首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burst structure and synchronized firing of bursts were studied, in the interictal period, using auto- and cross-correlation analyses in human amygdala neurons in temporal lobe epilepsy patients diagnosed as having a unilateral limbic seizure focus in anterior hippocampus and/or amygdala. Satisfactory single unit recordings were obtained from chronically implanted microelectrodes in 51 amygdala neurons, and auto-correlation analysis identified 27 of 51 neurons where burst firings recurred with regular interspike interval structures (structurally stable burst: S-burst). This structural stability was characteristic only for a short burst, or at the beginning of a series of repetitive firings, involving 2-5 action potentials. In 'non-epileptic' amygdala neurons located contralateral to the seizure focus, the average duration of S-burst was 15 msec and the number of action potentials (spikes) in the S-burst was inversely related to the interspike intervals in the S-burst, suggesting that endogenous membrane characteristics of non-epileptic amygdala neurons determine the patterns of S-burst. In contrast, in the seizure focus amygdala ('epileptic'), the duration of the S-burst was prolonged among epileptic neurons, not because of the occurrence of more action potentials within the S-burst, but because of a prolonged interspike interval within the S-burst. Furthermore, there was no relationship between the interspike interval and the number of action potentials in the S-burst, suggesting that synaptic inputs and/or extracellular environmental factors may affect an intrinsic mechanism for generating stable S-burst in epileptic neurons. Cross-correlation analysis identified synchronized firings in epileptic neurons: when two epileptic neurons both exhibited S-bursts, when either epileptic neuron exhibited S-burst, but never when neither exhibited S-bursts. Conversely, non-epileptic neurons rarely fired synchronously; even though they showed S-bursts. The difference in the pattern of S-bursts between epileptic and non-epileptic amygdala neurons seems to be the degree of firing synchrony. Our results provide, for the first time, direct evidence that human epileptogenic amygdala neurons recorded in vivo have unique burst firing patterns and significant synchronous excitatory interactions, different from a burst pattern found in non-epileptogenic amygdala neurons during the interictal period.  相似文献   

2.
The genetically epilepsy-prone rat (GEPR) exhibits elevated seizure sensitivity and audiogenic seizures (AGS). The inferior colliculus (IC) is the most critical brain region for AGS initiation. The present study evaluated IC neuronal firing and convulsive behavior simultaneously in freely moving GEPRs. High intensity acoustic stimulation produces neuronal firing reductions (intensity-induced inhibition) in about 50% of IC neurons in normal rats. However, in GEPR IC neurons, intensity-induced inhibition is significantly less effective than normal. Offset inhibition is also reduced in GEPR IC neurons, which leads to a greater than normal incidence of offset (afterdischarge) responses at high stimulus intensities. At AGS onset most IC neurons exhibit burst firing and reductions of acoustically evoked neuronal responses. Responsiveness to acoustic stimuli returns following AGS. This change in IC neuronal firing pattern suggests that the network that governs IC neuronal firing has temporarily changed from the auditory system to the network that mediates seizure propagation. GABA is strongly implicated in intensity-induced, binaural, and offset inhibition in IC neurons. The diminished efficacy of these forms of GABA-mediated acoustically evoked inhibition in the GEPR IC extends previous results, showing reduced effectiveness of exogenously applied GABA and benzodiazepine in GEPR IC neurons. This reduced effectiveness of GABA-mediated inhibition along with excess excitant amino acids in GEPR IC, previously reported, appear to be vital neurotransmitter mechanisms, subserving the exaggerated output of IC neurons at high acoustic intensities. This exaggerated IC firing may be instrumental in seizure initiation in this epilepsy model.  相似文献   

3.
The present study was designed to determine whether inhibitory neurons in human epileptic hippocampus are reduced in number, which could reduce inhibition on principal cells and thereby be a basis for seizure susceptibility. We studied the distribution of GABA neurons and puncta by using glutamate decarboxylase (GAD) immunocytochemistry (ICC) together with Nissl stains. Using quantitative comparisons of GAD-immunoreactive (GAD-IR) neurons and puncta in human epileptic hippocampus and in the normal monkey hippocampus, we found that GAD-IR neurons and puncta are relatively unaffected by the hippocampal sclerosis typical of hippocampal epilepsy where 50-90% of principal (non-GAD-IR) cells are lost. GAD-IR neurons and puncta were not significantly decreased compared with normal monkey. In 6 patients, prior in vivo electrophysiology demonstrated that the anterior hippocampus generated all seizures. The anterior and posterior hippocampus were processed simultaneously, and the counts of hippocampal GAD-IR neurons were numerically greater in anterior than in the posterior hippocampus, where no seizures were initiated. These results indicate that GABA neurons are intact in sclerotic and epileptogenic hippocampus. Computerized image analysis of puncta densities in fascia dentata, Ammon's horn, and subicular complex in epileptic hippocampi (n = 7) were not different from puncta densities in the same regions in normal monkey (n = 2). Hence, despite the significant loss of principal cells (50-90% loss) GABA terminals (GAD-IR puncta) were normal, which suggests GABA hyperinnervation of the remnant pyramidal cells and/or dendrites in human epileptic hippocampus. The apparent increase in puncta ranged from 2 (fascia dentata) to 3.3 (CA1) times normal puncta densities. These findings would suggest increased inhibition and less excitability; however, those regions were epileptogenic. We suggest that GABA terminal sprouting or hyperinnervation of the few remnant projection cells may serve to synchronize their membrane potentials so that subsequent excitatory inputs will trigger a larger population of neurons for seizure onset in the hippocampus and propagation out to undamaged regions of subiculum and neocortex.  相似文献   

4.
Iontophoretic techniques were used to examine the effect of dopamine on glutamate-induced excitation and γ-aminobutyric acid (GABA)-induced inhibition of single striatal neurons in rat brain. When dopamine was applied at concentrations that produced little or no inhibition of spontaneous firing rate, both glutamate-induced excitation and GABA-induced inhibition were enhanced. In contrast, when dopamine was applied at doses that significantly decreased spontaneous firing, glutamate-induced excitation was greatly reduced, though GABA-mediated inhibition remained enhanced. Thus, dopamine acts to modulate the efficacy of other neurotransmitters impinging on striatal neurons, but has a qualitatively different effect on the excitatory activity of striatal cells depending on its concentration.  相似文献   

5.
In human partial epilepsies and in experimental models of chronic and/or acute epilepsy, the role of inhibition and the relationship between the inhibition and excitation and epileptogenesis has long been questioned. Besides experimental methods carried out either in vitro (human or animal tissue) or in vivo (animals), pathophysiologic mechanisms can be approached by direct recording of brain electrical activity in human epilepsy. Indeed, in some clinical presurgical investigation methods like stereoelectroencephalography, intracerebral electrodes are used in patients suffering from drug resistant epilepsy to directly record paroxysmal activities with excellent temporal resolution (in the order of 1 millisecond). The study of neurophysiologic mechanisms underlying such depth-EEG activities is crucial to progress in the understanding of the interictal to ictal transition. In this study, the authors relate electrophysiologic patterns typically observed during the transition from interictal to ictal activity in human mesial temporal lobe epilepsy (MTLE) to mechanisms (at a neuronal population level) involved in seizure generation through a computational model of EEG activity. Intracerebral EEG signals recorded from hippocampus in five patients with MTLE during four periods (during interictal activity, just before seizure onset, during seizure onset, and during ictal activity) were used to identify the three main parameters of a model of hippocampus EEG activity (related to excitation, slow dendritic inhibition and fast somatic inhibition). The identification procedure used optimization algorithms to minimize a spectral distance between real and simulated signals. Results demonstrated that the model generates very realistic signals for automatically identified parameters. They also showed that the transition from interictal to ictal activity cannot be simply explained by an increase in excitation and a decrease in inhibition but rather by time-varying ensemble interactions between pyramidal cells and local interneurons projecting to either their dendritic or perisomatic region (with slow and fast GABAA kinetics). Particularly, during preonset activity, an increasing dendritic GABAergic inhibition compensates a gradually increasing excitation up to a brutal drop at seizure onset when faster oscillations (beta and low gamma band, 15 to 40 Hz) are observed. These faster oscillations are then explained by the model feedback loop between pyramidal cells and interneurons targeting their perisomatic region. These findings obtained from model identification in human temporal lobe epilepsy are in agreement with some results obtained experimentally, either on animal models of epilepsy or on the human epileptic tissue.  相似文献   

6.
PURPOSE: The substantia nigra pars reticulata (SNpr) is assumed to be involved in the control of several kinds of epileptic seizures, an assumption based mostly on neuropharmacologic evidence. However, only very few neurophysiological recordings from the basal ganglia support neuropharmacologic data. We investigated the electrophysiologic activity of SNpr neurons in rats with genetic absence epilepsy. METHODS: Electrocorticography (ECoG) and multi-unit recordings using permanently implanted tetrodes were obtained in freely behaving rats. After spike sorting, auto- and cross-correlation analysis was used to detect oscillatory neuronal activities and synchronizations. RESULTS: During interictal periods, neither oscillation nor synchronization could be observed in the firing patterns of SNpr neurons. At the beginning of the absence seizure, the firing rate increased significantly. The SNpr neurons started firing in bursts of action potentials. Bursts were highly correlated to the spike-and-wave discharges (SWDs) in the ECoG, mainly after the spike component of the cortical spike-and-wave complex. Moreover, pairs of SNpr neurons tended to fire synchronously. Before the end of the seizure, the firing rate decreased progressively, and the burst-firing pattern ended at or before the end of the SWDs. Once the SWDs had stopped, the SNpr neurons resumed their basal firing pattern as before the seizure onset. CONCLUSIONS: These results provide electrophysiologic evidence that firing patterns and synchronization of SNpr neurons are in phase with the occurrence of SWDs. The findings support the concept that nigral control mechanisms are involved in modulating the propagation of an ongoing generalized seizure.  相似文献   

7.
We used a multiple channel, single unit recording technique to investigate the neural activity in different corticolimbic and basal ganglia regions in freely moving rats before and during generalized amygdala kindled seizures. Neural activity was recorded simultaneously in the sensorimotor cortex (Ctx), hippocampus, amygdala, substantia nigra pars reticulata (SNr) and the subthalamic nucleus (STN). We observed massive synchronized activity among neurons of different brain regions during seizure episodes. Neurons in the kindled amygdala led other regions in synchronized firing, revealed by time lags of neurons in other regions in crosscorrelogram analysis. While there was no obvious time lag between Ctx and SNr, the STN and hippocampus did lag behind the Ctx and SNr in correlated firing. Activity in the amygdala and SNr contralateral to the kindling stimulation site lagged behind their ipsilateral counterparts. However, no time lag was found between the kindling and contralateral sides of Ctx, hippocampus and STN. Our data confirm that the amygdala is an epileptic focus that emits ictal discharges to other brain regions. The observed temporal pattern indicates that ictal discharges from the amygdala arrive first at Ctx and SNr, and then spread to the hippocampus and STN. The simultaneous activation of both sides of the Ctx suggests that the neocortex participates in kindled seizures as a unisonant entity to provoke the clonic motor seizures. Early activation of the SNr (before the STN and hippocampus) points to an important role of the SNr in amygdala kindled seizures and supports the view that different SNr manipulations may be effective ways to control seizures.  相似文献   

8.
Epileptogenesis of human limbic neurons in psychomotor epileptics.   总被引:4,自引:0,他引:4  
Different stages of epileptogenesis of neurons in deep temporal lobe structures have been studied with fine wire microelectrodes chronically implanted in patients with drug-refractory psychomotor epilepsy. The interictal firing patterns of single neurons ipsilateral to the focus (identified by EEG seizure onset and/or neuropathology studies and seizure reduction following anterior temporal lobectomy) often exhibited burst when contralateral neurons did not. The intraburst sequence of action potentials was not organized or reliable except in one focal hippocampal neuron. Bursts of action potentials often occurred in the absence of regional sharp waves recorded with the same microelectrode; however, sharp waves with fast rise times were almost always associated with action potentials from nearby neurons. During sub-clinical EEG seizures, when EEG abnormalities did not propagate contralaterally, neurons were activated in rough proportion to the intensity of EEG activation and extent of spread of seizure activity to ipsilateral temporal lobe structures. During clinical seizures, involving both hemispheres, firing rates of neurons near the focus increased during the small amplitude high-frequency EEG phase and decreased as this high-frequency rhythmical waveform increased in amplitude. Variable firing rates followed until the clonic EEG phase, where a reliable excitation of neurons occurred during the sharp waves and strong inhibition during the following slow waves. Between these sharp--slow wave events many neurons were inhibited, but to a lesser degree and for longer than the post-excitation inhibition. These neurophysiological phenomena are discussed in relation to the literature on cellular mechanisms of epileptogenesis in experimental epilepsy.  相似文献   

9.
The hippocampus is thought to be an epileptic focus in human temporal lobe epilepsy. Kainate-induced seizures decrease zinc concentrations in the hippocampus, which is also decreased in young mice fed a zinc-deficient diet for 4 weeks, and is enhanced by zinc deficiency. To understand zinc movement in the brain in epileptic seizures, zinc concentrations in the brain were measured in young mice after administration of pentylentetrazole, a GABAA receptor antagonist. Zinc concentration in the hippocampus and Timm's stain, with which histochemically reactive zinc in the presynaptic vesicle is detected, were decreased after the administration, suggesting that excessive excitation of zinc-containing glutamatergic neurons is induced in the hippocampus with pentylentetrazole. To clarify whether the decrease in zinc concentration in the hippocampus in zinc deficiency alter seizure susceptibility, furthermore, susceptibility to pentylentetrazole-induced seizures was examined in young mice fed the zinc-deficient diet for 4 weeks. The susceptibility, unlike susceptibility to kainate-induced seizures, was not appreciably enhanced by zinc deficiency. These results suggest that the decrease in zinc concentration in the hippocampus in zinc deficiency does not influence susceptibility to pentylentetrazole-induced seizures.  相似文献   

10.
Purpose: Focal seizures are thought to reflect simultaneous activation of a large population of neurons within a discrete region of pathologic brain. Resective surgery targeting this focus is an effective treatment in carefully selected patients, but not all. Although in vivo recordings of single‐neuron (i.e., “unit”) activity in patients with epilepsy have a long history, no studies have examined long‐term firing rates leading into seizures and the spatial relationship of unit activity with respect to the seizure‐onset zone. Methods: Microelectrode arrays recorded action potentials from neurons in mesial temporal structures (often including contralateral mesial temporal structures) in seven patients with mesial temporal lobe epilepsy. Key Findings: Only 7.6% of microelectrode recordings showed increased firing rates before seizure onset and only 32.4% of microelectrodes showed any seizure‐related activity changes. Surprisingly, firing rates on the majority of microelectrodes (67.6%) did not change throughout the seizure, including some microelectrodes located within the seizure‐onset zone. Furthermore, changes in firing rate before and at seizure onset were observed on microelectrodes located outside the seizure‐onset zone and even in contralateral mesial temporal lobe. These early changes varied from seizure to seizure, demonstrating the heterogeneity of ensemble activity underlying the generation of focal seizures. Increased neuronal synchrony was primarily observed only following seizure onset. Significance: These results suggest that cellular correlates of seizure initiation and sustained ictal discharge in mesial temporal lobe epilepsy involve a small subset of the neurons within and outside the seizure‐onset zone. These results further suggest that the “epileptic ensemble or network” responsible for seizure generation are more complex and heterogeneous than previously thought and that future studies may find mechanistic insights and therapeutic treatments outside the clinical seizure‐onset zone.  相似文献   

11.
12.
Analyzing neuronal activity during human seizures is pivotal to understanding mechanisms of seizure onset and propagation. These analyses, however, invariably using extracellular recordings, are greatly hindered by various phenomena that are well established in animal studies: changes in local ionic concentration, changes in ionic conductance, and intense, hypersynchronous firing. The first two alter the action potential waveform, whereas the third increases the “noise”; all three factors confound attempts to detect and classify single neurons. To address these analytical difficulties, we developed a novel template-matching-based spike sorting method, which enabled identification of 1239 single neurons in 27 patients (13 female) with intractable focal epilepsy, that were tracked throughout multiple seizures. These new analyses showed continued neuronal firing with widespread intense activation and stereotyped action potential alterations in tissue that was invaded by the seizure: neurons displayed increased waveform duration (p < 0.001) and reduced amplitude (p < 0.001), consistent with prior animal studies. By contrast, neurons in “penumbral” regions (those receiving intense local synaptic drive from the seizure but without neuronal evidence of local seizure invasion) showed stable waveforms. All neurons returned to their preictal waveforms after seizure termination. We conclude that the distinction between “core” territories invaded by the seizure versus “penumbral” territories is evident at the level of single neurons. Furthermore, the increased waveform duration and decreased waveform amplitude are neuron-intrinsic hallmarks of seizure invasion that impede traditional spike sorting and could be used as defining characteristics of local recruitment.SIGNIFICANCE STATEMENT Animal studies consistently show marked changes in action potential waveform during epileptic discharges, but acquiring similar evidence in humans has proven difficult. Assessing neuronal involvement in ictal events is pivotal to understanding seizure dynamics and in defining clinical localization of epileptic pathology. Using a novel method to track neuronal firing, we analyzed microelectrode array recordings of spontaneously occurring human seizures, and here report two dichotomous activity patterns. In cortex that is recruited to the seizure, neuronal firing rates increase and waveforms become longer in duration and shorter in amplitude as the neurons are recruited to the seizure, while penumbral tissue shows stable action potentials, in keeping with the “dual territory” model of seizure dynamics.  相似文献   

13.
A total of 1,802 neurons from 15 alert, undrugged Macaca mulatta monkeys were studied. Thirteen monkeys had chronic epilepsy induced by subpial alumina injections in precentral cortex. Precentral neurons were judged epileptic by the magnitude and variability of the percentage of interspike intervals less than 5 msec during periods when the monkeys were awake. This method of quantifying epileptic single neuron activity appears highly reliable in distinguishing epileptic neurons from precentral neurons in either normal cortex, cortex contralateral to, or within the focus. For the 13 epileptic monkeys, the relative proportion of strongly epileptic neurons found within foci was logarithmically correlated with the mean number of daily seizures. Because of the similarity between the physiology of the alumina focus in monkeys and epileptic foci in humans, these data imply that the severity of focal human epilepsy is a function of epileptic neuronal mass.  相似文献   

14.
目的 :探讨谷氨酸脱羧酶 (GAD)的抗癫疒间作用。方法 :采用戊四氮制备大鼠慢性癫疒间 模型 ,利用反义寡脱氧核苷酸技术 ,通过选择性地抑制海马GAD基因的表达来观察其对慢性癫疒间大鼠行为、发作阈值及脑电图的影响。结果 :给予AntisenseGAD67ODN处理后 ,GADmRNA表达下降、GABA浓度下降、疒间 性发作潜伏期缩短、发作程度加重及脑电图疒间 波频率增加。结论 :从反面进一步说明GAD基因可能是抗疒间基因 ,为GAD基因治疗癫疒间提供实验依据  相似文献   

15.
A loss of inhibitory interneurons has been reported in the hippocampus following seizure activity in various animal models of epilepsy and in human epileptic tissue. The question of whether particular populations of inhibitory neurons are similarly affected by the chronic block of inhibition tha tresults after tetanus toxin injections directly into the brain has not previously been addressed. In the present study a unilateral intrahippocampal injection of tetanus toxin into the ventral hippocampus was used to produce a chronic epileptic syndrome characterised by brief seizures that recurred intermittently for 6–8 weeks. The results reveal, for the first time, the morphological changes in somatostatin interneurons following tetanus toxin-induced seizures in the rat. A bilateral short-term increase in immunoreactivity of somatostatin neurons is present 1 week after injection. This is accompanied by an increased intensity of somatostatin-immunoreactive axon terminals in the outer molecular layer of the dentate gyrus, which is more marked on the contralateral side. A chronic and significant loss of somatostatin-immunoreactive neurons was noted in the hilus of the dentate gyrus 2 months later. The significance of the chronic loss of the hilar somatostatin neurons in the control of excitatory activity in the dentate gyrus and whether the acute morphological changes are due to a direct action of the toxin on release mechanisms or as a result of seizure activity are discussed.  相似文献   

16.
Evans MS  Cady CJ  Disney KE  Yang L  Laguardia JJ 《Epilepsia》2006,47(10):1655-1664
PURPOSE: Cellular mechanisms activated during seizures may exacerbate epilepsy. gamma-Aminobutyric acid (GABA) is the major inhibitory neurotransmitter in brain, and we hypothesized that brief epileptic seizures may reduce GABA function. METHODS: We used audiogenic seizures (AGSs) in genetically epilepsy-prone rats (GEPRs) to investigate effects of seizures on GABA-mediated inhibition in the presence of epilepsy. GEPRs are uniformly susceptible to AGSs beginning at 21 postnatal days. AGSs are brief convulsions lasting approximately 20 s, and they begin in inferior colliculus (IC). We evoked three seizures in GEPRs and compared the results with those in seizure-naive GEPRs and nonepileptic Sprague-Dawley (SD) rats, the GEPR parent strain. RESULTS: Whole-cell recording in IC slices showed that GABA-mediated monosynaptic inhibitory postsynaptic currents (IPSCs) were reduced 55% by three brief epileptic seizures. Whole-cell recording in IC neuronal cultures showed that currents elicited by GABA were reduced 67% by three seizures. Western blotting for the alpha1 and alpha4 subunits of the GABA(A) receptor showed no statistically significant effects. In contrast, three brief epileptic seizures reduced gamma2 subunit levels by 80%. CONCLUSIONS: The effects of the very first seizures, in animals known to be epileptic, in an area of brain known to be critical to the seizure network, were studied. The results indicate that even brief epileptic seizures can markedly reduce IPSCs and GABA currents and alter GABA(A)-receptor subunit protein levels. The cause of the reductions in IPSCs and GABA currents is likely to be altered receptor subunit composition, with reduced gamma2 levels causing reduced GABA(A)-receptor sensitivity to GABA. Seizure-induced reductions in GABA-mediated inhibition could exacerbate epilepsy.  相似文献   

17.
The medial septum inhibits the appearance of interictal spikes and seizures through theta rhythm generation. We have determined that medial septal neurons increase their firing rates during chronic epilepsy and that the GABAergic neurons from both medial and lateral septal regions are highly and selectively vulnerable to the epilepsy process. Since the lateral septal region receives a strong projection from the hippocampus and its neurons are vulnerable to epilepsy, their functional properties are probably altered by this disorder. Using the pilocarpine model of temporal lobe epilepsy we examined the pilocarpine-induced functional alterations of lateral septal neurons and provided additional observations on the pilocarpine-induced functional alterations of medial septal neurons. Simultaneous extracellular recordings of septal neurons and hippocampal field potentials were obtained from chronic epileptic rats under urethane anesthesia. Our results show that: (1) the firing rates of lateral septal neurons were chronically decreased by epilepsy, (2) a subset of lateral septal neurons increased their firing rates before and during hippocampal interictal spikes, (3) the discharges of those lateral septal neurons were well correlated to the hippocampal interictal spikes, (4) in contrast, the discharges of medial septal neurons were not correlated with the hippocampal interictal spikes. We conclude that epilepsy creates dysfunctional and uncoupled septo-hippocampal networks. The elucidation of the roles of altered septo-hippocampal neuronal populations and networks during temporal lobe epilepsy will help design new and effective interventions dedicated to reduce or suppress epileptic activity.  相似文献   

18.
应用免疫组织化学的方法观察了戊四氮诱导的慢性癫痫大鼠脑组织中脑源性神经生长因子(BDNF)及其受体TrkB免疫反映阳性神经元的变化。结果发现慢性癫痫大鼠海马回、齿状回BDNF及TrkB免疫反应阳性神经元数目明显增多。在本次抽搐后3h、72h、7d、10dBDNF阳性神经元均增高,而TrkB阳性神经元仅在末次抽搐后3h升高。24h后恢复到正常水平,结果表明,BDNF及TrkB与癫痫发病有关。  相似文献   

19.
Synchronous activation of neural networks is an important physiological mechanism, and dysregulation of synchrony forms the basis of epilepsy. We analyzed the propagation of synchronous activity through chronically epileptic neural networks. Electrocorticographic recordings from epileptic patients demonstrate remarkable variance in the pathways of propagation between sequential interictal spikes (IISs). Calcium imaging in chronically epileptic slice cultures demonstrates that pathway variance depends on the presence of GABAergic inhibition and that spike propagation becomes stereotyped following GABA receptor blockade. Computer modeling suggests that GABAergic quenching of local network activations leaves behind regions of refractory neurons, whose late recruitment forms the anatomical basis of variability during subsequent network activation. Targeted path scanning of slice cultures confirmed local activations, while ex vivo recordings of human epileptic tissue confirmed the dependence of interspike variance on GABA-mediated inhibition. These data support the hypothesis that the paths by which synchronous activity spreads through an epileptic network change with each activation, based on the recent history of localized activity that has been successfully inhibited.  相似文献   

20.
The influence of subthalamic nucleus (STN) afferents on dopaminergic (DA) neurons of the rat substantia nigra (SN) was investigated. Hemisections of the brain placed between the STN and the SN or located anterior to the STN caused an increase in the firing rate of DA cells without producing significant changes in their firing pattern. In contrast, electrolytic and ibotenic acid lesions of the STN resulted in 93% and 49% reductions, respectively, in the level of burst firing without affecting the firing rate of DA cells recorded in the lateral SN. Furthermore, procedures which interrupted the STN input to the SN produced rapid pacemaker-like firing in 18% of the lateral SN DA neurons recorded. Activation of the STN using single pulses of electrical stimulation caused: 1) a 20-50 msec inhibition of DA cell firing followed by an excitation, which in 35% of DA cells was accompanied by spikes occurring in a burst-like pattern, and 2) a short-latency inhibition lasting 5-25 msec in 75% of non-DA SN zona reticulata (ZR) neurons. On the other hand, stimulation of the STN for 1 minute at 20 Hz resulted in an initial decrease in DA cell burst firing followed by elevated firing rates and increased burst firing by 30-60 minutes after the stimulation. Pharmacological activation of the STN by infusion of bicuculline caused a rapid inhibition of DA cells followed by a two-fold increase in burst firing 6-14 minutes later, whereas SN ZR cells responded with an elevation in firing rate which dissipated in 6-14 minutes. Muscimol-induced STN inhibition produced complimentary biphasic changes in SN neuron firing: 1) an initial increase followed by a decrease in burst firing and firing rate of DA neurons and 2) a rapid inhibition followed by an excitation of ZR cells over a similar time course. Thus, the STN appears to exert a dual action on SN DA cells: 1) initial inhibition possibly mediated through STN excitation of the inhibitory SN ZR projections to DA cells, and 2) a facilitation of burst firing which may be a direct effect of excitatory STN afferents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号