首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We aimed to explore the changes in fractional anisotropy (FA) in subjects with mild cognitive impairment (MCI) and Alzheimer's disease (AD) by analyzing diffusion tensor imaging (DTI) data using the Tract-Based Spatial Statistics (TBSS). DTI data were collected from 17 AD patients, 27 MCI subjects and 19 healthy controls. Voxel-based analysis with TBSS was used to compare FA among the three groups. Additionally, guided by TBSS findings, a region of interest (ROI)-based analysis along the TBSS skeleton was performed on group-level and the accuracy of the method was assessed by the back-projection of ROIs to the native space FA. Neurofiber tracts with decreased FA included: the parahippocampal white matter, cingulum, uncinate fasciculus, inferior and superior longitudinal fasciculus, corpus callosum, fornix, tracts in brain stem, and cerebellar tracts. Quantitative ROI-analysis further demonstrated the significant decrease on FA values in AD patients relative to controls whereas FA values of MCI patients were found in between the controls and AD patients. We conclude that TBSS is a promising method in examining the degeneration of neurofiber tracts in MCI and AD patients.  相似文献   

2.
White matter (WM) damage has been reported in Alzheimer's Disease (AD) and Mild Cognitive Impairment (MCI) in diffusion tensor imaging (DTI) studies. It is, however, unknown how the investigation of multiple tensor indexes in the same patients, can differentiate them from normal aging or relate to patients cognition. Forty-six individuals (15 healthy, 16 a-MCI and 15 AD) were included. Voxel-based tract based spatial-statistics (TBSS) was used to obtain whole-brain maps of main WM bundles for fractional anisotropy (FA), radial diffusivity (DR), axial diffusivity (DA) and mean diffusivity (MD). FA reductions were evidenced among AD patients with posterior predominance. A-MCI patients displayed reduced mean FA in these critical regions, compared to healthy elders. MD increases were widespread in both groups of patients. Interestingly, a-MCI patients exhibited DR increases in overlapping areas of FA shrinkages in AD, whereas DA increases were only observed in AD. Gray matter atrophy explained most DTI differences, except those regarding MD in both groups as well as DR increases in posterior associative pathways among a-MCI cases. FA values were the only DTI measure significantly related to memory performance among patients. Present findings suggest that most DTI-derived changes in AD and a-MCI are largely secondary to gray matter atrophy. Notably however, specific DR signal increases in posterior parts of the inferior fronto-occipital and longitudinal fasciculi may reflect early WM compromise in preclinical dementia, which is independent of atrophy. Finally, global measures of integrity, particularly orientation coherence (FA) of diffusion, appear to be more closely related to the cognitive profile of our patients than indexes reflecting water movement parallel (DA) and perpendicular (DR) to the primary diffusion direction.  相似文献   

3.
Diffusion tensor imaging (DTI) and CSF biomarkers are useful diagnostic tools to differentiate patients with mild cognitive impairment (MCI) from normal controls, and may help predict conversion to dementia. Total Tau protein (T-tau) and DTI parameters are both markers for axonal damage, thus it is of interest to determine if DTI parameters are associated with elevated CSF T-tau levels in patients with cognitive impairment. For this purpose, patients with subjective cognitive impairment (SCI) and MCI were recruited from a university based memory clinic.Regions of interest were used to determine fractional anisotropy (FA), radial diffusivity (DR) and axial diffusivity (DA) in known white matter tracts in patients with MCI (n = 39) and SCI (n = 8) and 26 cognitively healthy controls. Significant lower FA and higher DR values were observed in patients with pathological vs. patients with normal CSF T-tau levels and vs. controls in left posterior cingulum fibers. T-tau values were negatively correlated with FA and positively correlated with DR values in the posterior cingulum fibers.Cingulum fiber diffusivity was related to T-tau pathology in SCI/MCI patients and altered DR may suggest that loss of myelin contributes to early white matter changes in patients at risk of developing Alzheimer's disease (AD).  相似文献   

4.
Mild cognitive impairment (MCI) has been defined as a transitional state between normal aging and Alzheimer disease. Diffusion tensor imaging (DTI) can estimate the microstructural integrity of white matter tracts in MCI. We evaluated the microstructural changes in the white matter of MCI patients with DTI. We recruited 11 patients with MCI who met the working criteria of MCI and 11 elderly normal controls. The mean diffusivity (MD) and fractional anisotropy (FA) were measured in 26 regions of the brain with the regions of interest (ROIs) method. In the MCI patients, FA values were significantly decreased in the hippocampus, the posterior limb of the internal capsule, the splenium of corpus callosum, and in the superior and inferior longitudinal fasciculus compared to the control group. MD values were significantly increased in the hippocampus, the anterior and posterior limbs of the internal capsules, the splenium of the corpus callosum, the right frontal lobe, and in the superior and the inferior longitudinal fasciculus. Microstructural changes of several corticocortical tracts associated with cognition were identified in patients with MCI. FA and MD values of DTI may be used as novel biomarkers for the evaluation of neurodegenerative disorders.  相似文献   

5.
OBJECTIVE: There are conflicting reports of adverse HIV-associated alterations in white matter integrity as measured by diffusion tensor imaging (DTI). We sought to address these conflicting reports by assessing, on a voxel-by-voxel basis, HIV-associated regional changes in radiologically defined normal-appearing white matter (NAWM) integrity using high-resolution DTI. METHODS: 30 HIV-seropositive (SP) and 30 HIV-seronegative (SN) nondemented, community-dwelling participants underwent DTI to derive whole-brain measures of white matter integrity (fractional anisotropy [FA] and mean diffusivity [MD]). For each participant, the white matter T2 volume was thresholded to remove regions of abnormal signal, resulting in a NAWM mask, which was then applied to the FA and MD volumes to extract voxel-wise NAWM measures of white matter integrity. Voxel-wise group comparisons of FA and MD were conducted (P < 0.005, extent threshold 5 voxels) while controlling for age and substance-abuse history. RESULTS: There were no significant differences between the groups for demographic or cognitive performance variables. Summary whole-brain measures of FA and MD were equivalent between the SP and SN samples. Among the SP sample, history of substance abuse was associated with significantly increased whole-brain NAWM MD, and coinfection with hepatitis C virus (HCV) was associated with a trend for increased MD. Correlations between whole-brain NAWM FA and MD with cognitive performance measures were not significant. Regional analyses of DTI measures revealed variable differences in NAWM FA in the SP sample, with findings of both decreased and increased FA. Differences in NAWM MD were more consistent, with widespread increases noted in the SP sample compared to the SN sample. Eight of the 10 regions displaying significantly increased FA in the SP sample were also found to have significantly increased MD compared to the SN sample. CONCLUSIONS: Decreased white matter integrity is present even in radiologically defined NAWM in nondemented, community-dwelling patients with HIV. The decrease in NAWM integrity is best seen in increases in MD, a measure of generalized tissue breakdown. Indications of NAWM axonal integrity (FA) present a more complicated picture, with both decreased FA and increased FA in the SP sample. Our findings of variable HIV-associated FA changes in NAWM may account for previous conflicting reports of changes in DTI parameters in this population. The results of our study suggest that HIV infection contributes to variable changes in DTI values, reflecting both direct loss of axonal integrity and a loss of complexity to the underlying axonal matrix.  相似文献   

6.
This study examined the sensitivity of diffusion tensor imaging (DTI) to microstructural white matter (WM) damage in mild and moderate pediatric traumatic brain injury (TBI). Fourteen children with TBI and 14 controls ages 10-18 had DTI scans and neurocognitive evaluations at 6-12 months post-injury. Groups did not differ in intelligence, but children with TBI showed slower processing speed, working memory and executive deficits, and greater behavioral dysregulation. The TBI group had lower fractional anisotropy (FA) in three WM regions: inferior frontal, superior frontal, and supracallosal. There were no group differences in corpus callosum. FA in the frontal and supracallosal regions was correlated with executive functioning. Supracallosal FA was also correlated with motor speed. Behavior ratings showed correlations with supracallosal FA. Parent-reported executive deficits were inversely correlated with FA. Results suggest that DTI measures are sensitive to long-term WM changes and associated with cognitive functioning following pediatric TBI.  相似文献   

7.
We reviewed case-control studies of diffusion tensor imaging (DTI) in patients with Alzheimer's dementia (AD) and mild cognitive impairment (MCI), in order to establish the relative severity and location of white matter microstructural changes. EMBASE and MEDLINE were searched using the keywords, ([“diffusion tensor”] and [“Alzheimer*” or “mild cognitive impairment”]), as were reference lists of relevant papers. Forty-one diffusion tensor imaging studies contained data that were suitable for inclusion. Group means and standard deviations for fractional anisotropy and mean diffusivity, or p values from 2-sample tests, were extracted and pooled, using standard methods of meta-analysis and metaregression. Fractional anisotropy was decreased in AD in all regions except parietal white matter and internal capsule, while patients with MCI had lower values in all white matter regions except parietally and occipitally. Mean diffusivity was increased in AD in all regions, and in MCI in all but occipital and frontal regions.  相似文献   

8.
Abnormalities of the white matter (WM) tracts integrity in brain areas involved in emotional regulation have been postulated in major depressive disorder (MDD). However, there is no diffusion tensor imaging (DTI) study in patients with treatment-responsive MDD at present. DTI scans were performed on 22 patients with treatment-responsive MDD and 19 well-matched healthy subjects. Tract-based spatial statistics (TBSS) approach was employed to analyze the scans. Voxel-wise statistics revealed four brain WM tracts with lower fractional anisotropy (FA) in patients compared to healthy subjects: the bilateral internal capsule, the genu of corpus callosum, the bilateral anterior corona radiata, and the right external capsule. FA values were nowhere higher in patients compared to healthy subjects. Our findings demonstrate that the abnormalities of the WM tracts, major in the projection fibers and corpus callosum, may contribute to the pathogenesis of treatment-responsive MDD.  相似文献   

9.
Numerous studies in first-episode schizophrenia suggest the involvement of white matter (WM) abnormalities in multiple regions underlying the pathogenesis of this condition. However, there has never been a neuroimaging study in patients with first-episode, drug-naive paranoid schizophrenia by using tract-based spatial statistics (TBSS) method. Here, we used diffusion tensor imaging (DTI) with TBSS method to investigate the brain WM integrity in patients with first-episode, drug-naive paranoid schizophrenia. Twenty patients with first-episode, drug-naive paranoid schizophrenia and 26 healthy subjects matched with age, gender, and education level were scanned with DTI. An automated TBSS approach was employed to analyze the data. Voxel-wise statistics revealed that patients with paranoid schizophrenia had decreased fractional anisotropy (FA) values in the right superior longitudinal fasciculus (SLF) II, the right fornix, the right internal capsule, and the right external capsule compared to healthy subjects. Patients did not have increased FA values in any brain regions compared to healthy subjects. There was no correlation between the FA values in any brain regions and patient demographics and the severity of illness. Our findings suggest right-sided alterations of WM integrity in the WM tracts of cortical and subcortical regions may play an important role in the pathogenesis of paranoid schizophrenia.  相似文献   

10.
The aim was to investigate the relationship between blood markers of vascular dysfunction with brain microstructural changes and cognition. Eighty-six participants from the Barcelona-Asymptomatic Intracranial Atherosclerosis (AsIA) neuropsychology study were included. Subjects were 50-65 years old, free from dementia and without history of vascular disease. We assessed correlations of blood levels of inflammatory biomarkers (C-reactive protein [CRP] and resistin) and fibrinolysis inhibitors (plasminogen activator inhibitor-1 [PAI-1] and A-lipoprotein (Lp (a)) with fractional anisotropy (FA) measurements of diffusion tensor images (DTI), regional gray matter (GM) volumes and performance in several cognitive domains. Increasing levels of C-reactive protein and PAI-1 levels were associated with white matter (WM) integrity loss in corticosubcortical pathways and association fibers of frontal and temporal lobes, independently of age, sex and vascular risk factors. PAI-1 was also related to lower speed and visuomotor/coordination. None of the biomarkers were related to gray matter volume changes. Our findings suggest that inflammation and dysregulation of the fibrynolitic system may be involved in the pathological mechanisms underlying the WM damage seen in cerebrovascular disease and subsequent cognitive impairment.  相似文献   

11.
Prior work has demonstrated that the memory dysfunction of Alzheimer's disease (AD) is accompanied by marked cortical pathology in medial temporal lobe (MTL) gray matter. In contrast, changes in white matter (WM) of pathways associated with the MTL have rarely been studied. We used diffusion tensor imaging (DTI) to examine regional patterns of WM tissue changes in individuals with AD. Alterations of diffusion properties with AD were found in several regions including parahippocampal WM, and in regions with direct and secondary connections to the MTL. A portion of the changes measured, including effects in the parahippocampal WM, were independent of gray matter degeneration as measured by hippocampal volume. Examination of regional changes in unique diffusion parameters including anisotropy and axial and radial diffusivity demonstrated distinct zones of alterations, potentially stemming from differences in underlying pathology, with a potential myelin specific pathology in the parahippocampal WM. These results demonstrate that deterioration of neocortical connections to the hippocampal formation results in part from the degeneration of critical MTL and associated fiber pathways.  相似文献   

12.

Background

Brain structural changes have been described in bipolar disorder (BP), but usually studies focused on both I and II subtypes indiscriminately and investigated changes in either brain volume or white matter (WM) integrity. We used combined voxel-based morphometry (VBM) and diffusion tensor imaging (DTI) analysis to track changes in the grey matter (GM) and WM in the brains of patients affected by BPII, as compared to healthy controls.

Methods

Using VBM and DTI, we scanned 20 DSM-IV-TR BPII patients in their euthymic phase and 21 healthy, age- and gender-matched volunteers with no psychiatric history.

Results

VBM showed decreases in GM of BPII patients, compared to controls, which were diffuse in nature and most prominent in the right middle frontal gyrus and in the right superior temporal gurus. DTI showed significant and widespread FA reduction in BPII patients in all major WM tracts, including cortico-cortical association tracts.

Limitations

The small sample size limits the generalisability of our findings.

Conclusions

Reduced GM volumes and WM integrity changes in BPII patients are not prominent like those previously reported in bipolar disorder type-I and involve cortical structures and their related association tracts.  相似文献   

13.
Cerebral white matter (WM) undergoes various degenerative changes with normal aging, including decreases in myelin density and alterations in myelin structure. We acquired whole-head, high-resolution diffusion tensor images (DTI) in 38 participants across the adult age span. Maps of fractional anisotropy (FA), a measure of WM microstructure, were calculated for each participant to determine whether particular fiber systems of the brain are preferentially vulnerable to WM degeneration. Regional FA measures were estimated from nine regions of interest in each hemisphere and from the genu and splenium of the corpus callosum (CC). The results showed significant age-related decline in FA in frontal WM, the posterior limb of the internal capsule (PLIC), and the genu of the CC. In contrast, temporal and posterior WM was relatively preserved. These findings suggest that WM alterations are variable throughout the brain and that particular fiber populations within prefrontal region and PLIC are most vulnerable to age-related degeneration.  相似文献   

14.
Previous studies have proven that migraine and depression are bidirectionally linked. However, few studies have investigated white matter (WM) integrity affected by depressive symptoms in patients suffering from migraine without aura (MWoA). Forty patients with MWoA were divided into two groups according to their self‐rating depression scale (SDS) score in the present study, including 20 in the SDS (+) (SDS > 49) group and 20 in the SDS (?) (SDS ≤ 49) group. Forty healthy participants were also recruited as the control group. Tract‐based spatial statistics analyses with multiple diffusion tensor imaging‐derived indices [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), axial diffusivity (AD)] were employed collectively to investigate WM integrity between all patients with MWoA and all healthy controls, between each subgroup (SDS (?) group and SDS (+) group) and healthy controls, and between the SDS (?) and SDS (+) groups. Compared with healthy controls, decreased AD was shown in several WM tracts of the whole MWoA group, SDS (?) group and SDS (+) group. In addition, compared with the SDS (?) group, the SDS (+) group showed decreased FA and increased MD and RD, with conserved AD, including the genu, body and splenium of the corpus callosum, bilateral superior longitudinal fasciculi, the right anterior corona radiata and some other WM tracts, similar to previous findings in depression disorder. Furthermore, mean FA and RD in some of the above‐mentioned WM tracts in the SDS (+) group were correlated significantly with SDS scores, including the genu and splenium of the corpus callosum, the right anterior corona radiata and the superior longitudinal fasciculi. Our results suggest that WM integrity may be affected by both depression symptoms (more sensitive as RD) and migraine (more sensitive as AD). The findings may serve as a sensitive biomarker of depression severity in MWoA. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
White matter (WM) microstructure can be evaluated by diffusion tensor imaging (DTI). Tract-based spatial statistical (TBSS) analysis provides a means of assessing alterations in WM tracts. In this paper, both voxel-based morphometry (VBM) and TBSS are examined using DTI data of temporal lobe epilepsy (TLE) patients and nonepileptic subjects. In addition to fractional anisotropy (FA), ellipsoidal area ratio (EAR) is used in this study. Significant reductions of FA and EAR are identified by TBSS in the parahippocampal white matter. Because of methodological differences, TBSS detects more localized abnormalities than VBM, while the EAR is more sensitive to WM alteration than FA.  相似文献   

16.
White matter (WM) plays a vital role in the efficient transfer of information between grey matter regions. Modern imaging techniques such as diffusion tensor imaging (DTI) have enabled the examination of WM microstructural changes across the lifespan, but there is limited knowledge about the role genetics plays in the pattern and aetiology of age-related WM microstructural changes. Family and twin studies suggest that the heritability of WM integrity measures changes over the lifespan, with the common DTI measure, fractional anisotropy (FA), showing moderate to high heritability in adults. However, few heritability studies have been undertaken in older adults. Linkage studies in middle-aged adults suggest that specific regions on chromosomes 3 and 15 may harbour genetic variants for WM integrity. A number of studies have investigated candidate genes, with the APOE ?4 polymorphism being the most frequently studied. Although these candidate gene studies suggest associations of particular genes with WM integrity measures in some specific brain regions, the findings remain inconsistent due to differences in their methodologies, samples and the outcome measures used. The APOE ?4 allele has been associated with decreased WM integrity (FA) in the cingulum, corpus callosum and parahippocampal gyrus. Only one genome-wide association study of global WM integrity measures in older adults has been published, and reported suggestive single nucleotide polymorphisms await replication. Overall, genetic age-related WM integrity studies are lacking and a concerted effort to examine the genetic determinants of age-related decline in WM integrity is clearly needed to improve our understanding of the ageing brain.  相似文献   

17.
To characterize the white matter structural changes at the tract level and tract group level, comprehensive analysis with 4 metrics derived from diffusion tensor imaging (DTI), fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AxD) and radial diffusivity (RD), was conducted. Tract groups, namely limbic, commissural, association, and projection tracts, include white matter tracts of similar functions. Diffusion tensor imaging data were acquired from 61 subjects (26 Alzheimer's disease [AD], 11 subjects with amnestic mild cognitive impairment [aMCI], and 24 age-matched controls). An atlas-based approach was used to survey 30 major cerebral white matter tracts with the measurements of FA, MD, AxD, and RD. Regional cortical atrophy and cognitive functions of AD patients were also measured to correlate with the structural changes of white matter. Synchronized structural changes of cingulum bundle and fornix, both of which are part of limbic tract group, were revealed. Widespread yet distinctive structural changes were found in limbic, commissural, association, and projection tract groups between control and AD subjects. Specifically, FA, MD, and RD of limbic tracts, FA, MD, AxD, and RD of commissural tracts, MD, AxD, and RD of association tracts, and MD and AxD of projection tracts are significantly different between AD patients and control subjects. In contrast, the comparison between aMCI and control subjects shows disruption only in the limbic and commissural tract groups of aMCI subjects. MD values of all tract groups of AD patients are significantly correlated to cognitive functions. Difference between AD and control and that between aMCI and control indicates a progression pattern of white matter disruption from limbic and commissural tract group to other tract groups. High correlation between FA, MD, and RD measurements from limbic tracts and cortical atrophy suggests the disruption of the limbic tract group is caused by the neuronal damage.  相似文献   

18.
Wang Y  Li W  Li Q  Yang W  Zhu J  Wang W 《Neuroscience letters》2011,494(1):49-53
Methadone maintenance treatment (MMT) might cause the impairments of neuropsychological and neurotransmitter function in opioid addicts. Whether long-term MMT could lead to the impairment of white matter (WM) in heroin addiction brain is unclear. This study compared the WM integrity in the bilateral frontal lobe, temporal lobe, splenium and genu of corpus collasum (CC) between MMT patients (n=13), former heroin addicts (n=11) in prolonged abstinence (PA), and healthy control subjects (n=15) using diffusion tensor imaging (DTI). Fractional anisotropy (FA), apparent diffusion coefficient (ADC) and eigenvalues (λ(⊥), λ(||)) were measured. The correlation between DTI measures and accumulated former heroin dose, total methadone consumption, and PA duration were determined. Although the PA subjects showed no difference in DTI measures relative to the controls, the extensive correlations between the former heroin consumption and the DTI measures were noted. The MMT subjects showed a decreased FA values in the left genu, as well as the increased ADC and λ(⊥) values in the left splenium of CC in comparison to the controls. Compared with the PA, the MMT subjects had a significantly increased ADC value in the bilateral splenium of CC. Importantly, the methadone dosage used in the MMT group was correlated with the FA value in the left splenium of CC and in the right frontal lobe. Our preliminary results suggest that methadone plays a role in the impairment of WM integrity in heroin users on long-term MMT and the normalization of WM injury may occur during abstinence.  相似文献   

19.
Hippocampal atrophy is the key marker in the pathogenesis of Alzheimer's disease (AD), which is associated with white matter (WM) disruption. This type of WM disruption could partly explain AD-related pathology. However, relatively little attention has been directed toward WM disruption which may be independent of these fundamental gray matter (GM) changes in amnestic mild cognitive impairment (aMCI) which is associated with high risk of AD. To evaluate the differences of WM integrity between aMCI patients (N = 32) and healthy controls (N = 31), whole-brain voxel-based methods were applied to diffusion tensor imaging. To explore the possible independence of WM changes from GM loss, an index of hippocampal atrophy was used to partial out GM effects. aMCI patients showed WM disruption in frontal lobe, temporal lobe, internal capsule, cingulate gyrus and precuneus. The findings supported the evidence of independent patterns of degeneration in WM tracts which may co-act in the WM pathological process of aMCI patients. As aMCI is a putatively prodromal syndrome to AD, these data may assist with a better understanding of WM pathological change associated with the development of AD.  相似文献   

20.
Increased white matter mean diffusivity and decreased fractional anisotropy (FA) has been observed in subjects diagnosed with mild cognitive impairment (MCI) and Alzheimer's disease (AD). We sought to determine whether similar alterations of white matter occur in normal individuals at risk of AD. Diffusion tensor images were acquired in 42 cognitively normal right-handed women with both a family history of dementia and at least one apolipoprotein E4 allele. These were compared with images from 23 normal women without either AD risk factor. Group analyses were performed using tract-based spatial statistics. Reduced FA was observed in the fronto-occipital and inferior temporal fasciculi (particularly posteriorly), the splenium of the corpus callosum, subcallosal white matter and the cingulum bundle. These findings demonstrate that specific white matter pathways are altered in normal women at increased risk of AD years before the expected onset of cognitive symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号