首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclear morphological alterations associated with multidrug resistance (MDR) were evaluated by image cytometry in various human leukemic cell sub-lines: 3 cell lines with P-gp-mediated resistance (CEM-VLB, HL60/Vinc, K562-Dox), the non-Pgp-mediated MDR HL60/AR leukemic cell line with over-expres-sion of MRP, and the at-MDR CEM-VMI leukemic cell line with alteration of topoisomerase II. All these MDR cell sub-lines were obtained by drug selection and were compared with their sensitive counterparts and with the hamster LR73-R cell line obtained by transfection of mouse mdrl cDNA. All MDR cell sub-lines obtained by drug selection displayed decreased DNA Feulgen stainability as compared with their respective sensitive parental cell line, a phenomenon not observed in the trans-fected LR73-R cells. Nuclear texture analysis on G0/G1-selected cell nuclei revealed 2 types of textural phenotype. The first phenotype was characterized by chromatin decondensation with small but compact chromatin clumps, and was observed in drug-selected P-gp-mediated MDR cells (CEM-VLB, HL60-Vinc, K562-Dox) and in the non-P-gp-mediated MDR HL60/AR cell line. The second phenotype was characterized by a condensed and homogeneous chromatin pattern, and was observed in the at-MDR CEM-VMI cell line. LR73-R cells transfected with mdrl cDNA did not display any significant changes in textural pheno-type as compared with sensitive LR73 cells, suggesting that P-gp over-expression alone cannot account for the cytological modi-fications observed in MDR cells. These data suggest that multidrug resistance could be associated with specific nuclear morphological changes which appeared to be a consequence of alterations occurring during selection by cytotoxic drugs rather than of P-gp over-expression. © 1995 Wiley-Liss, Inc.  相似文献   

2.
In this study, the expression and functional characterization of currents through the CFTR (cystic fibrosis transmembrane regulator) and ORCC (outwardly rectifying chloride channels) were determined in wild-type K562 chronic human leukemia cells (K562-WT) and in its resistant counterpart, the vincristine resistant cell line (K562-Vinc). Expression of the CFTR and MDR1 (multidrug resistant) gene products was determined by a semi-quantitative RT-PCR protocol. The amplified products in K562-WT and K562-Vinc showed two bands corresponding to CFTR and MDR1. MDR1 mRNA increased by 20-fold in K562-Vinc whereas no change in CFTR mRNA levels was observed. CFTR and ORCC channel activity were measured with a whole cell configuration of the patch clamp technique. Forskolin (40 microM n activator of adenylate cyclase, added to the extracellular side increased the current in both cell lines. A fraction of the activated whole cell currents was inhibited by 500 microM 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS) and subsequent addition of 500 microM diphenylamine-2-carboxylate (DPC plus DIDS) further inhibited the remaining currents. The levels of forskolin-activated currents and subsequent blockade were similar in both cell lines. The effect of forskolin was prevented in cells previously exposed to 500 microM DPC. The effects of DIDS and DPC on the forskolin-activated whole cell currents support the idea that both CFTR and ORCC are generating a significant fraction of these currents with DIDS inhibiting ORCC currents and DPC inhibiting CFTR currents when the blockers are added one after another to the extracellular side. Finally, we show that exposure of K562 cells to vincristine which results in the over expression of MDR1 is not accompanied by a significant down regulation of CFTR as in other cells.  相似文献   

3.
4.
 目的 进一步阐明一些高表达P-糖蛋白(P-gp)的慢性粒细胞白血病细胞对伊马替尼耐药的机制。方法 经过对K562细胞系长期的足叶乙苷(VP16)诱导和克隆筛选,建立一株耐药细胞系K562/VP16;利用干细胞高效能将Hoechst 33342 荧光染料泵出细胞的特性,采用流式细胞术,从K562/VP16细胞系中分选出一小群细胞,即边缘细胞(SP),称为K562/VP16 SP细胞,并初步探讨其抗伊马替尼的机制。结果 bcr/abl和abl 蛋白在K562细胞、K562/VP16 SP细胞及非K562/VP16 SP细胞(non-SP K562/VP16)中的表达水平差异无统计学意义;P-gp在K562细胞中不表达,在K562/VP16 SP及non-SP K562/VP16细胞中均高表达且表达水平一致;与non-SP K562/VP16细胞比较,K562/VP16 SP细胞对伊马替尼的耐药性更强,并且这种抗性几乎不能被多种多药耐药逆转剂逆转;另外,体内外实验显示,K562/VP16细胞的致瘤性几乎全部来源于K562/VP16 SP细胞。结论 bcr/abl基因的扩增、过度表达和多药耐药基因及其蛋白表达产物P-gp的高表达,可能不是白血病细胞产生对伊马替尼临床耐药的重要机制;白血病细胞对伊马替尼具有一定的抗性,可能与数量极少的白血病干细胞有直接的关系。因此,这类数量极少的干细胞样的肿瘤细胞应当成为有效治疗肿瘤的靶细胞。  相似文献   

5.
6.
Xiao XB  Xie ZX  Qin Q 《中华肿瘤杂志》2006,28(6):422-425
目的构建MDR1基因短发卡样RNA(shRNA)真核表达载体,观察对K562/A02人白血病细胞株MDR1基因的沉默作用以及对P-糖蛋白(P-gp)表达及功能的影响。方法以基因重组技术构建表达质粒,转染重组质粒pEGFP-C1/U6/MDR1-A和pEGFP-C1/U6/MDR1-B至K562/A02细胞株,通过半定量RT-PCR和蛋白质印迹法,检测MDR1基因表达及P-gp表达水平的变化;以MTT法检测阿霉素(ADM)对K562/A02细胞的半数抑制浓度(IC_(50));高效液相色谱(HPLC)法检测细胞内ADM含量。结果构建的2种重组质粒pEGFP-C1/U6/MDR1-A和pEGFP-C1/U6/MDR1-B均明显抑制K562/A02细胞株MDR1基因表达,抑制率最高为48.2%±2.5%;同时抑制P-gp蛋白的表达,抑制率最高为50.67%。对ADM药物敏感性的相对逆转效率分别为40.8%和62.4%;同时使K562/ A02细胞内ADM含量增加。结论shRNA表达载体可明显抑制K562/A02细胞MDR1 mRNA的转录和P-gp蛋白的表达,增加K562/A02细胞内ADM含量,恢复K562/A02细胞对化疗药物的敏感性,逆转MDR1基因编码蛋白P-gp介导的多药耐药。  相似文献   

7.
White DE  Burchill SA 《Cancer letters》2008,268(2):212-224
The role of NF-kappaB in the Ewing's sarcoma family of tumours (ESFT) and their response to fenretinide has been investigated. Basal levels of phosphorylated NF-kappaB were low in all ESFT cells. BAY 11-7082 decreased cell viability, which was accompanied by caspase-3 cleavage. This was independent of the increase in reactive oxygen species, p38(MAPK) phosphorylation and expression of NF-kappaB target proteins. NF-kappaB knockdown did not induce death under normal growth conditions, but did reduce TNFalpha-dependent cell survival. Fenretinide-induced apoptosis was independent of NF-kappaB. BAY 11-7082-induced cell death through an NF-kappaB-independent mechanism and enhanced cell death when combined with fenretinide.  相似文献   

8.
One of the most important causes of anticancer treatment failure is the development of multidrug resistance (MDR). The main characteristics of tumor cells displaying the MDR phenomena are cross-resistance to structurally unrelated cytotoxic drugs having different mechanisms of action and the overexpression of the MDR1 gene, which encodes a transmembrane glycoprotein named P-glycoprotein (P-gp). This study evaluated whether bromocriptine, a D2 dopaminergic receptor agonist, influenced anticancer drug cytotoxicity and P-gp activity in a P-gp-expressing cell line compared to a non-expressing subline. The K(i) values for P-gp of cyclosporine and verapamil were 1.09 and 540 microM, respectively, and that of bromocriptine was 6.52 microM in a calcein-AM efflux assay using porcine kidney epithelial LLC-PK1 and L-MDR1 cells, overexpressing human P-gp. Bromocriptine at 10 microM reduced the IC50 of doxorubicin (DXR) in K562-DXR from 9000 to 270 ng/ml and that of vincristine (VCR) in K562-VCR from 700 to 0.30 ng/ml, whereas the IC50 values of DXR and VCR in the K562 subline were only marginally affected by these drugs. Bromocriptine restored the anticancer effect of DXR, VCR, vinblastine, vinorelbine and etoposide on MDR-tumor cells overexpressing P-gp. These observations suggest that bromocriptine has the potential to reverse tumor MDR involving the efflux protein P-gp in the clinical situation.  相似文献   

9.
P-glycoprotein (Pgp) and XIAP co-expression has been discussed in the process of the acquisition of multidrug resistance (MDR) in cancer. Here, we evaluated XIAP and Pgp expression in chronic myeloid leukemia (CML) samples, showing a positive correlation between them. Furthermore, we evaluated the effects of imatinib in XIAP and Pgp expression using CML cell lines K562 (Pgp) and K562-Lucena (Pgp+). Imatinib increased XIAP and Pgp expression in K562-Lucena cells, while in K562 cells a downregulation of these proteins was observed, suggesting that imatinib induces an increment of MDR phenotype of CML cells that previously exhibit high levels of Pgp/XIAP co-expression.  相似文献   

10.
11.
CD34(+) bone marrow blasts from high-risk myelodysplastic syndrome (MDS) patients as well as MDS patient-derived cell lines (P39 and MOLM13) constitutively activate the nuclear factor-kappaB (NF-kappaB) pathway and undergo apoptosis when NF-kappaB is inhibited. Here, we show that the combination of conventional chemotherapeutic agents (daunorubicin, mitoxantrone, 5-azacytidine or camptothecin) with the NF-kappaB inhibitor BAY11-7082 did not yield a synergistic cytotoxicity. In contrast, BAY11-7082 (which targets the NF-kappaB-activating I-kappaB kinase (IKK) complex) or knockdown of essential components of the NF-kappaB system (such as the IKK1 and IKK2 subunits of the IKK complex and the p65 subunit of NF-kappaB), by small interfering RNAs sensitized MDS cell lines to starvation-induced apoptosis. The combination of BAY11-7082 and nutrient depletion synergistically killed the acute myeloid leukemia (AML) cell line U937 as well as primary CD34(+) bone marrow blasts from AML and high-risk MDS patients. The synergistic killing by BAY11-7082, combined with nutrient depletion, led to cell death accompanied by all hallmarks of apoptosis, including an early loss of the mitochondrial transmembrane potential, the release of cytochrome c and apoptosis-inducing factor (AIF) from mitochondria, activation of caspase-3, phosphatidylserine exposure on the plasma membrane surface and nuclear chromatin condensation. Transmission electron microscopy revealed the presence of numerous autophagic vacuoles in the cytoplasm before cells underwent nuclear apoptosis. Nonetheless, cell death was neither inhibited by the pan-caspase inhibitor z-VAD-fmk nor by knockdown of AIF or of essential components of the autophagy pathway (ATG5, ATG6/Beclin-1, ATG10, ATG12). In contrast, external supply of glucose, insulin or insulin-like growth factor-I could retard the cell death induced by BAY11-7082 combined with starvation. These results suggest that in MDS cells, NF-kappaB inhibition can precipitate a bioenergetic crisis that leads to an autophagic stress response followed by apoptotic cell death.  相似文献   

12.
A newly synthesized 1,4-benzothiazipine derivate, 4-[3-(4-benzylpiperidin-1-yl) propionyl]-7-methoxy-2,3,4,5-tetrahydro-1, 4-benzothiazepine monohydrochloride (JTV-519) was examined for its ability to reverse P-glycoprotein (P-gp) and multidrug resistance protein 1 (MRP1) mediated multidrug resistance (MDR) in K562/MDR and KB/MRP cells, respectively. JTV-519 at 3 microM reversed the resistance of K562/MDR cells to vincristine (VCR), taxol, etoposide (VP16), adriamycin (ADM) and actinomycin D and at 0.5 or 1 microM reversed their resistance to STI571. JTV-519 at 10 microM enhanced the accumulation of ADM in K562/MDR cells to the level in parental K562 cells and inhibited the efflux of ADM from K562/MDR cells. Photoaffinity labeling of P-gp with 3H-azidopine was almost completely inhibited by 500 microM JTV-519. JTV-519 at 3 microM also partially reversed the resistance of KB/MRP cells to VCR and at 500 microM partially inhibited the photoaffinity labeling of MRP1 with (125)I-II-azidophenyl agosterol A (125I-azidoAG-A). These results suggest that JTV-519 reversed the resistance to the anti-cancer agents in P-gp and MRP1 overexpressing multidrug-resistant cells by directly binding to P-gp and MRP1, and competitively inhibiting transport of the anti-cancer agents.  相似文献   

13.
The multidrug resistance (MDR) phenotype, induced by the overexpression of several ABC transporters or by antiapoptotic mechanisms, has been identified as the major cause of drug resistance in the treatment of patients with acute myeloid leukemia (AML). In this study, we have shown that valproic acid (VPA) (a histone deacetylase inhibitor) can inhibit the proliferation of both P-glycoprotein (P-gp)- and MDR-associated protein 1 (MRP1)-positive and -negative cells. VPA also induced apoptosis of P-gp-positive cells. VPA induced apoptosis in K562 cells led to decrease in Flip (FLICE/caspase-8 inhibitory protein) expression with Flip cleavage, which could not be observed in HL60 cells. In HL60/MRP cell line, which proved to be resistant to apoptosis by VPA, we observed an abnormal expression of apoptotic regulatory proteins, overexpression of Bcl-2 and absence of Bax. Also, the Bcl-2 antagonist HA14-1 rapidly restored apoptosis in this cell line. Cotreatment with cytosine arabinoside induced very strong apoptosis in both K562/DOX and HL60/DNR cell lines. VPA also induced apoptosis in AML patient cells expressing P-gp and/or MRP1. Our findings show VPA as an interesting drug that should be tested in clinical trials for overcoming the MDR phenotype in AML patients.  相似文献   

14.
STI571, an Abl-specific tyrosine kinase inhibitor, selectively kills Bcr-Abl-containing cells in vitro and in vivo . However, some chronic myelogenous leukemia (CML) cell lines are resistant to STI571. We evaluated whether STI571 interacts with P-glycopro-tein (P-gp) and multidrug resistance protein 1 (MRP1), and examined the effect of agents that reverse multidrug resistance (MDR) on the resistance to SI571 in MDR cells. STI571 inhibited the [125l]azidoagosterol A-photolabeling of P-gp, but not that of MRP1. K562/MDR cells that overexpress P-gp were 3.67 times more resistant to STI571 than the parental Philadelphia-chromosome-positive (Ph+) CML K562 cells, and this resistance was most effectively reversed by cepharanthine among the tested reversing agents. The concentration of STI571 required to completely inhibit tyrosine phosphorylation in K562/MDR cells was about 3 times higher than that in K562 cells, and cepharanthine abolished the difference. In KB-G2 cells that overexpress P-gp, but not Bcr-Abl, 2.5 μM STI571 partly reversed the resistance to vincristine (VCR), paclitaxel, etoposide (VP-16) and actinomycin D (ACD) but not to Adriamycin (ADM) or colchicine. STI571 increased the accumulation of VCR, but not that of ADM in KB-G2 cells. STI571 did not reverse resistance to any agent in KB/MRP cells that overexpress MRP1. These findings suggest that STI571 is a substrate for P-gp, but is less efficiently transported by P-gp than VCR, and STI571 is not a substrate for MRP1. Among the tested reversing agents that interact with P-gp, cepharanthine was the most effective agent for the reversal of the resistance to STI571 in K562/ MDR cells. Furthermore, STI571 itself was a potent reversing agent for MDR in P-gp-expressing KB-G2 cells.  相似文献   

15.
Multidrug-resistance (MDR) is a major hindrance to successful chemotherapy. The emergence of MDR is multi-factorial. Among them, the MDR1 gene/P-glycoprotein (P-gp) is a popular and important reason. In our study, an MDR1 single-factorial drug-resistant leukemia cell line K562/MDR1 was constructed via transferring full-length human MDR1 cDNA into drug-sensitive K562 cells. The short-hairpin RNA (shRNA) targeting MDR1 gene was transfected into K562/MDR1 cell lines by the replication-defective lentiviral vector derived from HIV-1. The efficiency of RNA interference (RNAi) to silence the MDR1 gene and reverse multidrug-resistance in the MDR1 single-factor drug-resistance cell line K562/MDR1 was evaluated. The multi-factor resistant cell line K562/A02, induced by doxorubicin exposure, was used as a control. After RNA interference, the expression of the MDR1 gene and P-gp in K562/MDR1 was markedly down-regulated and the drug sensitivity was restored as IC50 values became similar to the K562 sensitive cell line. The expression of the MDR1 gene and P-gp in K562/A02 was markedly down-regulated too, and drug-resistance to anticancer drug is reduced to some extent but the IC50 was significantly higher than that of the sensitive cell line. These results demonstrated that lentivirus-mediated RNAi could efficiently down-regulate the expression of MDR1 and Pgp, and successfully reverse a cell's resistance to chemotherapeutic. Due to only MDR1 resistance, the K562/MDR1 cell showed much high specificity and thus is a better cell model for MDR1/P-gp research.  相似文献   

16.
Human herpesvirus 8 (HHV8), also known as Kaposi's sarcoma-associated herpesvirus, is linked to the development of Kaposi's sarcoma, a disease characterized by the presence of distinctive proliferating spindle-like cells. Although HHV8 can induce spindle cell transformation of vascular endothelial cells in vitro, the viral gene(s) responsible for this phenotype remain to be identified. We demonstrate that expression of HHV8-encoded viral Fas-associated death domain protein-like IL-1beta-converting enzyme inhibitory protein K13 is sufficient to induce spindle cell phenotype in human umbilical vein endothelial cells (HUVEC), which is associated with the activation of the nuclear factor-kappaB (NF-kappaB) pathway and can be blocked by Bay-11-7082, a specific inhibitor of this pathway. K13 induces the expression of several genes known to be upregulated in HHV8-transformed vascular endothelial cells, such as interleukin (IL)-6, IL-8, CXC ligand 3 (CXCL3), orphan G protein coupled receptor (RDC1), cyclooxygenase-2 (COX-2) and dual-specificity phosphatase 5 (DUSP5). Furthermore, similar to K13, HHV8-induced spindle cell transformation of HUVEC is associated with NF-kappaB activation and can be blocked by Bay-11-7082. Thus, ectopic expression of a single latent gene of HHV8 is sufficient for the acquisition of spindle cell phenotype by vascular endothelial cells and NF-kappaB activation plays an essential role in this process.  相似文献   

17.
P-glycoprotein (P-gp) is one of the major obstacles to efficiency of cancer chemotherapy. Here, we investigated whether combination of metformin and 2-deoxyglucose reverses the multidrug resistance (MDR) of K562/Dox cells and tried to elucidate the possible mechanisms. The combination of metformin and 2-deoxyglucose selectively enhanced the cytotoxicity of doxorubicin against K562/Dox cells. Metformin was not a substrate of P-gp but suppressed the elevated level of P-gp in K562/Dox cells. The downregulation of P-gp may be partly attributed to the inhibition of extracellular signal-regulated kinase pathway. The addition of 2-deoxyglucose to metformin initiated a strong metabolic stress in both K562 and K562/Dox cells. Combination of metformin and 2-deoxyglucose inhibited glucose uptake and lactate production in K562 and K562/Dox cells leading to a severe depletion in ATP and a enhanced autophagy. Above all, P-gp substrate selectively aggravated this ATP depletion effect and increased cell apoptosis in K562/Dox cells. In conclusion, metformin decreases P-gp expression in K562/Dox cells via blocking phosphorylation of extracellular signal-regulated kinase. P-gp substrate increases K562/Dox cell apoptosis via aggravating ATP depletion induced by combination of metformin and 2-deoxyglucose. Our observations highlight the importance of combination of metformin and 2-deoxyglucose in reversing multidrug resistance.  相似文献   

18.
Selective inhibition of the BCR/ABL tyrosine kinase by imatinib (STI571, Glivec/Gleevec) is the therapeutic strategy in patients with chronic myelogenous leukemia (CML). Despite significant hematologic and cytogenetic responses with imatinib, mainly due to the mutations in the Abl kinase domain, resistance occurs in patients with advanced disease. In the present study on imatinib-resistant K562 cells (IR-K562), however, no such mutations in the Abl kinase domain were observed. Further studies revealed the over-expression of COX-2 and MDR-1 in IR-K562 cells suggesting the possible involvement of COX-2 in the development of resistance to imatinib. So, we sought to examine the effect of celecoxib, a selective COX-2 inhibitor, on IR-K562 cells. The results clearly indicate that celecoxib is more effective in IR-K562 cells with a lower IC50 value of 10 microM compared to an IC50 value of 40 microM in K562 cells. This increase in the sensitivity of IR-K562 cells towards celecoxib suggests that the development of resistance in IR-K562 cells is COX-2 dependent. Further studies revealed down-regulation of MDR-1 by celecoxib and a decline in p-Akt levels. Celecoxib-induced apoptosis of IR-K562 cells led to release of cytochrome c, PARP cleavage and decreased Bcl2/Bax ratio. Also, celecoxib at 1 microM concentration induced apoptosis in IR-K562 cells synergistically with imatinib by reducing the IC50 value of imatinib from 10 to 6 microM. In conclusion, the present study indicates over-expression of COX-2 and MDR-1 in IR-K562 cells and celecoxib, a COX-2 specific inhibitor, induces apoptosis by inhibiting COX-2 and down-regulating MDR-1 expression through Akt/p-Akt signaling pathway.  相似文献   

19.
20.
To investigate the mechanisms of cellular resistance to 6-mercaptopurine (6-MP) in chronic myeloid leukemia (CML), a 6-MP resistant cell line (K562-MP5) was established by stepwise selection of the CML cell line (K562). The results of the drug sensitivity analysis of the K562-MP5 cell line revealed the cells to be 339-fold more resistant to 6-MP compared with the parental K562 cells. K562-MP5 cells exhibited decreased accumulation and increased efflux of [(14)C]6-MP and its metabolites. In addition, K562-MP5 cells showed increased [(3)H]MTX transport. K562-MP5 cells over-expressed P-glycoprotein (P-gp) and up-regulated MDR1 mRNA levels. Taken together, these results suggest that the up-regulation of P-gp, which contributes to the decreased accumulation by increasing the efflux of 6-MP and its metabolites, underlies the mechanism of 6-MP resistance in K562 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号