首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radioactively labelled adenosine and adenine were rapidly taken up by isolated rat fat cells, and incorporated into nucleotides, of which ATP dominated. The overall process had an apparent Km of 1–5 μM. During incubation, especially in the presence of lipolytic agents, there was a reduction in labelled ATP with a compensatory increase in ADP, AMP, cAMP and nucleosides. The build-up of adenosine during incubation was inhibited by theophylline, which inhibits 5′-nucleotidase. Radioactivity released from perifused fat cells consisted mainly of nucleoside material, of which adenosine predominated. Lipolytic stimulation caused no significant increase in nucleoside outflow from perifused cells, whereas oxygenation was capable of reducing this outflow. It is concluded that adenosine is formed by fat cells as a consequence of ATP breakdown. Stimulation of lipolysis during activation of the sympathetic nerves leads to reversible ATP breakdown and adenosine release. Adenosine might therefore act as a modulator of lipolysis in vivo under these conditions, even though it does not serve as a feed back regulator in the proper sense.  相似文献   

2.
Adenosine markedly inhibits cyclic AMP accumulation in isolated fat cells, whereas inhibitory effects of adenosine on lipolysis have been difficult to demonstrate. The present study has been performed on isolated “perifused” fat cells where continuous monitoring of the lipolytic rate is possible and where modulating substances, such as adenosine, are not allowed to accumulate. Adenosine deaminase was ineffective as a lipolytic agent in perifused fat cells, suggesting no important background activity of adenosine in this system. Micromolar concentrations of adenosine inhibited lipolysis induced by noradrenaline (0.3-1 μM) and theophylline (1 mM). Theophylline was an effective lipolytic agent also in perifused fat cells suggesting that antagonism of adenosine is not the major mode of action of this drug on fat cells.  相似文献   

3.
The possibility that acidosis inhibits lipolysis indirectly by causing ionic shifts or by favouring the accumulation of an inhibitor has been tested in isolated fat cells. Lipolysis induced by 3 muM noradrenaline (NA) was inhibited by 40-60% and that induced by 1 mM theophylline (THEO) by about 75% when the pH was reduced to 6.6. Lipolysis induced by NA + THEO was inhibited by 20-30%. Changing the concentration of Ca++ or Mg++ did not alter the degree of inhibition. Reducing the K+-ion concentration enhanced the inhibitory effect of low pH on lipolysis induced by NA or NA + THEO, whereas cyclic AMP accumulation was uninfluenced. Omitting glucose from the incubation medium caused a slight enhancement of pH-induced inhibition of lipolysis (from 60 to 70%, p less than 0.01). Reducing the concentration of albumin, which binds inhibitory substances such as FFA, reduced lipolysis more at normal than at reduced pH. At high FFA/albumin ratios (5 or above) lipolysis was similar at normal and reduced pH. The antilipolytic effect of decreased pH was equally pronounced in perifused fat cells, where inhibitory substances are not allowed to accumulate. Our results suggest that the antilipolytic effect of acidosis is mainly a direct effect of the increase in H+ ion concentration. The inhibitory effect of acidosis on various responses to beta-adrenoceptor stimulation may be caused by a decreased formation of cyclic AMP in turn caused directly by the decrease in pH.  相似文献   

4.
The possibility that acidosis inhibits lipolysis indirectly by causing ionic shifts or by favouring the accumulation of an inhibitor has been tested in isolated fat cells. Lipolysis induced by 3 μM noradrenaline (NA) was inhibited by 40–60% and that induced by 1 mM theophylline (THEO) by about 75% when the pH was reduced to 6.6. Lipolysis induced by NA+THEO was inhibited by 20–30%. Changing the concentration of Ca++or Mg++did not alter the degree of inhibition. Reducing the K+-ion concentration enhanced the inhibitory effect of low pH on lipolysis induced by NA or NA + THEO, whereas cyclic AMP accumulation was uninfluenced. Omitting glucose from the incubation medium caused a slight enhancement of pH-induced inhibition of lipolysis (from 60 to 70%, p<0.01). Reducing the concentration of albumin, which binds inhibitory substances such as FFA, reduced lipolysis more at normal than at reduced pH. At high FFA/albumin ratios (5 or above) lipolysis was similar at normal and reduced pH. The antilipolytic effect of decreased pH was equally pronounced in perifused fat cells, where inhibitory substances are not allowed to accumulate. Our results suggest that the antilipolytic effect of acidosis is mainly a direct effect of the increase in H+ion concentration. The inhibitory effect of acidosis on various responses to β-adrenoceptor stimulation may be caused by a decreased formation of cyclic AMP in turn caused directly by the decrease in pH.  相似文献   

5.
1. The synthesis of ATP has been studied in human erythrocytes. Fresh cells showed no net synthesis of ATP when incubated with adenine or adenosine, although labelled adenine was incorporated into ATP in small amounts.2. Cold-stored cells (3-6 weeks old) became progressively depleted of adenine nucleotides but incubation with adenosine or adenine plus inosine restored the ATP concentration to normal within 4 hr. Incorporation of labelled adenine or adenosine into the ATP of incubated stored cells corresponded to net ATP synthesis by these cells.3. Synthesis of ATP from adenosine plus adenine together was 75% derived from adenine and only 25% from adenosine, indicating that nucleotide synthesis from adenine inhibits the simultaneous synthesis of nucleotide from adenosine.  相似文献   

6.
It has been suggested that adenosine may be a physiologically important modulator of lipolysis. In the present study it was found that adenosine inhibited lipolysis stimulated by low (0.03 micrometer) concentrations of noradrenaline (NA). Lipolysis stimulated by higher concentrations (0.3 and 3 micrometer) of NA was inhibited to a minor degree or not at all. Theophylline (1 micromete)-induced lipolysis was inhibited by adenosine (IC50 approximately 10 micrometer). Inhibition of theophylline-induced lipolysis was tested for several analogues of adenosine. Some N6-substituted adenosine analogues and 2-Cl-adenosine were more potent inhibitors. Adenine-nucleotides (ATP, ADP, AMP) were about equipotent with adenosine. Several adenosine analogues, including its breakdown products were considerably less potent or ineffective. None of the analogues tested inhibited the action of adenosine. Dipyridamol, dilazep and papaverine, which inhibit the uptake of adenosine into cells, caused only a slight enhancement of the antilipolytic effect of adenosine. None of the analogues inhibited the effect of adenosine. It is concluded that adenosine can inhibit lipolysis due to low, "physiological" concentrations of noradrenaline and of low concentration of theophylline via an action on a receptor structure on the cell surface which exhibits structural specificity.  相似文献   

7.
NA-stimulated lipolysis and cAMP formation in isolated rat fat cells is inhibited by acidosis. In the present report we have examined the quantitative relationship between lipolysis and cAMP formation at normal and reduced pH and the possible involvement of adenosine, an endogenous inhibitor of cAMP formation. Adenosine antagonized cAMP accumulation and to a considerably lower degree lipolysis, effects potentiated by acidosis. Theophylline, an antagonist of adenosine effects, stimulated lipolysis and cAMP-accumulation, and potentiated responses to NA. Adenosine deaminase (ADA) had theophylline-like effects. Acidosis inhibited lipolysis and cAMP accumulation induced by ADA and theophylline to a larger extent than those induced by NA. It is suggested that adenosine modulates fat cell cAMP production and may contribute to the antilipolytic effect of acidosis. There was a curvilinear relationship between cAMP elevation and glycerol production in fat cell suspensions, which was different at pH 7.4 and at pH 6.6. The amount of cAMP needed for half-maximal activation of lipolysis increased from 1.3 (pH 7.4) to 3.1 pMol X 10(-5) cells (pH 6.6). The maximal glycerol production was reduced from 1 300 to 900 nMol X 10(-5) cells. The antilipolytic effect of acidosis is apparently due partly to an inhibition of cAMP formation and partly to inhibition of subsequent step(s) in the activation sequence.  相似文献   

8.
NA-stimulated lipolysis and cAMP formation in isolated rat fat cells is inhibited by acidosis. In the present report we have examined the quantitative relationship between lipolysis and cAMP formation at normal and reduced pH and the possible involvement of adenosine, an endogenous inhibitor of cAMP formation. Adenosine antagonized cAMP accumulation and to a considerably lower degree lipolysis, effects potentiated by acidosis. Theophylline, an antagonist of adenosine effects, stimulated lipolysis and cAMP-accumulation, and potentiated responses to NA. Adenosine deaminase (ADA) had theophylline-like effects. Acidosis inhibited lipolysis and cAMP accumulation induced by ADA and theophylline to a larger extent than those induced by NA. It is suggested that adenosine modulates fat cell cAMP production and may contribute to the antilipolytic effect of acidosis. There was a curvilinear relationship between cAMP elevation and glycerol production in fat cell suspensions, which was different at pH 7.4 and at pH 6.6. The amount of cAMP needed for half-maximal activation of lipolysis increased from 1.3 (pH 7.4) to 3.1 pMol × 10-5 cells (pH 6.6). The maximal glycerol production was reduced from 1 300 to 900 nMol × 10-5 cells. The antilipolytic effect of acidosis is apparently due partly to an inhibition of cAMP formation and partly to inhibition of subsequent step(s) in the activation sequence.  相似文献   

9.
The dynamics of the cationic, bioelectrical and secretory responses to formycin A were monitored in pancreatic islet cells in order to assess whether this adenosine analogue, which is known to be converted to formycin A 5-triphosphate in isolated islets, triggers the same sequence of ionic events as that otherwise involved in the process of nutrient-stimulated insulin release and currently attributed to an increase in adenosine 5-triphosphate (ATP) generation rate. Unexpectedly, formycin A first increased86Rb outflow, decreased45Ca outflow and inhibited insulin release from prelabelled islets perifused at physiological or higher concentrations ofd-glucose. This early inhibitory effect of formycin A upon insulin release coincided, in perforated patch whole-cell recordings, with an initial transient increase of ATP-sensitive K+ channel activity. A positive secretory response to formycin A, still not associated with any decrease in K+ conductance, was only observed either immediately after formycin A administration to islets already exposed to glibenclamide or during prolonged exposure to the adenosine analogue. This coincided with an increase of cytosolic Ca2+ concentration in intact B-cells and a greater increase of membrane capacitance in response to depolarization in B-cells examined in the perforated patch whole-cell configuration. The latter stimulation of exocytotic activity could not be attributed, however, to any increase in peak or integrated Ca2+ current. Thus, the mode of action of formycin A, or its 5-triphosphate ester, in islet cells obviously differs from that currently ascribed to endogenous ATP in the process of nutrient-stimulated insulin release.  相似文献   

10.
Following the intraarterial infusion of sH-adenine to isolated perfused canine subcutaneous adipose tissue, its adenine nucleotides are labelled. A continuous release of radioactivity, comprised of non-nucleotide material, was observed. The rate of this release was markedly enhanced by sympathetic nerve stimulation. The major components of the enhanced release appeared to be inosine and adenosine. Adrenergic α-receptor blockade (phentolamine or Hydergin®) abolished the enhanced nucleoside release, while glycerol release was enhanced. The release of radioactivity was decreased during mechanical blood flow reduction and enhanced afterwards. However, the magnitude of this enhancement of release after clamp was much less than following nerve stimulation. The results suggest that adenosine or a closely related compound is released from canine subcutaneous adipose tissue by sympathetic nerve stimulation and that the release is related to adrenergic α-receptor stimulation. Since adenosine is a potent inhibitor of catecholamine induced lipolysis in this tissue the possibility of a regulatory role must be considered.  相似文献   

11.
The effects of adenosine, 2-Cl-adenosine, two adenosine uptake inhibitors (dipyridamole and dilazep) and the adenosine deaminase (ADA) inhibitor erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) were studied on basal and stimulated lipolysis in subcutaneous adipose tissue. The basal lipolysis was unaffected by all agents. Lipolysis induced by nerve stimulation (4 Hz, 5 min) was dose-dependently antagonized (up to 100%) by close i.a. infusions of adenosine (1–40 μM in blood); if the nerve induced vasoconstriction was prevented by α-adrenoceptor-blockade. 2-Cl-adenosine was a more potent antilipolytic agent than adenosine. EHNA (3–10 μM in blood) did not inhibit stimulated lipolysis in vivo possibly because of the low ADA activity in fat cells. Dipyridamole (0.5-1.5 μM in blood) in combination with EHNA increased the venous plasma concentration of adenosine from 0.3±0.05 to 0.7±0.1 μM and enhanced the tissue concentration close to 3-fold. Lipolysis induced by nerve stimulation (4 Hz) was reduced by about 40% by dipyridamole + EHNA and that induced by close i.a. noradrenaline injection (20 nmol) by approximately 60%. It is concluded that adenosine is an antagonist of stimulated lipolysis in subcutaneous adipose tissue in situ in concentrations that are reached during prolonged sympathetic nerve stimulation.  相似文献   

12.
Following the intraarterial infusion of 3H-adenine to isolated perfused canine subcutaneous adipose tissue, its adenine nucleotides are labelled. A continuous release of radioactivity, comprised of non-nucleotide material, was observed. The rate of this release was markedly enhanced by sympathetic nerve stimulation. The major components of the enhanced release appeared to be inosine and adenosine. Adrenergic alpha-receptor blockade (phentolamine or Hydergin) abolished the enhanced nucleoside release, while glycerol release was enhanced. The release of radioactivity was decreased during mechanical blood flow reduction and enhanced afterwards. However, the magnitude of this enhancement of release after clamp was much less than following nerve stimulation. The results suggest that adenosine or a closely related compound is released from canine subcutaneous adipose tissue by sympathetic nerve stimulation and that the release is related to adrenergic alpha-receptor stimulation. Since adenosine is a potent inhibitor of catecholamine induced lipolysis in this tissue the possibility of a regulatory role must be considered.  相似文献   

13.
The in vitro effect of triiodothyronine (T3) 10(-5) M upon lipolysis was studied on white fat cells isolated from 1.5-6- and 30-month-old rats. We couldn't see any consistent effect of this hormone upon the basal lipolysis. We observed a T3 effect on epinephrine-stimulated lipolysis on the three groups of animals. After 1 h of incubation the increase of glycerol release varies with the dose of epinephrine; after 3 h the T3 effect persisted only in the 6-month and 30-month groups.  相似文献   

14.
Cell suspensions of Capnocytophaga ochracea incorporated [14C]NaHCO3 into a major four-carbon fermentation product, succinate, and cell-free extracts from this organism contained high levels of phosphoenolpyruvate carboxykinase (PEPCK). PEPCK is the major, if not the only, CO2(HCO-3)-fixing enzyme in C. ochracea since cell-free extracts were devoid of pyruvate-dependent and other phosphoenolpyruvate (PEP)-dependent CO2(HCO-3)-fixing enzymes. The reaction products of the enzyme, which was partially purified by diethylaminoethylcellulose column chromatography, were identified as adenosine 5'-triphosphate (ATP) and oxalacetate. The enzyme showed maximum activity when manganese (Mn2+) was the divalent cation in the incubation mixture, and it had an absolute requirement for the nucleoside 5-'diphosphate adenosine 5'-diphosphate (ADP). PEPCK showed a sigmoidal kinetic response to the Mn2+ concentration and homotropic interactions in its kinetic responses to each of its three substrates PEP, ADP, and CO2(HCO-3). The (S)0.5v values for Mn2+, PEP, ADP, and CO2(CHO-3) were approximately 0.08, 0.3, 0.1, and 10 mM, respectively, and Hill coefficients for these same ligands were 2.60, 1.7, 1.9, and 3.0, respectively. In addition, C. ochracea PEPCK is under metabolic control by the nucleoside -5'-triphosphate ATP, and it also showed a sigmoidal kinetic response to this allosteric effector. The Hill coefficient for ATP was 2.70.  相似文献   

15.
The involvement of membrane sulfhydryl groups in the uptake of adenosine and thymidine was examined in rat thymocytes pretreated with 6,6'-dithiodinicotinic acid (CPDS) and N-ethylmaleimide (NEM). CPDS, which is known to react uniquely with external membrane sulfhydryls, under short incubation conditions, did not significantly affect the uptake of adenosine and thymidine. Formation of cAMP in nonstimulated and adenosine-stimulated cells was also unaltered by CPDS. However, inhibition of adenosine uptake by competitive inhibitor, dipyridamole, was significantly stronger when the cells were pretreated with CPDS. Preincubation of cells with NEM showed differential sensitivity of adenosine and thymidine uptake, depending on concentration of this sulfhydryl alkylating agent. The results suggest the involvement of NEM-accessible sulfhydryls in membrane transport of adenosine and thymidine. Dual effect of NEM on nucleoside transport may be related to the complexity of nucleoside carrier(s) or to the existence of different nucleoside carriers within thymocyte membranes. On the other hand, the easily accessible, external membrane -SH groups which can be blocked with CPDS, are not essential in thymocyte nucleoside transport but they appear to be situated at a site which interacts with the membrane transport system of nucleoside.  相似文献   

16.
After one week treatment with caffeine (20 mg/kg i.p.) the number of adenosine receptors, as determined by specific binding of (3H)-L-PIA, in rat cerebral cortical membranes was increased by about 25%. Cyclic AMP accumulation induced by adenosine analogues in slices of rat hippocampus was unaffected by caffeine treatment. The inhibition of lipolysis in rat fat cells by 2-chloro-adenosine was similarly unaffected. The potency of caffeine as an antagonist of these adenosine-receptor mediated effects was not altered by caffeine treatment. It is concluded that at least some adenosine receptors are up-regulated as a consequence of prolonged caffeine treatment, but that the increase in receptor number is not related to changes in at least two effects of adenosine and caffeine.  相似文献   

17.
Lipolysis and cyclic AMP accumulation were studied in isolated rat fat cells at normal (7.4) and decreased (7.0, 6.6) pH. Acidosis inhibited lipolysis and cyclic AMP accumulation due to NA non-competetively. Maximal lipolysis (3 muM NA) was inhibited by 25% at pH 7.0 and by 61% at pH 6.6 Cyclic AMP accumulation 5 min after 3 muM NA was inhibited by 57% at pH 7.0 and by 83% at pH 6.6. Between 10 and 60 minutes of incubation NA-stimulated lipolysis was linear at pH 7.4, whereas a progressively increasing inhibition was seen at lower pH. The FFA production was inhibited to the same degree as glycerol production by acidosis. The fraction of FFA associated with the cells was the same at all pHs. Thus, we have no evidence that acidosis inhibits lipolysis via accumulation of FFA intracellularly. NA-induced accumulation of 3H-cAMP from 3H-ATP, endogenously formed by prelabelling the cells with 3H-adenine, was inhibited by acidosis both in the presence and absence of theophylline in the incubation medium (by 48 and 44% respectively at pH 7.0 and by 74 and 68% at pH 6.6). Cyclic nucleotide phosphodiesterase in homogenates of fat cells was inhibited by decreasing the pH, whether measured at high or low substrate concentrations. Basal adenylyl cyclase activity in a cell membrane fraction from fat cells was affected to a minor degree, while NA-stimulated activity was inhibited by decreased pH. The response to 3 muM NA at pH 6.6 was inhibited by 43% relative to control. The results show that acidosis inhibits NA-induced cyclic AMP accumulation by interfering with the formation, rather than the inactivation of the nucleotide. Since NA-induced lipolysis is a cyclic AMP-mediated process it is suggested that at least part of the antilipolytic effect of acidosis is due to inhibition of cyclic AMP formation.  相似文献   

18.
It has been suggested that the deficient lipolytic response to catecholamines in hypothyroidism may be due to an increased sensitivity to adenosine and/or increased adenosine levels in this condition. We confirmed that the addition of adenosine deaminase enhanced the lipolytic response of hypothyroid fat cells, but the stimulation was at least as large in euthyroid cells. Adenosine analogs were more potent as antagonists of NA-induced lipolysis in hypothyroid than in euthyroid fat cells, but the difference could be explained by a decreased response to NA. Suspensions of hypothyroid cells accumulated more purine nucleosides (115 +/- 20) than did euthyroid cells (48 +/- 8 pmol/30 min/10(5) cells; p less than 0.01). This difference could not be explained by a lower rate of adenosine elimination, which occurred by three different pathways: uptake followed by phosphorylation, uptake followed by deamination and deamination by the serum albumin preparation. Under certain circumstances the latter pathway is of overwhelming importance. Fat cells from mature rats (460-480 g) behaved similarly as cells from young control rats. Thus, the changes induced by hypothyroidism was not due to a developmental change. The results are discussed in relation to earlier findings on the alterations in catecholamine responsiveness in hypothyroidism. It is concluded that an increased influence of adenosine could possibly explain some aspects of altered catecholamine responsiveness. If it does the mechanism is likely to involve an enhanced amount of adenosine rather than an increased sensitivity to adenosine.  相似文献   

19.
Adenosine is a possible mediator of myocardial and skeletal muscle blood flow regulation. Whether adenosine plays a similar role in modulating the pulmonary pressor response to acute alveolar hypoxia is not known. Adenosine levels (nmol/g tissue) in lung in six dogs ventilated with 95% N2, and 5% CO2 for a period of 3 min increased nearly 10-fold. Inosine and hypoxanthine, adenosine enzymatic degradation products, sustained a 10- and 7-fold increase, respectively. These degradative products are mainly formed in the capillary endothelial cells that contain the degradative enzyme nucleoside phosphorylase as demonstrated by histochemical techniques. To determine the effect of ATP, ADP, AMP, and adenosine on the pulmonary circulation, the in situ left lower lobe of 10 dogs was perfused at either free flow or constant flow via its pulmonary artery. ATP and ADP increased lobar vascular resistance; AMP and adenosine decreased the resistance. During hypoxic ventilation, adenosine infusions (100 nmol/ml blood) entirely abolished the increase in vascular resistance that was due solely to hypoxia. Dipyridamole produced similar responses. These data indicate that adenosine is a pulmonary vasodilator and that it may modulate the pulmonary pressor response to acute alveolar hypoxia. The findings suggest that the use of adenosine or dipyridamole may be beneficial in patients with pathologic elevations of the pulmonary vascular resistance which are a result of an exaggerated pulmonary pressor response to hypoxia, as seen in high-altitude pulmonary edema or that following cerebral injury.  相似文献   

20.
Intravascular ATP and ADP are important regulators of vascular tone, thrombosis, inflammation, and angiogenesis. This study was undertaken to evaluate the contribution of purinergic signaling to disturbed vasodilation and vascular remodeling during atherosclerosis progression. We used apolipoprotein E-deficient (Apoe(-/-)) mice as an appropriate experimental model for atherosclerosis. Noninvasive transthoracic Doppler echocardiography imaging with adenosine, ATP, and other nucleotides and nonhydrolyzable P2 receptor agonists and antagonists suggests that ATP regulates coronary blood flow in mice through activation of P2Y (most likely, endothelial ATP/UTP-selective P2Y(2)) receptors, rather than via its dephosphorylation to adenosine. Strikingly, compared to age-matched wild-type controls, young (10- to 15-week-old) Apoe(-/-) mice displayed diminished coronary reactivity in response to ATP but not adenosine. The impaired hyperemic response to ATP persisted in older (20- to 30-week-old) Apoe(-/-) mice, which were additionally characterized by mild atherosclerosis (as ascertained by aortic Oil Red O staining) and a systemic increase in plasma ATP and ADP levels. Concurrent thin-layer chromatographic analysis of nucleoside triphosphate diphosphohydrolase (NTPDase) and ecto-5'-nucleotidase/CD73 activities in thoracic aortas, lymph nodes, spleen, and serum revealed that aortic NTPDase was decreased by 40% to 50% in a tissue-specific manner both in young and mature Apoe(-/-) mice. Collectively, disordered purinergic signaling in Apoe(-/-) mice may serve as important prerequisite for impaired blood flow, local accumulation of ATP and ADP at sites of atherogenesis, and eventually, the exacerbation of atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号