首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Several genetic loci have been utilized to genotype isolates of Mycobacterium tuberculosis. A shortcoming of the most commonly used method, IS6110 fingerprinting, is that it does not adequately discriminate between isolates having few copies of IS6110. This study was undertaken to compare pTBN12 fingerprinting of polymorphic GC-rich repetitive sequence genes and spoligotyping of the direct repeat locus as secondary typing procedures for M. tuberculosis isolates having fewer than six copies of IS6110. A total of 88 isolates (100% of the isolates with fewer than six copies of IS6110 isolated in Arkansas during 1996 and 1997) were included in this study. Among the 88 isolates, 34 different IS6110 patterns were observed, 10 of which were shared by more than 1 isolate, involving a total of 64 isolates. The 64 isolates were subdivided into 13 clusters (containing 37 isolates) and 27 unique isolates based on a combination of IS6110 and pTBN12 fingerprinting and into 11 clusters (containing 51 isolates) and 13 unique isolates based on a combination of IS6110 fingerprinting and spoligotyping. Identical spoligotypes were found among isolates having different IS6110 patterns, as well as among isolates showing different pTBN12 patterns. In contrast, all isolates that had different IS6110 patterns were found to be unique by pTBN12 typing. The clustering rate was 73, 58, and 42%, respectively, for IS6110 fingerprinting alone, IS6110 fingerprinting and spoligotyping combined, and IS6110 and pTBN12 combined fingerprinting. The data indicate that the pTBN12 method has greater discriminating power among low-copy-number isolates than does spoligotyping.  相似文献   

2.
A comparison was made between DNA fingerprints of Mycobacterium tuberculosis produced with the insertion sequence IS6110 and those produced with the polymorphic GC-rich repetitive sequence contained in the plasmid pTBN12. A total of 302 M. tuberculosis isolates from the prison system in Madrid, Spain, and the Denver Public Health Department (Denver, Colo.) were analyzed with the two probes. Both probes identified the same isolates in the same clusters when the fingerprints had six or more copies of IS6110. Analysis of isolates with unique IS6110 fingerprints demonstrated that they were unique with pTBN12. The pTBN12 probe had greater discriminating power in isolates having five or fewer copies of IS6110. Forty-seven isolates from Denver having fewer than five copies of IS6110 which were grouped in 11 clusters with identical fingerprint patterns were subdivided into 35 different patterns by pTBN12. Isolates with IS6110 fingerprints with more than six copies of IS6110 that differed from one another by only one or two hybridizing bands were analyzed with pTBN12. Most of these sets of isolates demonstrated identical patterns with pTBN12. However, some exceptions were observed, suggesting that those having nearly identical IS6110 patterns should not necessarily be included in the same cluster. Since IS6110 provides more polymorphism in the fingerprint, it is most useful in identifying isolates with unique fingerprint patterns and those in clusters in which the isolates contain six or more copies of the insertion. However, it is necessary to employ a secondary probe, such as pTBN12, to discriminate isolates with five or fewer copies of IS6110 and those with similar but not identical IS6110 patterns.  相似文献   

3.
Isolates of Mycobacterium tuberculosis from patients with epidemiologic links frequently demonstrate identical IS6110 restriction fragment length polymorphism (RFLP) patterns (i.e., RFLP clustering) because they are infected with the same strain. Uncertainty arises with isolates that differ from one another by a few IS6110 hybridizing bands. During the period from 1 January 1996 to 31 December 1999, isolates from 585 tuberculosis (TB) cases were analyzed by RFLP, representing 98.2% of the 596 culture-positive TB cases reported in Arkansas during the study period. Of the 585 cases for which RFLP was available, 419 (71.6%) had an RFLP pattern with more than five copies of IS6110. Of the total 74 clusters, 48 comprised isolates with more than five copies of IS6110 and included 164 cases. Sixty-nine isolates with more than five copies of IS6110 comprising 16 clusters and 60 unique isolates were found to be similar to at least 1 other isolate (differing from it by one or two hybridizing bands). Among the 129 cases whose isolates were similar to other clustered or unique isolates, 16 cases were discovered with epidemiologic links: 14 (15.2%) were among the 92 cases with IS6110 RFLP patterns similar to those in clusters, and 2 (5.2%) were among the 37 unique cases that were similar to another unique case. The isolates from the epidemiologically linked patients shared common spoligotypes; all except one case shared common polymorphic GC-rich sequence (PGRS) patterns. Of the 129 patients whose isolates differed from another by one or two hybridizing IS6110 bands, 101 (78.3%) shared common spoligotypes and 87 (67.4%) shared common PGRS RFLP patterns.  相似文献   

4.
Forty Mycobacterium bovis isolates from cattle and goats were analyzed by using different repetitive genetic markers. The 23 M. bovis strains from goats were found to carry six to eight copies of the insertion sequence IS6110. In contrast, most of the bovine isolates contained only a single copy of this element. The standardized IS6110 fingerprinting by restriction fragment length polymorphism (RFLP), described for Mycobacterium tuberculosis strains, allowed the differentiation of caprine strains. Although this method was not useful for typing bovine isolates, the repetitive elements pTBN12 and DR proved to be suitable for this purpose. A procedure using PCR which amplifies IS6110 in the outward direction was found to be as sensitive as RFLP for typing M. bovis strains from goats. The use of PCR and RFLP methods based on the IS6110 polymorphism would be useful for epidemiological studies of caprine tuberculosis. The results are consistent with different strains of M. bovis being implicated in bovine and caprine tuberculosis.  相似文献   

5.
To investigate the diversity of IS6110 fingerprints of Mycobacterium tuberculosis isolates in the United States and to determine if matching IS6110 fingerprints represent recent interstate tuberculosis transmission, we performed restriction fragment length polymorphism analysis of M. tuberculosis isolates from 1,326 patients in three geographically separated states. Seven hundred ninety-five different IS6110 fingerprint patterns were generated, and pattern diversity was similar in each state. Ninety-six percent of the fingerprint patterns were observed in only one state, demonstrating that most IS6110 fingerprint patterns are confined to a single geographic location. Of the IS6110 fingerprint patterns that were shared by isolates from more than one state, most isolates with 1 to 5 IS6110 copies were separable by pTBN12 fingerprinting whereas those with >15 copies were not. One high-copy-number M. tuberculosis strain had identical IS6110 and pTBN12 fingerprints and included 57 isolates from three states. Epidemiological data demonstrated significant recent transmission of tuberculosis within each city but not among the states. This suggests that identical fingerprints of isolates from geographically separate locations most likely reflect interstate tuberculosis transmission in the past, with subsequent intrastate spread of disease. Further evaluation of M. tuberculosis strains that cause outbreaks in different geographic locations will provide insight into the epidemiological and bacteriological factors that facilitate the spread of tuberculosis.  相似文献   

6.
Fifty-nine isolates of Mycobacterium tuberculosis obtained from different states in the United States and representing 25 interstate clusters were investigated. These clusters were identified by computer-assisted analysis of DNA fingerprints submitted during 1996 and 1997 by different laboratories participating in the CDC National Genotyping and Surveillance Network. Isolates were fingerprinted with the IS6110 right-hand probe (IS6110-3'), the IS6110 left-hand probe (IS6110-5'), and the probe pTBN12, containing the polymorphic GC-rich sequence (PGRS). Spoligotyping based on the polymorphism in the 36-bp direct-repeat locus was also performed. As a control, 43 M. tuberculosis isolates in 17 clusters obtained from patients in Arkansas during the study period were analyzed. Of the 25 interstate clusters, 19 were confirmed as correctly clustered when all the isolates were analyzed on the same gel using the IS6110-3' probe. Of the 19 true IS6110-3' clusters, 10 (53%) were subdivided by one or more secondary typing methods. Clustering of the control group was virtually identical by all methods. Of the three different secondary typing methods, spoligotyping was the least discriminating. IS6110-5' fingerprinting was as discriminating as PGRS fingerprinting. The data indicate that the IS6110-5' probe not only is a useful secondary typing method but also probably would prove to be a more useful primary typing method for a genotyping network which involves isolates from different geographic regions.  相似文献   

7.
DNA fingerprinting using IS 6110 probe has been used all over the world quite successfully to characterize M. tuberculosis strains. The present study has been carried out to study the polymorphism among isolates of M. tuberculosis from Agra region from patients attending the clinics at SN Medical College and TBDTC, Agra. Sputa were collected in sterilized containers and brought to CJIL, Agra. Samples were processed and cultured on Lowenstein Jensen (LJ) slants. M. tuberculosis isolates were identified by standard biochemical tests. DNA from these isolates were purified by a physicochemical procedure, restricted with Pvu II enzyme and hybridized with PCR amplified and DIG labeled 245 bp IS 6110 probe. With a view to study IS 6110 polymorphism, M. tuberculosis isolates obtained from different geographical areas of Agra region were analyzed. Among the 60 isolates taken in study, 5 had no copy of IS 6110, 8 had 1-4 copies and 47 had multiple copies of IS 6110. DNA fingerprinting using this probe was found to be quite discriminating for typing of most of the strains (80%) which had multiple copies. RFLP profiles did not correlate with geographical areas, contacts or the resistance pattern of the strains. While this data shows the potential of IS 6110 based RFLP for strain characterization of M. tuberculosis in Agra, to understand the molecular epidemiology of tuberculosis in this region, a larger number of isolates from defined geographical areas need to be studied.  相似文献   

8.
IS6110 fingerprinting of Mycobacterium tuberculosis is the standard identification method in studies on transmission of tuberculosis. However, intensive epidemiological investigation may fail to confirm transmission links between patients clustered by IS6110-restriction fragment length polymorphism (RFLP) typing. We applied typing based on variable numbers of tandem repeats (VNTRs) of mycobacterial interspersed repetitive units (MIRUs) to isolates from 125 patients in 42 IS6110 clusters, for which thorough epidemiological data were available, to investigate the potential of this method in distinguishing epidemiologically linked from nonlinked patients. Of seven IS6110 clusters without epidemiological links, five were split by MIRU-VNTR typing, while nearly all IS6110 clusters with proven or likely links displayed conserved MIRU-VNTR types. These results provide molecular evidence that not all clusters determined on the basis of multibanded IS6110 RFLP patterns necessarily reflect transmission of tuberculosis. They support the use of MIRU-VNTR typing as a more reliable and faster method for transmission analysis.  相似文献   

9.
Strains of Mycobacterium tuberculosis isolated from 219 different tuberculosis patients, 115 from patients residing in Rio de Janeiro, 79 from Rio Grande do Sul and the remaining from other regions of the country, were analyzed by IS6110-restriction fragment length polymorphism fingerprinting. The IS6110-DNA patterns from these strains were highly polymorphic: 174 different patterns were observed and 25 patterns were shared by 70 isolates (32%). Most strains (93.4%) had multicopy patterns and only 17% of clustered strains had less than six IS6110 copies. Strain clustering was significantly higher for isolates from Rio Grande do Sul (36.7%) in comparison with strains from Rio de Janeiro (22.6%), but only when using high stringency during cluster analysis. Upon screening of an international database containing 3,970 fingerprints of M. tuberculosis strains, 15% of the patterns of Brazilian strains (21% of the strains) were identical to a fingerprint of an isolate from another country and one particular eight-band pattern forming the largest Brazilian cluster was detected in seven additional countries, suggesting that international transmission of tuberculosis from and to Brazil could be occurring frequently. Alternatively,preferential use of certain IS6110 integration sites could also be important in high-copy number strains, having important consequences for the use of databases for epidemiological studies on a large scale.  相似文献   

10.
A total of 41 Mycobacterium tuberculosis strains from patients of Vietnamese origin were analyzed by Southern blot hybridization with two different probes, IS6110 (Otal, I., et al., J. Clin. Microbiol. 29:1252-1254, 1991; Ross, B. C., et al., J. Clin. Microbiol. 30:942-946, 1992; Thierry, D., et al., J. Clin. Microbiol. 28:2668-2673, 1990; van Soolingen, D., et al., J. Clin. Microbiol. 29:2578-2586, 1991) and pTBN12 (Ross, B. C., et al., J. Clin. Microbiol. 30:942-946, 1992). The restriction fragment patterns of nine of these strains were virtually identical when the pTBN12 probe was used; five strains had a single copy of IS6110, and four strains failed to hybridize with the IS6110 probe. This relatively high frequency of strains with no or one copy of IS6110 suggests that the usefulness of IS6110 for epidemiological study may be limited in certain populations.  相似文献   

11.
Two hundred twenty-nine consecutive isolates of Mycobacterium tuberculosis complex from patients with pulmonary tuberculosis in Guinea-Bissau, which is located in West Africa, were analyzed for clonal origin by biochemical typing and DNA fingerprinting. By using four biochemical tests (resistance to thiophene-2-carboxylic acid hydrazide, niacin production, nitrate reductase test, and pyrazinamidase test), the isolates could be assigned to five different biovars. The characteristics of four strains conformed fully with the biochemical criteria for M. bovis, while those of 85 isolates agreed with the biochemical criteria for M. tuberculosis. The remaining 140 isolates could be allocated into one of three biovars (biovars 2 to 4) representing a spectrum between the classical bovine (biovar 1) and human (biovar 5) tubercle bacilli. By using two genotyping methods, restriction fragment length polymorphism analysis with IS6110 (IS6110 RFLP analysis) and spoligotyping, the isolates could be separated into three groups (groups A to C) of the M. tuberculosis complex. Group A (n = 95), which contained the majority of classical human M. tuberculosis isolates, had large numbers of copies of IS6110 elements (mean number of copies, 9) and a distinctive spoligotyping pattern that lacked spacers 33 to 36. Isolates of the major group, group B (n = 119), had fewer IS6110 copies (mean copy number, 5) and a spoligotyping pattern that lacked spacers 7 to 9 and 39 and mainly comprised isolates of biovars 1 to 4. Group C isolates (n = 15) had one to three IS6110 copies, had a spoligotyping pattern that lacked spacers 29 to 34, and represented biovar 3 to 5 isolates. Four isolates whose biochemical characteristics conformed with those of M. bovis clustered with the group B isolates and had spoligotype patterns that differed from those previously reported for M. bovis, in that they possessed spacers 40 to 43. Interestingly, isolates of group B and, to a certain extent, also isolates of group C showed a high degree of variability in biochemical traits, despite genotypic identity in terms of IS6110 RFLP and spoligotype patterns. We hypothesize that isolates of groups B and C have their evolutionary origin in West Africa, while group A isolates are of European descent.  相似文献   

12.
Population-based analysis of Mycobacterium tuberculosis transmission in Houston, Tex., over 5 years identified 377 patients infected with an isolate containing one to four copies of IS6110. The isolates were analyzed by spoligotyping and assigned to one of three major genetic groups based on nucleotide polymorphisms in codons katG 463 and gyrA 95. Prospectively obtained patient interviews were reviewed to assess epidemiologic links between apparently clustered patients. A total of 13 groups of isolates with the same IS6110 profile were identified, representing 326 of the 377 patients (86.5%; range 2 to 113 patients). In contrast, 28 groups of isolates containing 334 patients (88.6%) had the same spoligotype (range, 2 to 143 patients). Combination of IS6110 profile and spoligotype data identified 31 clusters with 300 patients (79.6%; range, 2 to 82 patients). All 377 isolates belonged to major genetic group 1 (77 patients) or genetic group 2 (300 patients); no major genetic group 3 isolates were identified. Among the 228 patients interviewed, 33 patients (14.5%) were directly linked to another patient in the same cluster. Possible epidemiologic links were also found among 11 patients. Moreover, many clusters consisted of individuals with the same ethnicity. In conclusion, we confirmed that IS6110 profiling and spoligotyping together provide enhanced molecular discrimination of M. tuberculosis isolates with low copy numbers of IS6110. Identification of epidemiologic links among some of the patients verified that the combination of these two methods reliably indexes tuberculosis transmission.  相似文献   

13.
A total of 422 Mycobacterium tuberculosis isolates from eight countries were subjected to IS6110 and IS1081 DNA fingerprinting by means of restriction fragment analysis to characterize M. tuberculosis strains from each country. Chinese, Mongolian, Hong Kong, Filipino, and Korean isolates had comparatively more copies of IS6110 (proportion with eight or more copies; 95% +/- 5%), while Thai, Malaysian, and Vietnamese isolates had fewer copies (proportion with eight or more copies, 60% +/- 4%). We found a number of novel IS1081 types in this study. One IS1081 type was present in 56% of Filipino isolates, had a specific 6.6-kb PvuII fragment in its IS6110 DNA fingerprint, and was termed the "Filipino family." The IS1081 types of Thai isolates had interposing characteristics between the characteristics of northeastern Asian and southeastern Asian IS1081 types. A 1.3-kb single-copy IS6110 fragment was found only in Vietnamese M. tuberculosis isolates. Although M. tuberculosis isolates from each country had comparatively similar characteristics depending on the classification factor, each country's isolates showed characteristic DNA fingerprints and differed slightly from the isolates from the other countries in either the mode number of IS6110 copies or the distribution of IS1081 types.  相似文献   

14.
Two insertion sequences, IS6110 and IS1081, specific to the tuberculosis complex mycobacteria and a highly reiterated DNA element (pTBN12) cloned from Mycobacterium tuberculosis were systematically used to identify restriction fragment length polymorphism (RFLP) types among bovine isolates of Mycobacterium bovis in Northern Ireland. In a sample of 109 isolates, probes IS6110, IS1081, and pTBN12 identified 10, 2, and 12 distinct patterns, respectively. By combining the patterns generated by the three probes it was possible to identify 28 distinct RFLP types. The standard protocol advocated for RFLP analysis of M. tuberculosis was used and would facilitate computer-based gel documentation and image analysis to establish a database of M. bovis types for large-scale epidemiological studies. These procedures will facilitate interlaboratory comparisons of M. bovis isolates and will help to elucidate the precise epidemiology of bovine tuberculosis in different countries.  相似文献   

15.
Molecular epidemiology of Mycobacterium tuberculosis in Norway   总被引:2,自引:0,他引:2       下载免费PDF全文
The incidence of tuberculosis in Norway is one of the lowest in the world, and approximately half of the cases occur in first- and second-generation immigrants. In the present study, the genetic diversity of 92% of all strains of Mycobacterium tuberculosis isolated in Norway in 1994 to 1998 was assessed using restriction fragment length polymorphism (RFLP) analysis, with the insertion sequence IS6110 and the repetitive element DR as probes, to determine the degree of active transmission between patients. The DR probe was used as a secondary molecular marker to support or rule out clustering of strains with fewer than five copies of IS6110. After exclusion of 20 cultures representing laboratory contamination, 573 different IS6110 patterns were found among the 698 strains analyzed. Of these 573 patterns, 542 were observed only once and 31 were shared by 2 to 14 isolates. Among 81 strains (11.5%) carrying fewer than five copies of IS6110, 56 RFLP patterns were found when the results of both the IS6110 and DR methods were combined. Among the 698 strains, 570 were considered to be independent cases. A total of 14.5% of the native Norwegians and 19.7% of the foreign patients were part of a cluster. Thus, the degree of recent transmission of tuberculosis in Norway is low and the great majority of the cases are due to reactivation of previous disease. Transmission between immigrants and native Norwegians is uncommon. Two outbreaks, one among native Norwegians and one mainly among immigrants, have been ongoing for several years, indicating that, even in a low-incidence country such as Norway, with a good national program for tuberculosis surveillance, certain transmission chains are difficult to break.  相似文献   

16.
From 1989 to 1995, 46 patients infected with the human immunodeficiency virus were diagnosed with tuberculosis at the University Hospital in Zurich. Using the IS6110 insertion sequence as a genetic marker, restriction fragment length polymorphism analyses were done for 52 Mycobacterium tuberculosis isolates. We have found a large degree of IS6110 polymorphism, ranging from 1 to 16 copies. For isolates from patients from whom multiple isolates had been available, the IS6110 pattern remained virtually stable over a period of up to 4 years, as well as during emerging drug resistance. In none of the cases was a reinfection of a patient with another strain detected. For isolates from 10 patients we detected identical patterns which could be associated with four clusters. In one of these, the strains exhibited a low IS6110 copy number (four bands), and the strains were further analyzed by hybridizing with (i) the polymorphic GC-rich repetitive sequence (PGRS) and (ii) the 36-bp direct-repeat (DR) cluster sequence. One of these isolates had a different pattern with the PGRS as well as with the DR sequence and could therefore be safely excluded from that cluster. These findings point to the importance of applying more than one genetic criterion in the molecular biological study of strain relatedness.  相似文献   

17.
Mycobacterium tuberculosis complex strains cultured in Denmark have been analyzed by IS6110 restriction fragment length polymorphism (RFLP) on a routine basis from 1992 and onwards. Due to the influx of immigrants with tuberculosis, the number of strains harboring only one to five copies of IS6110 has increased steadily. Since the discriminatory power of IS6110 fingerprinting for such strains is poor, we have performed additional genotyping of all low-copy-number strains by the recently described PCR-based method known as spoligotyping. A total of 311 clinical strains were typed: 14 Mycobacterium bovis BCG, 48 M. bovis, and 249 M. tuberculosis strains. Spoligotyping correctly differentiated M. bovis and M. bovis BCG from M. tuberculosis strains, but it did not differentiate M. bovis from M. bovis BCG. All M. bovis BCG strains exhibited identical spoligotype patterns. The discriminatory power of spoligotyping of low-copy-number M. tuberculosis strains was higher than that of IS6110 fingerprinting. Based on RFLP typing solely, 83% of the low-copy-number M. tuberculosis strains were found to form part of a cluster, and 75% were found to form a cluster on the basis of spoligotyping. When the two techniques were combined, the amount of clustering decreased to 55%. The combination of these two techniques might be valuable in studying the epidemiology of M. tuberculosis strains harboring few copies of the IS6110 element.  相似文献   

18.
Pulsed-field gel electrophoresis (PFGE) is a powerful molecular biology technique which has provided important insights into the epidemiology and population biology of many pathogens. However, few studies have used PFGE for the molecular epidemiology of Mycobacterium tuberculosis. A laboratory protocol was developed to determine the typeability, stability, and reproducibility of PFGE typing of M. tuberculosis. Formal data-analytical techniques were used to assess the genetic diversity elucidated by PFGE analyses using four separate restriction enzymes and by IS6110 RFLP analyses, as well as to assess the concordance among these typing methods. One hundred epidemiologically characterized clinical isolates of M. tuberculosis were genotyped with four different PFGE enzymes (AseI, DraI, SpeI, and XbaI), as well as by RFLP analysis with IS6110. Identical patterns were found among 34 isolates known to be genetically related, suggesting that the PFGE protocol is robust and reproducible. Among 66 isolates representing population-sampled cases, heterozygosity and information content dependency estimates indicate that all five genotyping systems capture quantitatively similar levels of genetic diversity. Nevertheless, comparisons between PFGE analyses and IS6110 typing reveals that PFGE provided more discrimination among isolates with fewer than five copies of IS6110 and less clustering in isolates with five or more copies. The comparisons confirm the hypothesis that the resolution of IS6110 RFLP genotyping is dependent upon the number of IS6110 elements in the genome of isolates. The general concordance among the results obtained with four independent enzymes suggests that M. tuberculosis is a clonal organism. The availability of a robust genotyping technique largely independent of repetitive elements has implications for the molecular epidemiology of M. tuberculosis.  相似文献   

19.
We sought to determine whether nonrandom association of IS6110 with Mycobacterium tuberculosis could result in false-positive clustering in unselected collections of isolates. We typed 196 strains of M. tuberculosis from an unselected community-based study in northern Tanzania by IS6110 and polymorphic GC-rich repetitive-sequence (PGRS) methodologies. The strains were analyzed by Gelcompar computer software. Analysis of 13 out of 25 groups showed that isolates with identical IS6110 and PGRS patterns were likely to be the same strain. Some IS6110 groups containing strains with identical PGRS patterns had similar IS6110 patterns that differed only by movement of the element. Isolates assigned to a single group (i.e., group 11) on the basis of sharing an identical IS6110 fingerprint pattern did not share identical PGRS fingerprint patterns. Six out of the nine bands in these isolates were in hot-spot locations, as previously defined. This indicates that nonrandom association may result in false-positive clustering in unselected community-based studies. Only strains with identical PGRS and IS6110 patterns are likely to be recently transmitted.  相似文献   

20.
Genotyping of Mycobacterium tuberculosis isolates is useful in tuberculosis control for confirming suspected transmission links, identifying unsuspected transmission, and detecting or confirming possible false-positive cultures. The value is greatly increased by reducing the turnaround time from positive culture to genotyping result and by increasing the proportion of cases for which results are available. Although IS6110 fingerprinting provides the highest discrimination, amplification-based methods allow rapid, high-throughput processing and yield digital results that can be readily analyzed and thus are better suited for large-scale genotyping. M. tuberculosis isolates (n = 259) representing 99% of culture-positive cases of tuberculosis diagnosed in Wisconsin in the years 2000 to 2003 were genotyped by using spoligotyping, mycobacterial interspersed repetitive unit (MIRU) typing, and IS6110 fingerprinting. Spoligotyping clustered 64.1% of the isolates, MIRU typing clustered 46.7% of the isolates, and IS6110 fingerprinting clustered 29.7% of the isolates. The combination of spoligotyping and MIRU typing yielded 184 unique isolates and 26 clusters containing 75 isolates (29.0%). The addition of IS6110 fingerprinting reduced the number of clustered isolates to 30 (11.6%) if an exact pattern match was required or to 44 (17.0%) if the definition of a matching IS6110 fingerprint was expanded to include patterns that differed by the addition of a single band. Regardless of the genotyping method chosen, the addition of a second or third method decreased clustering. Our results indicate that using spoligotyping and MIRU typing together provides adequate discrimination in most cases. IS6110 fingerprinting can then be used as a secondary typing method to type the clustered isolates when additional discrimination is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号