首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In the present study, we investigated the effect of hydroxyl radical (.OH) produced by the Fenton reaction with FeSO(4) to H(2)O(2) on Ca2+ influx by measuring [(45)Ca2+] influx into mouse cerebral cortical neurons in primary culture.OH formed from 3 microM FeSO(4) and 0.01 microM H(2)O(2) significantly reduced 30 mM KCl-induced [(45)Ca2+] influx and this reduction was abolished by .OH scavengers such as N,N'-dimethylthiourea and mannitol. Nifedipine (1 microM), an inhibitor for L-type voltage-dependent Ca2+ channels (VDCCs) showed no additive effect on the reduction of the 30 mM KCl-induced [(45)Ca2+] influx, while the inhibitors for P/Q- and N-type VDCCs showed further suppression of the KCl-induced [(45)Ca2+] influx even in the presence of .OH. Bay k 8644, an activator of L-type VDCCs, dose-dependently stimulated [(45)Ca2+] influx, and this stimulation disappeared in the presence of nifedipine. Similarly, .OH also suppressed significantly [(45)Ca2+] influx induced by Bay k 8644. These inhibitory actions of .OH on the KCl- and Bay k 8644-induced [(45)Ca2+] influx were completely abolished by .OH scavengers. These results indicate that .OH has the activity to suppress Ca2+ influx through L-type VDCCs.  相似文献   

2.
The scaffold protein family Homer/Vesl serves to couple surface receptors or channels with endoplasmic calcium release channels. Homer 1a/Vesl-1S is regarded as regulating such coupling in an activity-dependent manner. The present calcium photometry and electrophysiological measurement revealed that Homer 1a up-regulates voltage-dependent calcium channels (VDCCs), depending on inositol-1,4,5-trisphosphate (IP3) receptors (IP3Rs). In rat neocortex pyramidal cells, intracellular injection by diffusion from the patch pipette (referred to as 'infusion') of Homer 1a protein enhanced spike-induced calcium increase, depending on both the protein concentration and spike frequency. Induction of this enhancement was disrupted by blockers of key molecules of the mGluR-IP3 signalling pathway, including metabotropic glutamate receptors (mGluRs), phospholipase C and IP3Rs. However, infusion of IP3 failed to mimic the effect of Homer 1a, suggesting requirement for a second Homer 1a-mediated signalling as well as the mGluR-IP3 signalling. In contrast to the induction, maintenance of this enhancement was independent of the mGluR-IP3 signalling, taking the form of augmented calcium influx via L-type VDCCs. Presumably due to the VDCC up-regulation, threshold currents for calcium spikes were reduced. Given that Homer 1a induction is thought to down-regulate neural excitability and hence somatic spike firing, this facilitation of calcium spikes concomitant with such attenuated firing may well have a critical impact on bi-directional synaptic plasticity.  相似文献   

3.
The effects of auxiliary calcium channel subunits on the expression and functional properties of high-voltage activated (HVA) calcium channels have been studied extensively in the Xenopus oocyte expression system, but are less completely characterized in a mammalian cellular environment. Here, we provide the first systematic analysis of the effects of calcium channel beta and alpha(2)-delta subunits on expression levels and biophysical properties of three different types (Ca(v)1.2, Ca(v)2.1 and Ca(v)2.3) of HVA calcium channels expressed in tsA-201 cells. Our data show that Ca(v)1.2 and Ca(v)2.3 channels yield significant barium current in the absence of any auxiliary subunits. Although calcium channel beta subunits were in principle capable of increasing whole cell conductance, this effect was dependent on the type of calcium channel alpha(1) subunit, and beta(3) subunits altogether failed to enhance current amplitude irrespective of channel subtype. Moreover, the alpha(2)-delta subunit alone is capable of increasing current amplitude of each channel type examined, and at least for members of the Ca(v)2 channel family, appears to act synergistically with beta subunits. In general agreement with previous studies, channel activation and inactivation gating was regulated both by beta and by alpha(2)-delta subunits. However, whereas pronounced regulation of inactivation characteristics was seen with the majority of the auxiliary subunits, effects on voltage dependence of activation were only small (< 5 mV). Overall, through a systematic approach, we have elucidated a previously underestimated role of the alpha(2)-delta(1) subunit with regard to current enhancement and kinetics. Moreover, the effects of each auxiliary subunit on whole cell conductance and channel gating appear to be specifically tailored to subsets of calcium channel subtypes.  相似文献   

4.
In the present work, the Ca(2+) dependence of mitochondrial H(2) O(2) elimination was investigated. Mitochondria isolated from guinea pig brain were energized by glutamate and malate and incubated with micromolar concentrations of Ca(2+) in the presence of ADP, preventing permeability transition pore formation. After the completion of Ca(2+) uptake, mitochondria were challenged with H(2) O(2) (5 μM), then at various time points residual H(2) O(2) was determined using the Amplex red method and compared with that in mitochondria incubated with H(2) O(2) without Ca(2+) addition. Dose-dependent inhibition of H(2) O(2) elimination by Ca(2+) was detected, which was prevented by the Ca(2+) -uptake inhibitor Ru 360. Stimulation of Ca(2+) release from Ca(2+) -loaded mitochondria by a combined addition of Ru 360 and Na(+) decreased the Ca(2+) -evoked inhibition of H(2) O(2) removal. After Ca(2+) uptake (50 μM), mitochondrial aconitase activity was found to be decreased, which was partially attributable to the impaired elimination of endogenously produced reactive oxygen species. We found that the effects of Ca(2+) and H(2) O(2) on the activity of aconitase were additive. These results confirm that Ca(2+) inhibits elimination of H(2) O(2) in mitochondria and demonstrate that this effect is concentration dependent and reversible. The phenomenon described here can play a role in the modulation of ROS handling under conditions involving excessive cellular Ca(2+) load.  相似文献   

5.
Ko GY  Ko M  Dryer SE 《Brain research》2004,1021(2):277-280
Circadian oscillators of chicken retinal cone photoreceptors modulate the gating properties of cGMP-gated channels (CNGCs) such that they have a higher apparent affinity for cGMP during the subjective night. This effect is driven in part by cAMP, which acts through Erk MAP kinase to initiate a cascade leading to modulation of CGNCs. Here, we show that cAMP effects on the gating properties CNGCs persist when protein synthesis is blocked. The effects is cAMP also persist when calcium influx through L-type channels is blocked by nitrendipine. The mechanisms whereby cAMP modulates CNGCs therefore differ from those previously reported to underline regulation of melatonin synthesis and secretion.  相似文献   

6.
Neville KR  Lytton WW 《Neuroreport》1999,10(17):3711-3716
In pyramidal cells, somatic action potentials can propagate actively back into the apical dendrites and potentiate calcium influx at simultaneously activated glutamatergic synapses, presumably by relieving the voltage-dependent block of NMDA channels. We have used computer simulations to investigate the conditions under which this potentiation will be optimal. We find that a spike with a long duration and limited amplitude (peak of approximately -10 mV) will be most effective. A back-propagating action potential will achieve this form if the dendritic membrane has a low K+ channel density and a modest Na+ channel density (30-70 pS/microm2, similar to experimentally observed densities). The relative increase in calcium due to the backpropagating spike will be small, however, unless the accumulated calcium is rapidly removed.  相似文献   

7.
8.
Exposure of cultured neurons and neuronal cells to aggregated amyloid-beta (Abeta) induces multiple neurodegenerative events including accumulation of cytosolic calcium, generation of reactive oxygen species, abnormal levels of phosphorylation of the microtubule-associated protein tau, and apoptosis. Prevention of accumulation of calcium within the cytosol also prevents all other events, suggesting that calcium accumulation is an early and pivotal event in Abeta neurotoxicity. Calcium influx has been suggested to occur via L voltage-sensitive calcium channels or NMDA channels. Calcium influx into differentiated human neuroblastoma cells has been previously attributed to the L voltage-sensitive calcium channel, but the contribution of the NMDA channel was not examined. In the present study, treatment of these cells with MK-801, an antagonist of NMDA channels, failed to attenuate Abeta-induced calcium influx or neurodegeneration, while nimopridine, an antagonist of the L voltage-sensitive calcium channel, blocked Abeta-induced calcium influx. Our findings suggest that NMDA channels do not contribute significantly to Abeta neurotoxicity in these acute cell culture analyses.  相似文献   

9.
The prion protein (PrP) and the amyloid β (Aβ) precursor protein (APP) are two normal proteins constitutively synthesised in human brain. An altered form of PrP accumulates in Creutzfeldt–Jakob disease, while Aβ is involved in the pathogenesis of Alzheimer's disease. Synthetic fragments of both proteins, PrP106–126 and β25–35 (β25–35), have been demonstrated to induce neurodegeneration and microglia activation. This study was undertaken to compare PrP106–126 and β25–35 capability of activating human resting microglial cells. Our results show that both peptides are able to induce microglial activation and to elicit an increase in [Ca2+]i levels in cells loaded with calcium-green 1. Inhibitors of L-type voltage-sensitive calcium channels (verapamil, nifedipine and diltiazem) prevented the increase in [Ca2+]i concentration as observed after treatment with PrP106–126 and β25–35, thus indicating a transmembrane calcium influx through these channels. In addition, verapamil abolished the proliferative effect of both PrP106–126 and β25–35.  相似文献   

10.
The calcium-permeable transient receptor potential M2 (TRPM2) ion channel is activated following oxidative stress and has been implicated in ischemic damage; however, little experimental evidence exists linking TRPM2 channel activation to damage following cerebral ischemia. We directly assessed the involvement of TRPM2 channels in ischemic brain injury using pharmacological inhibitors and short-hairpin RNA (shRNA)-mediated knockdown of TRPM2 expression. Each of the four TRPM2 inhibitors tested provided significant protection to male neurons following in vitro ischemia (oxygen–glucose deprivation, OGD), while having no effect in female neurons. Similarly, TRPM2 knockdown by TRPM2 shRNA resulted in significantly reduced neuronal cell death following OGD only in male neurons. The TRPM2 inhibitor clotrimazole reduced infarct volume in male mice, while having no effect on female infarct volume. Finally, intrastriatal injection of lentivirus expressing shRNA against TRPM2 resulted in significantly smaller striatal infarcts only in male mice following middle cerebral artery occlusion, having no significant effect in female mice. Data presented in the current study demonstrate that TRPM2 inhibition and knockdown preferentially protects male neurons and brain against ischemia in vitro and in vivo, indicating that TRPM2 inhibitors may provide a new therapeutic approach to the treatment of stroke in men.  相似文献   

11.
In neurons, small‐conductance calcium‐activated potassium (KCNN/SK/KCa2) channels maintain calcium homeostasis after N‐methyl‐D ‐aspartate (NMDA) receptor activation, thereby preventing excitotoxic neuronal death. So far, little is known about the function of KCNN/SK/KCa2 channels in non‐neuronal cells, such as microglial cells. In this study, we addressed the question whether KCNN/SK/KCa2 channels activation affected inflammatory responses of primary mouse microglial cells upon lipopolysaccharide (LPS) stimulation. We found that N‐cyclohexyl‐N‐[2‐(3,5‐dimethyl‐pyrazol‐1‐yl)‐6‐methyl‐4‐pyrimidinamine (CyPPA), a positive pharmacological activator of KCNN/SK/KCa2 channels, significantly reduced LPS‐stimulated activation of microglia in a concentration‐dependent manner. The general KCNN/SK/KCa2 channel blocker apamin reverted these effects of CyPPA on microglial proliferation. Since calcium plays a central role in microglial activation, we further addressed whether KCNN/SK/KCa2 channel activation affected the changes of intracellular calcium levels, [Ca2+]i,, in microglial cells. Our data show that LPS‐induced elevation of [Ca2+]i was attenuated following activation of KCNN2/3/KCa2.2/KCa2.3 channels by CyPPA. Furthermore, CyPPA reduced downstream events including tumor necrosis factor alpha and interleukin 6 cytokine production and nitric oxide release in activated microglia. Further, we applied specific peptide inhibitors of the KCNN/SK/KCa2 channel subtypes to identify which particular channel subtype mediated the observed anti‐inflammatory effects. Only inhibitory peptides targeting KCNN3/SK3/KCa2.3 channels, but not KCNN2/SK2/KCa2.2 channel inhibition, reversed the CyPPA‐effects on LPS‐induced microglial proliferation. These findings revealed that KCNN3/SK3/KCa2.3 channels can modulate the LPS‐induced inflammatory responses in microglial cells. Thus, KCNN3/SK3/KCa2.3 channels may serve as a therapeutic target for reducing microglial activity and related inflammatory responses in the central nervous system. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Tara Barron  Jun Hee Kim 《Glia》2019,67(10):1922-1932
Communication between neurons and developing oligodendrocytes (OLs) leading to OL Ca2+ rise is critical for axon myelination and OL development. Here, we investigate signaling factors and sources of Ca2+ rise in OLs in the mouse brainstem. Glutamate puff or axon fiber stimulation induces a Ca2+ rise in pre-myelinating OLs, which is primarily mediated by Ca2+-permeable AMPA receptors. During glutamate application, inward currents via AMPA receptors and elevated extracellular K+ caused by increased neuronal activity collectively lead to OL depolarization, triggering Ca2+ influx via P/Q- and L-type voltage-gated Ca2+ (Cav) channels. Thus, glutamate is a key signaling factor in dynamic communication between neurons and OLs that triggers Ca2+ transients via AMPARs and Cav channels in developing OLs. The results provide a mechanism for OL Ca2+ dynamics in response to neuronal input, which has implications for OL development and myelination.  相似文献   

13.
14.
Galantamine, an acetylcholinesterase inhibitor used to enhance memory in AD patients by acetylcholinesterase inhibition, has been tested for its protective properties on an in vitro model of H(2)O(2)-induced oxidative stress. SK-N-SH cells treated with H(2)O(2) for 2h showed an increase in ROS production (54%) and in NO production (52%) together with a marked reduction of the mitochondrial membrane potential (19%). These features, typical of the oxidative injury that accompanies AD, were partly recovered by galantamine. Galantamine reduced the release of reactive oxygen species (up to 50%) and prevented loss in mitochondrial activity. When SK-N-SH cells were treated with H(2)O(2) for 24h, nitrite generation was increased by twice compared with 2h. Galantamine treatment resulted in a significant inhibition of H(2)O(2)-induced nitrite generation whatever the concentration tested with a return to control values. Galantamine also concentration-dependently inhibited AChE activity (28-88%) in H(2)O(2)-SK-N-SH cells after 24h. This drug, which facilitates cholinergic neurotransmission, is also neuroprotective by lowering oxidative injury. Our study provides a better understanding of the mechanisms of protection of this acetylcholinesterase inhibitor which also has antioxidative properties.  相似文献   

15.
B A MacVicar  D Hochman  M J Delay  S Weiss 《Glia》1991,4(5):448-455
Fura-2 and indo-1 fluorescence measurements were used to examine intracellular Ca++ concentration ([Ca++]i) and its modulation by voltage-activated influx in murine cortical astrocytes in primary cell culture. Extracellular K+ was increased from 5 to 50 mM to depolarize cells to determine if Ca++ influx through voltage activated Ca++ channels could alter [Ca++]i. In confluent 4 to 6 weeks in vitro astrocyte cultures 50 mM K+ increased [Ca++]i 3-4-fold (from 150 nM up to 550 nM); this increase was blocked by nifedipine and enhanced by BayK 8644 indicating that influx was through L-type channels. However, in 1 to 2 weeks in vitro astrocyte cultures, high K+ reduced [Ca++]i. L-type channels were apparently present in these cells because high K+ in combination with BayK 8644 increased [Ca++]i. Following pretreatment of 1 to 2 weeks in vitro astrocytes with dibutyryl cAMP (dbcAMP) high K+ increased [Ca++]i in the absence of BayK 8644 indicating enhanced activity of Ca++ channels in agreement with previous voltage-clamp studies. Ca++ influx through voltage-activated channels in cultured cortical astrocytes can substantially increase [Ca++]i and these channels can be dynamically modulated by dihydropyridines. Immature astrocytes may express 'silent' or inactive Ca++ channels or have a much lower number of channels.  相似文献   

16.
目的探讨槲皮苷对H2O2所致的PC12细胞凋亡的保护作用及机制。方法 PC12细胞培养后,MTT检测细胞存活率的方法进行H2O2损伤模型的摸索和槲皮苷药物浓度的筛选,将PC12细胞分为对照组、模型组和不同剂量槲皮苷组。用400μmol H2O2刺激PC12神经元细胞使其发生凋亡复制阿尔茨海默病(AD)模型,MTT法检测PC12细胞存活率、硫辛酰胺脱氢酶催化的INT显色反应检测乳酸脱氢酶(LDH)释放量和DAPI荧光核染色观察细胞凋亡形态学改变,Western blot方法检测Cytc和caspase-3表达的变化。结果 400μmol H2O2诱导PC12细胞损伤明显,与模型组比较,槲皮苷组PC12细胞存活率显著提高(P<0.01),凋亡率显著下降(P<0.01),LDH释放量和凋亡相关蛋白Cytc和caspase-3的表达显著减少(P<0.01)。结论槲皮苷可抑制H2O2诱导的PC12细胞凋亡,其机制可能与抑制细胞凋亡线粒体途径中凋亡相关蛋白Cytc和caspase-3的表达有关。  相似文献   

17.
18.
Nash MS  Wood JP  Melena J  Osborne NN 《Brain research》2000,856(1-2):236-239
The effect of flupirtine on the loss of retinal ganglion cells following transient elevation of intraocular pressure (experimental ischaemia) or NMDA-induced excitotoxicity was studied. Ischaemia (60 min) or intravitreal injection of NMDA (20 nmol) caused a decrease in Thy-1 mRNA and Thy-1 immunoreactivity which are associated with ganglion cells. Administration of flupirtine counteracted these changes. Moreover, flupirtine dose-dependently inhibited NMDA-induced 45Ca(2+) influx into cultured cortical neurones and retinal pieces in vitro with maximal inhibition being observed at 200 microM. A similar concentration of flupirtine failed to inhibit kainate-stimulated calcium influx into cultured cortical neurones. In addition, flupirtine had no significant effect on [3H]nitrendipine or [3H]diltiazem binding to cortical membranes. The present studies are consistent with previous findings which suggested flupirtine to act as a NMDA antagonist by a mechanism that still remains to be clarified.  相似文献   

19.
Effects of different buffers: N-2-Hydroxyethylpiperazine-N-2-ethanesulfonic acid (HEPES), Ethanolamine (2-Aminoethanol), sodium bicarbonate (NaHCO3) in the presence of 0.003% H2O2 or 0.5% ethanol were investigated on cell cultures from brain (chick embryo 5 1/2 or 9 day in ovo). Morphological parameters: density of cells, reaggregation, size of cell aggregates were used. H2O2 in the presence of NaHCO3 led to a decrease of isolated cells and an increase of reaggregation with degeneration in the great clusters. When H2O2 and 5 mM HEPES were present together in the absence of NaHCO3, the aggregation was less than with HEPES alone. By use of a chemical defined medium DME/F-12 supplemented with Insulin, Transferrin, sodium selenite, bovine serum albumin and 15 mM HEPES both the number and the diameter of cell aggregates increased. Addition of 0.5% ethanol in the presence of NaHCO3 stimulated in cultures of the ganglion trigeminale and telencephalon (9 day chick embryos) the regeneration of neurites and the proliferation and migration of non-neural cells. No growth of neurites was observed on the same condition in brain cultures from 6 day chick embryo. The number of large aggregates increased significantly in the presence of NaHCO3 and in the chemical defined and supplemented medium DME/F-12. Bologa et al. (1987) demonstrated that the buffers TREA (Triethanolamine) and HEPES enhance the expression of properties related to post-mitotic differentiated cellular states in both neurons and glia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
We investigated the effects of amitriptyline, a tricyclic antidepressant, on [3H]norepinephrine ([3H]NE) secretion and ion flux in bovine adrenal chromaffin cells. Amitriptyline inhibited [3H]NE secretion induced by 1,1-dimethyl-4-phenylpiperazinium iodide (DMPP) and 70 mM K+. The half maximal inhibitory concentration (IC50) was 2 μM and 9 μM, respectively. Amitriptyline also inhibited the elevation of cytosolic calcium ([Ca2+]i) induced by DMPP and 70 mM K+ with IC50 values of 1.1 μM and 35 μM, respectively. The rises in cytosolic sodium ([Na+]i) and [Ca2+]i induced by the Na+ channel activator veratridine were also inhibited by amitriptyline with IC50 values of 7 μM and 30 μM, respectively. These results suggest that amitriptyline at micromolar concentrations inhibits both voltage-sensitive calcium (VSCCs) and sodium channels (VSSCs). Furthermore, submicromolar concentrations of amitriptyline significantly inhibited DMPP-induced [3H]NE secretion and [Ca2+]i rise, but not veratridine- or 70 mM K+-induced responses, suggesting that nicotinic acetylcholine receptors (nAChR) as well as VSCCs and VSSCs can be targeted by amitriptyline. DMPP-induced [Na+]i rise was much more sensitive to amitriptyline than the veratridine-induced rise, suggesting that the influx of Na+ and Ca2+ through the nAChR itself is blocked by amitriptyline. Receptor binding competition analysis showed that binding of [3H]nicotine to chromaffin cells was significantly affected by amitriptyline at submicromolar concentrations. The data suggest that amitriptyline inhibits catecholamine secretion by blocking nAChR, VSSC, and VSCC. Synapse 29:248–256, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号