem to be a major factor for the observed increase of arterial oxygen tension during partial liquid ventilation.  相似文献   

6.
Background: Compared to isoflurane, knowledge of local cerebral glucose utilization (LCGU) and local cerebral blood flow (LCBF) during sevoflurane anesthesia is limited.

Methods: LCGU, LCBF, and their overall means were measured in Sprague-Dawley rats (8 groups, n = 6 each) during sevoflurane and isoflurane anesthesia, 1 and 2 MAC, and in conscious control animals (2 groups, n = 6 each) using the autoradiographic 2-[(14) C]deoxy-D-glucose and 4-iodo-N-methyl-[(14) C]antipyrine methods.

Results: During anesthesia, mean cerebral glucose utilization was decreased: control, 56 +/- 5 [micro sign]mol [middle dot] 100 g-1 [middle dot]-1; 1 MAC isoflurane, 32 +/- 4 [micro sign]mol [middle dot] 100 g-1 [middle dot] min-1 (-43%); 1 MAC sevoflurane, 37 +/- 5 [micro sign]mol [middle dot] 100 g-1 [middle dot] min-1 (-34%); 2 MAC isoflurane, 23 +/- 3 [micro sign]mol [middle dot] 100 g-1 [middle dot] min-1 (-58%); 2 MAC sevoflurane, 23 +/- 5 [micro sign]mol [middle dot] 100 g-1 [middle dot] min-1 (-59%). Local analysis showed a reduction in LCGU in the majority of the 40 brain regions analyzed. Mean cerebral blood flow was increased as follows: control, 93 +/- 8 ml [middle dot] 100 g-1 [middle dot] min-1; 1 MAC isoflurane, 119 +/- 19 ml [middle dot] 100 g-1 [middle dot] min-1 (+28%); 1 MAC sevoflurane, 104 +/- 15 ml [middle dot] 100 g-1 [middle dot] min-1 (+12%); 2 MAC isoflurane, 149 +/- 17 ml [middle dot] 100 g-1 [middle dot] min-1 (+60%); 2 MAC sevoflurane, 118 +/- 21 ml [middle dot] 100 g-1 [middle dot] min-1 (+27%). LCBF was increased in most brain structures investigated. Correlation coefficients obtained for the relationship between LCGU and LCBF were as follows: control, 0.93; 1 MAC isoflurane, 0.89; 2 MAC isoflurane, 0.71; 1 MAC sevoflurane, 0.83; 2 MAC sevoflurane, 0.59).  相似文献   


7.
BACKGROUND AND OBJECTIVES: Salt-water aspiration results in pulmonary oedema and hypoxia. We tested the hypothesis that partial liquid ventilation has beneficial effects on gas exchange and rate of survival in acute and extended salt water-induced lung injury. METHODS: Anaesthetized, ventilated rats (tidal volume 6 mL kg(-1), PEEP 5 cmH2O) received a tracheal salt-water instillation (3%, 8 mL kg(-1) body weight) and were randomly assigned to three groups (n = 10 per group). While lungs of Group 1 were gas-ventilated, lungs of Group 2 received a single perfluorocarbon instillation (30 min after the injury, 5 mL kg(-1) perfluorocarbon) and lungs of Group 3 received an additional continuous perfluorocarbon application into the treachea (5 mL kg(-1) h(-1)) Arterial blood gases were measured with an intravascular blood gas sensor. RESULTS: Salt-water instillation resulted in a marked decrease in PaO2 values within 30 min (from 432 +/- 65 to 83 +/- 40 mmHg, FiO2 = 1.0, P < 0.01). Arterial oxygenation improved in all three groups irrespective of treatment. We observed no significant differences between groups in peak PaO2 and PaCO2 values. CONCLUSIONS: Our results suggest that partial liquid ventilation has no additional beneficial effects on gas exchange after life-threatening salt water-induced lung injury when compared to conventional gas ventilation with positive end-expiratory pressure.  相似文献   

8.
Background: Although the frequency for the use of moderate hypothermia in acute ischemic stroke is increasing, the optimal acid-base management during hypothermia remains unclear. This study investigates the effect of pH- and [alpha]-stat acid-base management on cerebral blood flow (CBF), infarct volume, and cerebral edema in a model of transient focal cerebral ischemia in rats.

Methods: Twenty Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2 h during normothermic conditions followed by 5 h of reperfusion during hypothermia (33[degrees]C). Animals were artificially ventilated with either [alpha]- (n = 10) or pH-stat management (n = 10). CBF was analyzed 7 h after induction of MCAO by iodo[14C]antipyrine autoradiography. Cerebral infarct volume and cerebral edema were measured by high-contrast silver infarct staining (SIS).

Results: Compared with the [alpha]-stat regimen, pH-stat management reduced cerebral infarct volume (98.3 +/- 33.2 mm3vs. 53.6 +/- 21.6 mm3;P >= 0.05 mean +/- SD) and cerebral edema (10.6 +/- 4.0%vs. 3.1 +/- 2.4%;P >= 0.05). Global CBF during pH-stat management exceeded that of [alpha]-stat animals (69.5 +/- 12.3 ml [middle dot] 100 g-1 [middle dot] min-1vs. 54.7 +/- 13.3 ml [middle dot] 100 g-1 [middle dot] min-1;P >= 0.05). The regional CBF of the ischemic hemisphere was 62.1 +/- 11.2 ml [middle dot] 100 g-1 [middle dot] min-1 in the pH-stat group versus 48.2 +/- 7.2 ml [middle dot] 100 g-1 [middle dot] min-1 in the [alpha]-stat group (P >= 0.05).  相似文献   


9.
Background: Cerebrovascular carbon dioxide reactivity during high-dose remifentanil infusion was investigated in volunteers by measurement of regional cerebral blood flow (rCBF) and mean CBF velocity (CBFv).

Methods: Ten healthy male volunteers with a laryngeal mask for artificial ventilation received remifentanil at an infusion rate of 2 and 4 [mu]g [middle dot] kg-1 [middle dot] min-1 under normocapnia, hypocapnia, and hypercapnia. Stable xenon-enhanced computed tomography and transcranial Doppler ultrasonography of the left middle cerebral artery were used to assess rCBF and mean CBFv, respectively. If required, blood pressure was maintained within baseline values with intravenous phenylephrine to avoid confounding effects of altered hemodynamics.

Results: Hemodynamic parameters were maintained constant over time. Remifentanil infusion at 2 and 4 [mu]g [middle dot] kg-1 [middle dot] min-1 significantly decreased rCBF and mean CBFv. Both rCBF and mean CBFv increased as the arterial carbon dioxide tension increased from hypocapnia to hypercapnia, indicating that cerebrovascular reactivity remained intact. The average slopes of rCBF reactivity were 0.56 +/- 0.27 and 0.49 +/- 0.28 ml [middle dot] 100 g-1 [middle dot] min-1 [middle dot] mmHg-1 for 2 and 4 [mu]g[middle dot]kg-1[middle dot]min-1 remifentanil, respectively (relative change in percent/mmHg: 1.9 +/- 0.8 and 1.6 +/- 0.5, respectively). The average slopes for mean CBFv reactivity were 1.61 +/- 0.95 and 1.54 +/- 0.83 cm [middle dot] s-1 [middle dot] mmHg-1 for 2 and 4 [mu]g [middle dot] kg-1 [middle dot] min-1 remifentanil, respectively (relative change in percent/mmHg: 1.86 +/- 0.59 and 1.79 +/- 0.59, respectively). Preanesthesia and postanesthesia values of rCBF and mean CBFv did not differ.  相似文献   


10.
Background: Acid instillation leads to direct lung and to secondary systemic organ injury, probably via activated macrophages and neutrophils. This study investigated the effects of neutrophil elastase on organ injury after unilateral lung acid instillation by administrating a specific neutrophil elastase inhibitor, ONO-5046, before acid instillation.

Methods: Three groups of anesthetized rabbits (n = 12 in each group) underwent tracheostomies, and instillations were made into their right lower lobe airspaces with either phosphate buffered saline (pH, 7.4; volume, 1.2 ml/kg; n = 12) or HCl (pH, 1.25; volume, 1.2 ml/kg; n = 24). In half of the acid-instilled rabbits, ONO-5046,10 mg/kg, was given intravenously 15 min before the HCl instillation, and then 10 mg [center dot] kg sup -1 [center dot] h sup -1 of the drug was continuously infused throughout the experiment. The other groups of animals received the vehicle intravenously. Anesthesia and mechanical ventilation was continued for 8 h, whereas arterial blood gases were sampled intermittently. Eight hours after saline or acid instillation, the animals were killed, and their lungs, heart, kidneys, liver, and small intestines were harvested. Wet-to-dry weight ratios (W/D) and myeloperoxidase (MPO) assays of these organs were done, and elastase assays on the bronchoalveolar lavage fluids (BALF) obtained from each lung also were performed.

Results: Pretreatment with ONO-5046 attenuated the physiologic changes seen in the vehicle-treated animals. Significant decreases in W/D of the noninstilled lungs and of the small intestine and normalization of the oxygenation of the experimental animals occurred. The ONO-5046 pretreatment did not affect the neutrophil sequestration in the lungs or in the other organs as determined by neutrophil counts in BALF and by the MPO assays.  相似文献   


11.
Background: The analgesic nefopam does not compromise ventilation, is minimally sedating, and is effective as a treatment for postoperative shivering. The authors evaluated the effects of nefopam on the major thermoregulatory responses in humans: sweating, vasoconstriction, and shivering.

Methods: Nine volunteers were studied on three randomly assigned days: (1) control (saline), (2) nefopam at a target plasma concentration of 35 ng/ml (low dose), and (3) nefopam at a target concentration of 70 ng/ml (high dose, approximately 20 mg total). Each day, skin and core temperatures were increased to provoke sweating and then reduced to elicit peripheral vasoconstriction and shivering. The authors determined the thresholds (triggering core temperature at a designated skin temperature of 34[degrees]C) by mathematically compensating for changes in skin temperature using the established linear cutaneous contributions to control of each response.

Results: Nefopam did not significantly modify the slopes for sweating (0.0 +/- 4.9[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = 0.73 +/- 0.32) or vasoconstriction (-3.6 +/- 5.0[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = -0.47 +/- 0.41). In contrast, nefopam significantly reduced the slope of shivering (-16.8 +/- 9.3[degrees]C [middle dot] [mu]g-1 [middle dot] ml; r2 = 0.92 +/- 0.06). Therefore, high-dose nefopam reduced the shivering threshold by 0.9 +/- 0.4[degrees]C (P < 0.001) without any discernible effect on the sweating or vasoconstriction thresholds.  相似文献   


12.
Background: Two antiinflammatory therapies that have been effective in preventing acid-induced lung injury were evaluated. Specifically, their effects on a subsequent bacterial-airspace challenge were compared. Bacteria were instilled 24 h after acid-induced lung injury. Pseudomonas aeruginosa PAO-1 was used as the bacteria, because its effects in healthy lungs was documented previously.

Methods: New Zealand white rabbits were anesthetized and three pretreatments were administered: (1) pentoxifylline pretreatment (a 20-mg/kg bolus dose and then 6 mg [middle dot] kg-1 [middle dot] h-1 given intravenously), (2) 1 ml anti-tumor necrosis factor [Greek small letter alpha] antiserum given intravenously, or (3) normal saline given intravenously. The pretreatment doses were shown previously to prevent acid-induced lung injury. Then 1.2 ml/kg hydrochloric acid (HCl), pH 1.25, was instilled into the rabbits' right lungs. All the animals underwent mechanical ventilation for 8 h. Twenty-four hours after the acid instillation, the rabbits were anesthetized again and 2 ml/kg (109 colony forming units/ml) PAO-1 was instilled into their left lungs. The rabbits' breathing was aided by mechanical ventilation for another 8 h, and then they were killed and exsanguinated.

Results: Both pretreatments attenuated the acid-induced lung injury of the noninstilled left lungs. Arterial oxygen tension and the lung edema of pretreated, acid-exposed animals were significantly and almost equally improved (compared with no pretreatments) by either of the pretreatments. However, when the bacteria were instilled into the left lungs 24 h after the acid injury, the pentoxifylline pretreatment but not the anti-tumor necrosis factor [Greek small letter alpha] pretreatment prevented much of the bacteria-induced lung injury. Pentoxifylline pretreatment significantly improved the measurements of left lung edema and epithelial and endothelial permeability. There was also a trend for improved oxygenation in the pentoxifylline-pretreated and infected animals. In contrast, the anti-tumor necrosis factor [Greek small letter alpha] pretreatment did not prevent the bacteria-induced lung injury and increased some of the measurements of lung injury.  相似文献   


13.
Background: This study gathers information in humans on the sites of sex-related differences in ventilatory depression caused by the [micro sign]-opioid receptor agonist morphine.

Methods: Experiments were performed in healthy young men (n = 9) and women (n = 7). Dynamic ventilatory responses to square-wave changes in end-tidal carbon dioxide tension (7.5-15 mmHg) and step decreases in end-tidal oxygen tension (step from 110 to 50 mmHg, duration of hypoxia 15 min) were obtained before and during morphine infusion (intravenous bolus dose 100 [micro sign]g/kg, followed by 30 [micro sign]g [middle dot] kg-1 [middle dot] h-1). Each hypercapnic response was separated into a fast peripheral and slow central component, which yield central (Gc) and peripheral (Gp) carbon dioxide sensitivities. Values are mean +/- SD.

Results: In carbon dioxide studies in men, morphine reduced Gc from 1.61 +/- 0.33 to 1.23 +/- 0.12 l [middle dot] mmHg-1 (P < 0.05) without affecting Gp (control, 0.41 +/- 0.16 and morphine, 0.49 +/- 0.12 l [middle dot] [middle dot] min-1 [middle dot] mmHg-1, not significant). In carbon dioxide studies in women, morphine reduced Gc, from 1.51 +/- 0.74 to 1.17 +/- 0.52 l [middle dot] min-1 [middle dot] mmHg-1 (P < 0.05), and Gp, from 0.54 +/- 0.19 to 0.39 +/- 0.22 l [middle dot] min-1 [middle dot] mmHg-1 (P < 0.05). Morphine-induced changes in Gc were equal in men and women; changes in Gp were greater in women. In hypoxic studies, morphine depressed the hyperventilatory response at the initiation of hypoxia more in women than in men (0.54 +/- 0.23 vs. 0.26 +/- 0.34 l [middle dot] min-1 [middle dot] %-1, respectively; P < 0.05). The ventilatory response to sustained hypoxia (i.e., 15 min) did not differ between men and women.  相似文献   


14.
Background: Severe pancreatitis is often complicated by shock and acute lung failure. Little is known about the pathophysiologic impact of the 16.6-kD lectine, named pancreatitis-associated protein (PAP), which is expressed during pancreatitis and which reduces mortality in a rat model with severe pancreatitis. Therefore, the aim of this study was to investigate the effects of PAP on the pulmonary vasculature after leukocyte activation with N-formyl-Met-Leu-Phe (fMLP).

Methods: The experiments were performed in buffer-perfused isolated rabbit lungs. Mean pulmonary artery pressure, weight gain, and thromboxane A2 synthesis of the lungs were monitored. PAP was obtained by affinity chromatography of pancreas juice from pancreatitic rats. The authors tested whether treatment with PAP (260 [mu]g/l, n = 9; or 500 [mu]g/l, n = 6) before fMLP injection (10-6 M) influences mean pulmonary artery pressure and edema formation. Lungs that were treated only with fMLP (n = 6) served as controls. Additional experiments in which PAP was applied were performed to study whether PAP (260 [mu]g/l, n = 3; 500 [mu]g/l, n = 3; 1,000 [mu]g/l, n = 3) itself effects lung vasculature.

Results: Application of fMLP resulted in an increase of mean pulmonary artery pressure (+/- SD) from 8 +/- 2 mmHg up to 26 +/- 13 mmHg (P < 0.01) at a flow of 150 ml/min. Pretreatment with PAP reduced the peak pressure developed after fMLP to 15 +/- 7 mmHg (PAP 260 [mu]g/l;P < 0.05) and to 9 +/- 4 mmHg (PAP 500 [mu]g/l), respectively. In addition, the fMLP-induced lung weight gain of 9 +/- 7 g in the controls was prevented by pretreatment with PAP after 150 min in either concentration. In parallel to the attenuated pressure increase, thromboxane A2 release was significantly suppressed in the 260-[mu]g/l (200 +/- 220 pmol [middle dot] ml-1 [middle dot] min-1;P < 0.01) and 500-[mu]g/l (285 +/- 70 pmol [middle dot] ml-1 [middle dot] min-1;P < 0.05) PAP groups compared with controls (1,138 +/- 800 pmol [middle dot] ml-1 [middle dot] min-1). Treatment with PAP alone in either concentration did not induce any changes in mean pulmonary artery pressure, weight gain, or thromboxane A2 release.  相似文献   


15.
The Role of Human Lungs in the Biotransformation of Propofol   总被引:2,自引:0,他引:2  
Background: The metabolism of propofol is very rapid, and its transformation takes place mainly in the liver. There are reports indicating extrahepatic metabolism of the drug, and the alimentary canal, kidneys, and lungs are mentioned as the most probable places where the process occurs. The aim of this study was to determine whether the human lungs really take part in the process of propofol biotransformation.

Methods: Blood samples were taken from 55 patients of American Society of Anesthesiologists grade 1-3 scheduled for elective intracranial procedures (n = 47) or for pulmonectomy (n = 8). All patients were premedicated with diazepam (10 mg) administered orally 2 h before anesthesia. Propofol total intravenous anesthesia was performed at the following infusion rates: 12 mg [middle dot] kg-1 [middle dot] h-1, 9 mg [middle dot] kg-1 [middle dot] h-1, and 6 mg [middle dot] kg-1 [middle dot] h-1. Fentanyl and pancuronium bromide were also administered intermittently. After tracheal intubation, the lungs were ventilated to normocapnia with an oxygen-air mixture (fraction of inspired oxygen = 0.33). Blood samples for propofol and 2,6-diisopropyl-1,4-quinol analysis were taken simultaneously from the right atrium and the radial artery, or the pulmonary artery and the radial artery. The concentration of both substances were measured with high-performance liquid chromatography and gas chromatography-mass spectroscopy.

Results: The concentration of propofol in the central venous system (right atrium or pulmonary artery) is greater than in the radial artery, whereas the opposite is observed for propofol's metabolite, 2,6-diisopropyl-1,4-quinol. Higher propofol concentrations are found in blood taken from the pulmonary artery than in the blood collected from the radial artery.  相似文献   


16.
Background: Although gas exchange during partial liquid ventilation (PLV) depends on perfluorocarbon liquid, the effect of perfluorocarbon dose on the ventilation-perfusion ([spacing dot above]Va/[spacing dot above]Q) distribution is not known. This study investigated how [spacing dot above]Va/[spacing dot above]Q distribution of an acutely injured lung is affected during PLV at increasing perfluorocarbon dose.

Methods: In eight rabbits (3.2 +/- 0.1 kg), acute lung injury (ALI) was created by repeated saline lavage (arterial oxygen partial pressure/fraction of inspired oxygen, 37 +/- 11 mm Hg). Three different doses of perfluorodecalin (9 ml/kg = low dose; 13.5 ml/kg = medium dose; 18 ml/kg = functional residual capacity [FRC] dose) were applied in random order during PLV. [spacing dot above]Va/[spacing dot above]Q distribution at different doses was evaluated by multiple inert gas elimination technique.

Results: Inert gas shunt (63 +/- 21% at ALI) decreased with increasing perfluorocarbon dose (43 +/- 21% at low dose, 29 +/- 10% at medium dose, 11 +/- 9% at FRC dose;P = 0.022). Compared with ALI (0%), the proportion of low [spacing dot above]Va/[spacing dot above]Q units was higher at all tested doses (19 +/- 10, 25 +/- 12, and 34 +/- 18%, respectively; all P < 0.05). Compared with ALI (27 +/- 14%), the proportion of normal [spacing dot above]Va/[spacing dot above]Q units was not increased at low or medium doses but was increased only at the FRC dose (45 +/- 13% ;P = 0.027).  相似文献   


17.
Background: The hypothesis of a compensatory dilation of cerebral vessels to maintain cerebral blood flow at a high blood viscosity was tested during hypercapnia in the study after replacement of blood by hemoglobin solutions of defined viscosities. If compensatory vasodilation exists at normocapnia at a high blood viscosity, vasodilatory mechanisms may be exhausted when hypercapnia is added, resulting in a lack of increase in cerebral blood flow at hypercapnia.

Methods: In conscious rats, blood was replaced by ultrapurified cross-linked hemoglobin solutions that had defined and shear rate-independent low or high viscosities (low- and high-viscosity groups). Blood viscosity differed threefold between both groups (1.2 vs. 3.6 mP [middle dot] s). Thereafter, rats inhaled either a normal or an increased concentration of carbon dioxide in air. Cerebral blood flow was determined by the iodo[14C]antipyrine method.

Results: During normocapnia, global and local cerebral blood flows did not differ between both groups. With increasing degrees of hypercapnia, global and local cerebral blood flows were gradually elevated in the low-viscosity group (2.8 ml [middle dot] mmHg-1 CO2 [middle dot] 100 g-1 [middle dot] min-1), whereas they remained unchanged in the high-viscosity group.  相似文献   


18.
The Pharmacodynamic Effect of a Remifentanil Bolus on Ventilatory Control   总被引:1,自引:0,他引:1  
Background: In doses typically administered during conscious sedation, remifentanil may be associated with ventilatory depression. However, the time course of ventilatory depression after an initial dose of remifentanil has not been determined previously.

Methods: In eight healthy volunteers, the authors determined the time course of the ventilatory response to carbon dioxide using the dual isohypercapnic technique. Subjects breathed via mask from a to-and-fro circuit with variable carbon dioxide absorption, allowing the authors to maintain end-tidal pressure of carbon dioxide (PETCO2) at approximately 46 or 56 mmHg (alternate subjects). After 6 min of equilibration, subjects received 0.5 [mu]g/kg remifentanil over 5 s, and minute ventilation ([latin capital V with dot above]E) was recorded during the next 20 min. Two hours later, the study was repeated using the other carbon dioxide tension (56 or 46 mmHg). The [latin capital V with dot above]E data were used to construct two-point carbon dioxide response curves at 30-s intervals after remifentanil administration. Using published pharmacokinetic values for remifentanil and the method of collapsing hysteresis loops, the authors estimated the effect-site equilibration rate constant (keo), the effect-site concentration producing 50% respiratory depression (EC50), and the shape parameter of the concentration-response curve ([gamma]).

Results: The slope of the carbon dioxide response decreased from 0.99 [95% confidence limits 0.72 to 1.26] to a nadir of 0.27 l [middle dot] min-1 [middle dot] mmHg-1 [-0.12 to 0.66] 2 min after remifentanil (P < 0.001); within 5 min, it recovered to approximately 0.6l [middle dot] min-1 [middle dot] mmHg-1, and within 15 min of injection, slope returned to baseline. The computed ventilation at PET = 50 mmHg ([latin capital V with dot above]E50) decreased from 12.9 [9.8 to 15.9] to 6.1 l/min [4.8 to 7.4] 2.5 min after remifentanil injection (P < 0.001). This was caused primarily by a decrease in tidal volume rather than in respiratory rate. Estimated pharmacodynamic parameters based on computed mean values of [latin capital V with dot above]E50 included keo = 0.24 min-1 (T1/2 = 2.9 min), EC50 = 1.12 ng/ml, and [gamma] = 1.74.  相似文献   


19.
Background: The pathophysiology of anaphylactic shock during anesthesia is incompletely characterized. It is described as distributive by analogy with septic shock (anaerobic metabolism, high tissue oxygen pressure [Ptio2] values). The Ptio2 profile and its metabolic consequences during anaphylaxis are not known.

Methods: Ovalbumin-sensitized anaphylactic shock rats (n = 11) were compared to nicardipine-induced hypotension rats (n = 12) for systemic hemodynamics, Ptio2, sympathetic nervous system activation, skeletal muscle blood flow, and interstitial lactate and pyruvate concentrations using combined microdialysis and polarographic Clark-type oxygen probes.

Results: In both groups, the time course and the magnitude of arterial hypotension were similar. The ovalbumin group but not the nicardipine group displayed decreased skeletal muscle blood flow (from 45 +/- 6.2 ml [middle dot] 100 g-1[middle dot]min-1 to 24.3 +/- 5 ml[middle dot]100 g-1[middle dot]min-1; P < 0.0001) and Ptio2 values (from 42 +/- 5 to 5 +/- 2; P < 0.0001). The ovalbumin group had more intense sympathetic nervous system activation with higher plasma epinephrine and interstitial norepinephrine concentrations. For the ovalbumin group, there was skeletal muscle anaerobic metabolism (lactate concentration increased from 0.446 +/- 0.105 to 1.741 +/- 0.459 mm; P < 0.05) and substrate depletion (pyruvate concentration decreased from 0.034 +/- 0.01 mm to 0.006 +/- 0.002 mm; P < 0.05) leading to increased interstitial lactate/pyruvate ratios (from 17 +/- 6 to 311 +/- 115; P < 0.05).  相似文献   


20.
Background: Diphenhydramine is used as an antipruritic and antiemetic in patients receiving opioids. Whether it might exacerbate opioid-induced ventilatory depression has not been determined.

Methods: The ventilatory response to carbon dioxide during hyperoxia and the ventilatory response to hypoxia during hypercapnia (end-tidal pressure of carbon dioxide [PETCO2] [almost equal to] 54 mmHg) were determined in eight healthy volunteers. Ventilatory responses to carbon dioxide and hypoxia were calculated at baseline and during an alfentanil infusion (estimated blood levels [almost equal to] 10 ng/ml) before and after diphenhydramine 0.7 mg/kg.

Results: The slope of the ventilatory response to carbon dioxide decreased from 1.08 +/- 0.38 to 0.79 +/- 0.36 l [middle dot] min-1 [middle dot] mmHg-1 (x +/- SD, P < 0.05) during alfentanil infusion; after diphenhydramine, the slope increased to 1.17 +/- 0.28 l [middle dot] min-1 [middle dot] mmHg-1 (P < 0.05). The minute ventilation (VE) at PETCO2 [almost equal to] 46 mmHg (VE 46) decreased from 12.1 +/- 3.7 to 9.7 +/- 3.6 l/min (P < 0.05) and the VE at 54 mmHg (V (E) 54) decreased from 21.3 +/- 4.8 to 16.6 +/- 4.7 l/min during alfentanil (P < 0.05). After diphenhydramine, VE 46 did not change significantly, remaining lower than baseline at 9.9 +/- 2.9 l/min (P < 0.05), whereas VE 54 increased significantly to 20.5 +/- 3.0 l/min. During hypoxia, VE at Sp O2 = 90% (VE 90) decreased from 30.5 +/- 9.7 to 23.1 +/- 6.9 l/min during alfentanil (P < 0.05). After diphenhydramine, the increase in VE 90 to 27.2 +/- 9.2 l/min was not significant (P = 0.06).  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号