首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Sodium butyrate (NaB) has been proposed as a potential anticancer agent. However, its mechanism of action is not totally elucidated. Here, we showed that NaB-induced cell cycle arrest and apoptosis were associated with an increase of P21(waf1/cip1) in MCF-7 breast cancer cells. This increase was more important in the nuclei, as revealed by immunofluorescence analysis. Transient transfections of MCF-7 cells with p21 deficient for interaction with CDK, but not with p21 deficient for interaction with PCNA (p21PCNA-), abrogated NaB-induced cell cycle arrest. This indicated that cell cycle blockage involved the interaction of P21(waf1/cip1) with CDK. However, P21(waf1/cip1) was dispensable, since p21 antisense did not modify cell cycle arrest. On the other hand, NaB-induced apoptosis was abolished by p21 antisense or p21PCNA-. In addition, NaB decreased PCNA levels, but increased the association of PCNA with P21(waf1/cip1). These results suggested that NaB-induced apoptosis required P21(waf1/cip1) and its interaction with PCNA.  相似文献   

4.
The cyclin-dependent kinase inhibitor p21cip1/waf1 negatively regulates the progression of cell cycle and the potential usefulness of p21cip1/waf1 gene is proposed in gene therapy. However, studies have demonstrated a protective role of p21cip1/waf1 against apoptosis and little is known about effects of ectopic expression of p21cip1/waf1 on differentiation of colon cancer cells. In the present study, we found diffuse p21cip1/waf1 expression in only a few clinical samples of colorectal cancer with wild-type p53 gene. To explore the role of p21cip1/waf1 in cell growth, apoptosis and differentiation, we constitutively overexpressed p21cip1/waf1 in HT29 colon carcinoma cells. Ectopic overexpression of p21cip1/waf1 was associated with inhibition of CDK2-associated kinase activity, indicating the functionality of the introduced p21cip1/waf1 gene. Overexpression of p21cip1/waf1 caused an appreciable growth inhibition in monolayer and soft agar cultures and it significantly reduced sodium butyrate- but not 5-fluorouracil-induced apoptosis. p21cip1/waf1 overexpressing cells exhibited marked decrease of intestinal differentiation when assayed with intestinal alkaline phosphatase. Our findings suggest that introduction of p21cip1/waf1 gene into colon cancer cells may be useful for inhibiting cell growth but caution should be taken regarding the increased resistance to certain apoptosis-inducing agents and dysregulation of endogenous p21cip1/waf1-mediated differentiation process.  相似文献   

5.
Mechanisms underlying tumor sensitivity to the antitumor agent UCN-01 (7-hydroxystaurosporine) were examined in the nude mouse model using three human tumor xenografts, two pancreatic cancers (PAN-3-JCK and CRL 1420) and a breast cancer (MX-1). UCN-01 antitumor activity was evaluated in terms of relative tumor weights in treated and untreated mice bearing the tumor xenografts. The activity of cyclin-dependent kinase 2 (CDK2), levels of p21 and p27 proteins, pRb status and cell cycle were evaluated. Induction of p21 and apoptosis were also assessed immunohistochemically in CRL 1420. UCN-01 was administered intraperitoneally at a dose of either 5 or 10 mg / kg daily for 5 days followed by a further 5 injections after an interval of 2 days. UCN-01 significantly suppressed the growth of both pancreatic cancers, but was ineffective against MX-1. p21 protein expression was markedly induced in the UCN-01-sensitive pancreatic carcinoma xenografts at both doses, but p21 induction was only evident in the UCN-01-resistant MX-1 at 10 mg / kg. MX-1 exhibited CDK2 activity that was 6-fold higher than that of pancreatic cancer strains, which may explain the resistance of MX-1 to UCN-01 despite the induction of p21 at the dose of 10 mg / kg. The UCN-01-sensitive tumors exhibited G1 arrest and increased levels of apoptosis, changes not observed in resistant MX-1. In conclusion, it appears that a determining factor of in vivo UCN-01 sensitivity involves the balance of CDK2 kinase activity and p21 protein induction, resulting in augmented pRb phosphorylation, G1 cell cycle arrest and apoptosis.  相似文献   

6.
Prognostic impact of p21/waf1/cip1 in colorectal cancer   总被引:7,自引:0,他引:7  
In addition to the tumor suppressor gene p53, Cyclin Dependent Kinases (CDK) are well known to influence the cell cycle in normal human tissues and various neoplasias as well. The purpose of our present study was to evaluate the expression of the CDK-inhibitor p21/waf1/cip1 in colorectal cancer with special emphasis on the prognostic impact. Between 1985 and 1991, 294 patients (median age, 65 years) underwent surgical operative therapy for colorectal cancer. Formalin-fixed and paraffin-embedded tumor specimens were investigated. For immunohistochemistry the Catalysed Reporter Deposition (CARD) technique was performed. The survival probability was calculated and possible prognostic risk factors were tested using multivariate analysis. The p21/ waf1/cip1 staining pattern was positive in 197 (67%) specimens and negative in 97 (33%) samples. No significant correlation could been calculated between p21/waf1/cip1 expression and other variables such as age, sex, WHO-Classification, localisation, grading, TNM-classification or UICC-stage. Patients with a positive staining reaction had a significantly better survival (p < 0.0052). Moreover, p21/waf1/cip1 was shown to be an independent prognostic parameter by multivariate analysis (p < 0.022). In contrast with these findings, the p53 tumor status had no impact on survival. P21/ waf1/cip1 appears to be an independent prognostic parameter in colorectal cancer and is associated with a favorable survival. This feature may be related to a cell cycle arrest in the G1 phase induced by p21/waf1/cip1, resulting in lower tumor cell proliferative activity.  相似文献   

7.
The cyclin-dependent kinase inhibitors (CDIs) p27kip1 and p21waf1/cip1 are key cell cycle-negative regulatory enzymes. The objective of this study was to correlate expression of p27kip1 and p21waf1/cip1 with survival, chemotherapy responsiveness, and expression of the proliferation marker Ki-67 in patients with advanced colorectal cancer. Immunohistochemistry was performed with antibodies to p27kip1, p21waf1/cip1, and Ki-67 on samples from 66 patients with metastatic colorectal carcinoma. Interpretation was performed by visual inspection and automated image analysis. Patients who obtained a response to chemotherapy had greater p21waf1/cip1 tumor staining with a mean of 10.0 positive cells/high-powered field, compared with 4.5 positive cells/high-powered field for nonresponders (P = 0.03). A positive Spearman correlation was seen between Ki-67 and p27kip1 (r = 0.48; P = 0.0001), as well as between Ki-67 and p21waf1/cip1 (r = 0.48; P = 0.0001). A trend toward shorter survival was seen in patients with positive specimens (median survival of 10 months for patients with both p27kip1- and p21waf1/cip1-positive specimens, compared with 22 months for patients with neither p27kip1- nor p21waf1/cip1-positive specimens). In contrast to that previously reported in normal colonic mucosa or early-stage colorectal cancer, we observed positive correlations of Ki-67 with both p27kip1 and p21waf1/cip1, a trend toward greater CDI staining indicating worse prognosis, and greater p21waf1/cip1 staining in tumors that were chemosensitive. These findings suggest that in the metastatic setting, CDIs may show altered function, compared with their role in the normal cell cycle.  相似文献   

8.
Mechanisms underlying tumor sensitivity to the antitumor agent UCN-01 (7-hydroxystaurosporine) were examined in the nude mouse model using three human tumor xenografts, two pancreatic cancers (PAN-3-JCK and CRL 1420) and a breast cancer (MX-1). UCN-01 antitumor activity was evaluated in terms of relative tumor weights in treated and untreated mice bearing the tumor xenografts. The activity of cyclin-dependent kinase 2 (CDK2), levels of p21 and p27 proteins, pRb status and cell cycle were evaluated. Induction of p21 and apoptosis were also assessed immuno-histochemically in CRL 1420. UCN-01 was administered intraperitoneally at a dose of either 5 or 10 mg/kg daily for 5 days followed by a further 5 injections after an interval of 2 days. UCN-01 significantly suppressed the growth of both pancreatic cancers, but was ineffective against MX-1. p21 protein expression was markedly induced in the UCN-01-sensitive pancreatic carcinoma xenografts at both doses, but p21 induction was only evident in the UCN-01-resistant MX-1 at 10 mg/kg. MX-1 exhibited CDK2 activity that was 6-fold higher than that of pancreatic cancer strains, which may explain the resistance of MX-1 to UCN-01 despite the induction of p21 at the dose of 10 mg/kg. The UCN-01-sensitive tumors exhibited G1 arrest and increased levels of apoptosis, changes not observed in resistant MX-1. In conclusion, it appears that a determining factor of in vivo UCN-01 sensitivity involves the balance of CDK2 kinase activity and p21 protein induction, resulting in augmented pRb phosphorylation, G1 cell cycle arrest and apoptosis.  相似文献   

9.
10.
Y Dai  C Yu  V Singh  L Tang  Z Wang  R McInistry  P Dent  S Grant 《Cancer research》2001,61(13):5106-5115
Interactions between the checkpoint abrogator UCN-01 and several pharmacological inhibitors of the mitogen-activated protein kinase (MAPK) kinase (MEK)/MAPK pathway have been examined in a variety of human leukemia cell lines. Exposure of U937 monocytic leukemia cells to a marginally toxic concentration of UCN-01 (e.g., 150 nM) for 18 h resulted in phosphorylation/activation of p42/44 MAPK. Coadministration of the MEK inhibitor PD184352 (10 microM) blocked UCN-01-induced MAPK activation and was accompanied by marked mitochondrial damage (e.g., cytochrome c release and loss of DeltaPsi(m)), caspase activation, DNA fragmentation, and apoptosis. Similar interactions were noted in the case of other MEK inhibitors (e.g., PD98059; U0126) as well as in multiple other leukemia cell types (e.g., HL-60, Jurkat, CCRF-CEM, and Raji). Coadministration of PD184352 and UCN-01 resulted in reduced binding of the cdc25C phosphatase to 14-3-3 proteins, enhanced dephosphorylation/activation of p34(cdc2), and diminished phosphorylation of cyclic AMP-responsive element binding protein. The ability of UCN-01, when combined with PD184352, to antagonize cdc25C/14-3-3 protein binding, promote dephosphorylation of p34(cdc2), and potentiate apoptosis was mimicked by the ataxia telangectasia mutation inhibitor caffeine. In contrast, cotreatment of cells with UCN-01 and PD184352 did not substantially increase c-Jun-NH(2)-terminal kinase activation nor did it alter expression of Bcl-2, Bcl-x(L), Bax, or X-inhibitor of apoptosis. However, coexposure of U937 cells to UCN-01 and PD184352 induced a marked increase in p38 MAPK activation. Moreover, SB203580, which inhibits multiple kinases including p38 MAPK, partially antagonized cell death. Lastly, although UCN-01 +/- PD184352 did not induce p21(CIP1), stable expression of a p21(CIP1) antisense construct significantly increased susceptibility to this drug combination. Together, these findings indicate that exposure of leukemic cells to UCN-01 leads to activation of the MAPK cascade and that interruption of this process by MEK inhibition triggers perturbations in several signaling and cell cycle regulatory pathways that culminate in mitochondrial injury, caspase activation, and apoptosis. They also raise the possibility that disrupting multiple signaling pathways, e.g., by combining UCN-01 with MEK inhibitors, may represent a novel antileukemic strategy.  相似文献   

11.
7-Hydroxystaurosporine (UCN-01), which was originally identified as a protein kinase C selective inhibitor, is currently in clinical trials as an anti-cancer drug. We previously showed that UCN-01 induced preferential G1-phase accumulation in tumor cells and this effect was associated with the retinoblastoma (Rb) protein and its regulatory factors, such as cyclin-dependent kinase 2 (CDK2) and CDK inhibitors p21Cip1/WAF1 and p27Kip1. We demonstrate here that G1-phase accumulation was induced by UCN-01 in Rb-proficient cell lines (WiDr and HCT116 human colon carcinomas and WI-38 human lung fibroblast), and it was accompanied by dephosphorylation of Rb. In addition, UCN-01-induced G1-phase accumulation was also demonstrated in a Rb-defective cell line (Saos-2 human osteosarcoma), but not in a simian virus 40 (SV40)-transformed cell line (WI-38 VA13). Apoptosis was induced by UCN-01 in the two Rb-deficient cell lines, but not in the other Rb-proficient cell lines. These observations suggest that G1-checkpoint function might be important for cell survival during UCN-01 treatment. In addition, there may be a UCN-01-responsive factor in the G1-checkpoint machinery other than Rb which is targeted by SV40. Further studies revealed a correlation between UCN-01-induced G1-phase accumulation and reduction of cellular CDK2 kinase activity. This reduction was strictly dependent on down-regulation of the Thr160-phosphorylated form of CDK2 protein, and coincided in part with up-regulation of p27Kip1, but it was independent of the level of the p21Cip1/WAF1 protein. These results suggest that G1-checkpoint function, including a CDK2-regulatory pathway, may be a significant determinant of the sensitivity of tumor cells to UCN-01.  相似文献   

12.
Histone deacetylase (HDAC) inhibitors such as trichostatin (TSA) and butyrate have been shown to inhibit cancer cell proliferation, induce apoptosis and regulate the expression of genes involved in cell cycle. Although the precise mechanism underlying HDAC inhibitor-induced cell growth arrest is not fully understood, induction of cell cycle related genes such as p21(cip/waf), is thought to be important. Here we showed that in the SW620 human colon cancer cell line, TSA and butyrate induced the growth arrest and DNA damage gene 45alpha (GADD45alpha) and GADD45beta. Furthermore, GADD45beta and p21(cip/waf) messenger RNA were induced in the absence of protein synthesis, indicating that both genes were immediate target genes for TSA. Cyclohexamide and TSA super-induced the expression of GADD45alpha and beta, but not p21(cip/waf). Interestingly while mitogen-activated kinase (MEK) inhibitor PD98059 and p38 kinase inhibitor SB242235 were unable to affect GADD45 induction, two serine/threonine protein kinase inhibitors (H7 and H8) as well as curcumin completely blocked the super-induction. Concomitant to the inhibition of GADD45 induction, H7 and H8 also blocked TSA-induced apoptosis. Taken together, these results suggest that GADD45 induction may play important role in TSA-induced cellular effects.  相似文献   

13.
Elevation of the cyclin-dependent kinase (cdk) inhibitor, p27(kip1) is necessary for Interleukin (IL)-4-mediated growth arrest of human low grade astrocytoma (RTLGA) cells and occurs at 24 h of treatment. Pathways involved in IL4 alteration of p27(kip1) are unknown, however. Here we investigated whether other cdk inhibitors contributed to the actions of IL-4 on RTLGA cells. By 12 h of IL-4 treatment, both cdk4 and cdk2 kinase activities against the retinoblastoma protein (pRb) were reduced and nuclear entry of pRb was prohibited. Twelve-hour cdk complexes contained elevated p21(waf1/cip1) but not p27(kip1), p15(ink4B) or p16(ink4A). IL-4 increased p21(waf1/cip1) but not p27(kip1) mRNA levels, and stimulated luciferase activity of a p21(waf1/cip1) promoter-luciferase reporter. In p53-mutant WITG3 cells, IL-4 did not alter p21(waf1/cip1) mRNA and promoter-luciferase activity or p27(kipl) protein, suggesting a need for functional p53. STAT6 phosphorylation by IL-4, however, occurred in both p53-mutant WITG3 and p53-functional RTLGA cells. Pre-treatment of RTLGA with anti-sense but not missense p21(waf1/cip1) oligonucleotide prior to IL-4: (a) restored cdk activities; (b) reduced cdk4-associated p21(waf1/cip1) levels; (c) prevented p27(kipl) elevation; and (d) reversed growth arrest. These results are the first to suggest that p21(waf1/cip1) is essential for IL-4-mediated elevation of p27(kip) and growth arrest of astrocytoma cells.  相似文献   

14.
15.
LaRue KE  Khalil M  Freyer JP 《Cancer research》2004,64(5):1621-1631
Multicellular spheroids composed of transformed cells are known to mimic the growth characteristics of tumors and to develop gradients in proliferation with increasing size. This progressive accumulation of quiescent cells is presumably an active process that occurs in response to the microenvironmental stresses that develop within the three-dimensional structure, and, yet, little is known regarding either the signals that induce the cell cycle arrest or the molecular basis for the halt in proliferation. We have previously reported that regulation of cyclin-dependent kinase (CDK) inhibitors (CKIs) differs in monolayer versus spheroid cell culture. In this study, we have examined the expression of three CKIs in EMT6 mouse mammary carcinoma and MEL28 human melanoma spheroids, as a function both of spheroid size and of location within the spheroid. We report that expression of the CKIs p18(INK4c), p21(waf1/cip1), and p27(Kip1) all increase as the spheroid grows and develops a quiescent cell fraction. However, by examining protein expression in discrete regions of the spheroid, we have found that only p18(INK4c) and p27(Kip1) expression positively correlate with growth arrest, whereas p21(waf1/cip1) is expressed predominantly in proliferating cells. Further analysis indicated that, in the quiescent cells, p18(INK4c) is found in increasing association with CDK6, whereas p27(Kip1) associates predominantly with CDK2. In MEL28 cells, CDK2 activity is completely abrogated in the inner regions of the spheroid, whereas in EMT6 cells, CDK2 activity decreases in accordance with a decrease in expression. We also observed a decrease in all cell cycle regulatory proteins in the innermost spheroid fraction, including CDKs, CKIs, and cyclins. Induction of CKIs from separate families, as well as their association with distinct target CDKs, suggests that there may be multiple checkpoints activated to ensure cell cycle arrest in non-growth-conducive environments. Furthermore, because very similar observations were made in both a human melanoma cell line and a mouse mammary carcinoma cell line, our results indicate that these checkpoints, as well as the signal transduction pathways that activate them, are highly conserved.  相似文献   

16.
17.
18.
The seriousness of ovarian cancer, which is related to the observed link between recurrency and cell cycle control defect, prompted us to explore the effect of ectopic expression of the cdk inhibitor p21(cip1/waf1) on ovarian carcinoma chemosensitivity. The transfection of p21(cip1/waf1) cDNA into SKOV3 and OVCAR3 cells led to reduction of tumor cell growth, enhanced susceptibility to cisplatin-induced apoptosis, and abolition of recurrency after cisplatin exposure. p21(cip1/waf1) gene transfer allowed a marked reduction of the cisplatin concentration needed to erradicate the tumor cell population. These results suggest exploring the possible use of p21(cip1/waf1) as an adjunctive to conventional chemotherapy.  相似文献   

19.
7–Hydroxystaurosporine (UCN-01), which was originally identified as a protein kinase C selective inhibitor, is currently in clinical trials as an anti-cancer drug. We previously showed that UCN-01 induced preferential G1–phase accumulation in tumor cells and this effect was associated with the retinoblastoma (Rb) protein and its regulatory factors, such as cyclin-dependent kinase 2 (CDK2) and CDK inhibitors p21Cip1/WAF1 and p27kipl. We demonstrate here that G1–phase accumulation was induced by UCN-01 in Rb-proficient cell lines (WiDr and HCT116 human colon carcinomas and WI-38 human lung fibroblast), and it was accompanied by dephosphorylation of Rb. In addition, UCN-01–induced G1–phase accumulation was also demonstrated in a Rb-defective cell line (Saos-2 human osteosarcoma), but not in a simian virus 40 (SV40)-transformed cell line (WI-38 VA13). Apoptosis was induced by UCN-01 in the two Rb-deficient cell lines, but not in the other Rb-proficient cell lines. These observations suggest that G1–checkpoint function might be important for cell survival during UCN-01 treatment. In addition, there may be a UCN-01–responsive factor in the G1–checkpoint machinery other than Rb which is targeted by SV40. Further studies revealed a correlation between UCN-01–induced G1–phase accumulation and reduction of cellular CDK2 kinase activity. This reduction was strictly dependent on down-regulation of the Thr160–phosphor-ylated form of CDK2 protein, and coincided in part with up-regulation of p27Kip1, but it was independent of the level of the p21Cip1/WAF1 protein. These results suggest that G1–checkpoint function, including a CDK2–regulatory pathway, may be a significant determinant of the sensitivity of tumor cells to UCN-01.  相似文献   

20.
Interactions between the PKC and Chk1 inhibitor UCN-01 and pharmacologic MEK1/2 inhibitors (e.g., U0126, PD184352) were examined in Bcr/Abl(+) = human leukemia cells (K562, LAMA 84) sensitive and resistant to the Bcr/Abl kinase inhibitor STI571. Coexposure of K562 cells to UCN-01 (e.g., 100 nM) or U0126 (30 microM) resulted in a marked increase in mitochondrial injury (e.g., release of cytochrome c; loss of deltapsi(m)) and apoptosis. Similar results were obtained in other Bcr/Abl(+) cells (e.g., LAMA 84, BV-173) and with other MEK1/2 inhibitors (e.g., PD184352). Exposure of K562 cells to UCN-01 resulted in activation of ERK, an effect that was abrogated by co-administration of MEK1/2 inhibitors. Coadminstration of UCN-01 with U0126 produced multiple perturbations in signal transduction/cell cycle regulatory pathways, including diminished expression of Bcr/Abl, Mcl-1, cylin D(1), and activation of JNK and p34(cdc2). Coadministration of the JNK inhibitor SP600125 attenuated UCN-01/MEK inhibitor- associated lethality, suggesting a functional role for JNK activation in enhanced lethality. Finally, UCN-01 and MEK1/2 inhibitors effectively induced apoptosis in Bcr/Abl(+) cells (e.g., K562 and LAMA 84) overexpressing Bcr/Abl and resistant to STI571. These findings indicate that BcrAbl(+) leukemia cells are sensitive to a strategy combining UCN-01 with MEK/ERK inhibitors that simultaneously disrupts two signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号