首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
G蛋白偶联受体固有活性研究进展与新药开发   总被引:2,自引:0,他引:2  
G蛋白偶联受体(G-prote in-coup led receptor,GPCR)是与G蛋白有信号连接的一大类受体家族,是人体内最大的膜受体蛋白家族,是一类具有7个跨膜螺旋的跨膜蛋白受体。GPCR的结构特征和在信号传导中的重要作用决定了其可以作为很好的药物靶标。目前世界药物市场上有三分之一的小分子药物是GPCR的激活剂(agon ist)或拮抗剂(antagon ist)。以其为靶点的药物在医药产业中占据显著地位。在当今前50种最畅销的上市药物中,20%属于G蛋白受体相关药物。近来的研究发现,大多数G蛋白偶联受体具有一个很重要的特性,就是具有固有活性(Constitutive ac-tivity),即无激动剂条件受体自发的维持激活并维持下游信号传导通路的活性。固有活性涉及受体、G蛋白及下游信号通路之间的关系。该文就G蛋白偶联受体固有活性概念、研究进展、反相激动剂与固有活性研究、固有活性与新药开发4个方面,进行以下论述。  相似文献   

2.
Seven transmembrane G protein coupled receptors (7TM GPCRs) represent one of the largest gene familes in the human genome. Because of the size of the GPCR family, their proven history of being valuable targets for small molecule drug design, the fact that the absolute number of GPCRs that are targets for current medicines represents only a small fraction of the total encoded by the human genome, and that ligands for GPCRs do not have to enter the cell to exert their function, it is very likely that GPCRs will remain major targets for the pharmaceutical industry in the foreseeable future. Despite recent evidence indicating that GPCRs can provide information to cells, that does not require activation of G proteins ("signaling at zero G"), most of the GPCRs known to date function via interaction with and activation of heterotrimeric (alphabetagamma) G proteins. Thus, assay systems translating ligand modulation of GPCRs into G protein-dependent intracellular responses are a key component of both basic research and the drug discovery process. This article will review the current knowledge and recent progress in understanding molecular aspects of specific receptor-G protein recognition. It will also highlight how the knowledge generated by such studies can be transformed into assay systems for GPCR drug discovery.  相似文献   

3.
G protein-coupled receptors (GPCRs) comprise the most 'prolific' family of cell membrane proteins, which share a general mechanism of signal transduction, but greatly vary in ligand recognition and function. Crystal structures are now available for rhodopsin, adrenergic, and adenosine receptors in both inactive and activated forms, as well as for chemokine, dopamine, and histamine receptors in inactive conformations. Here we review common structural features, outline the scope of structural diversity of GPCRs at different levels of homology, and briefly discuss the impact of the structures on drug discovery. Given the current set of GPCR crystal structures, a distinct modularity is now being observed between the extracellular (ligand-binding) and intracellular (signaling) regions. The rapidly expanding repertoire of GPCR structures provides a solid framework for experimental and molecular modeling studies, and helps to chart a roadmap for comprehensive structural coverage of the whole superfamily and an understanding of GPCR biological and therapeutic mechanisms.  相似文献   

4.
Abstract: Many drugs of abuse signal through receptors that couple to G proteins (GPCRs), so the factors that control GPCR signaling are likely to be important to the understanding of drug abuse. Contributions by the recently identified protein family, regulators of G protein signaling (RGS) to the control of GPCR function are just beginning to be understood. RGS proteins can accelerate the deactivation of G proteins by 1000‐fold and in cell systems they profoundly inhibit signaling by many receptors, including mu‐opioid receptors. Coupled with the known dynamic regulation of RGS protein expression and function, they are of obvious interest in understanding tolerance and dependence mechanisms. Furthermore, drugs that could inhibit their activity could be useful in preventing the development of or in treating drug dependence.  相似文献   

5.
Recent solved structures of G protein-coupled receptors (GPCRs) provide insights into variation of the structure and molecular mechanisms of GPCR activation. In this review, we provide evidence for the emerging paradigm of domain coupling facilitated by intrinsic disorder of the ligand-free state in GPCRs. The structure-function and dynamic studies suggest that ligand-bound GPCRs exhibit multiple active conformations in initiating cellular signals. Long-range intramolecular and intermolecular interactions at distant sites on the same receptor are crucial factors that modulate signaling function of GPCRs. Positive or negative coupling between the extracellular, the transmembrane and the intracellular domains facilitates cooperativity of activating 'switches' as requirements for the functional plasticity of GPCRs. Awareness that allosteric ligands robustly affect domain coupling provides a novel mechanistic basis for rational drug development, small molecule antagonism and GPCR regulation by classical as well as nonclassical modes.  相似文献   

6.
Recently, we created a family of engineered G protein-coupled receptors (GPCRs) called DREADD (designer receptors exclusively activated by designer drugs) which can precisely control three major GPCR signaling pathways (Gq, Gi, and Gs). DREADD technology has been successfully applied in a variety of in vivo studies to control GPCR signaling, and here we describe recent advances of DREADD technology and discuss its potential application in drug discovery, gene therapy, and tissue engineering.  相似文献   

7.
G-protein-coupled receptor (GPCR) proteins [Lundstrom KH, Chiu ML, editors. G protein-coupled receptors in drug discovery. CRC Press; 2006] are the single largest drug target, representing 25-50% of marketed drugs [Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov 2006;5(12):993-6; Parrill AL. Crystal structures of a second G protein-coupled receptor: triumphs and implications. ChemMedChem 2008;3:1021-3]. While there are six subclasses of GPCR proteins, the hallmark of all GPCR proteins is the transmembrane-spanning region. The general architecture of this transmembrane (TM) region has been known for some time to contain seven α-helices. From a drug discovery and design perspective, structural information of the GPCRs has been sought as a tool for structure-based drug design. The advances in the past decade of technologies for structure-based design have proven to be useful in a number of areas. Invoking these approaches for GPCR targets has remained challenging. Until recently, the most closely related structures available for GPCR modeling have been those of bovine rhodopsin. While a representative of class A GPCRs, bovine rhodopsin is not a ligand-activated GPCR and is fairly distant in sequence homology to other class A GPCRs. Thus, there is a variable degree of uncertainty in the use of the rhodopsin X-ray structure as a template for homology modeling of other GPCR targets. Recent publications of X-ray structures of class A GPCRs now offer the opportunity to better understand the molecular mechanism of action at the atomic level, to deploy X-ray structures directly for their use in structure-based design, and to provide more promising templates for many other ligand-mediated GPCRs. We summarize herein some of the recent findings in this area and provide an initial perspective of the emerging opportunities, possible limitations, and remaining questions. Other aspects of the recent X-ray structures are described by Weis and Kobilka [Weis WI, Kobilka BK. Structural insights into G-protein-coupled receptor activation. Curr Opin Struct Biol 2008;18:734-40] and Mustafi and Palczewski [Mustafi D, Palczewski K. Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors. Mol Pharmacol 2009;75:1-12].  相似文献   

8.
Crosstalk between G protein-coupled receptors (GPCRs) is one of the key mechanisms used by the cell for integrating multiple signaling pathways. Functional crosstalk at the level of signaling pathways was initially thought to regulate receptor function. Importantly, the existence of GPCR heteromers demonstrates that direct physical interactions between GPCRs could also be behind the crosstalk phenomenon. Neurological disorders such as Parkinson's disease (PD) and schizophrenia have been linked to a dysfunctional communication between certain GPCRs. In this review, we discuss functional and physical crosstalk of the main GPCR families involved in the aforementioned disorders. In addition, we analyze the available structural information on physical crosstalk and highlight some strategies in drug discovery based on these crosstalk mechanisms.  相似文献   

9.
G protein-coupled receptors (GPCRs) are cell surface receptors that mediate physiological responses to a diverse array of stimuli. GPCRs have traditionally been thought to act as monomers, but recent evidence suggests that GPCRs may form dimers (or higher-order oligomers) as part of their normal trafficking and function. In fact, certain GPCRs seem to have a strict requirement for heterodimerization to attain proper surface expression and functional activity. Even those GPCRs that do not absolutely require heterodimerization may still specifically associate with other GPCR subtypes, sometimes resulting in dramatic effects on receptor pharmacology, signaling, and/or internalization. Understanding the specificity and functional significance of GPCR heterodimerization is of tremendous clinical importance since GPCRs are the molecular targets for numerous therapeutic drugs.  相似文献   

10.
Introduction: G protein-coupled receptors (GPCRs) are integral membrane proteins which contain seven-transmembrane-spanning alpha-helices. GPCR-mediated signaling has been associated with various human diseases, positioning GPCRs as attractive targets in the drug discovery field. Recently, through advances in protein engineering and crystallography, the number of resolved GPCR structures has increased dramatically. This growing availability of GPCR structures has greatly accelerated structure-based drug design (SBDD) and in silico screening for GPCR-targeted drug discovery.

Areas covered: The authors introduce the current status of X-ray crystallography of GPCRs and what has been revealed from the resolved crystal structures. They also review the recent advances in SBDD and in silico screening for GPCR-targeted drug discovery and discuss a docking study, using homology modeling, with the discovery of potent antagonists of the vasopressin 1b receptor.

Expert opinion: Several innovative protein engineering techniques and crystallographic methods have greatly accelerated SBDD, not only for already-resolved GPCRs but also for those structures which remain unclear. These technological advances are expected to enable the determination of GPCR-fragment complexes, making it practical to perform fragment-based drug discovery. This paves the way for a new era of GPCR-targeted drug discovery.  相似文献   

11.
G protein-coupled receptors (GPCRs) comprise the largest and most diverse family of signaling receptors and control a vast array of physiological responses. Modulating the signaling responses of GPCRs therapeutically is important for the treatment of various diseases, and discovering new aspects of GPCR signal regulation is critical for future drug development. Post-translational modifications are integral to the regulation of GPCR function. In addition to phosphorylation, many GPCRs are reversibly modified with ubiquitin. Ubiquitin is covalently attached to lysine residues within the cytoplasmic domains of GPCRs by ubiquitin ligases and removed by ubiquitin-specific proteases. In many cases, ubiquitin functions as a sorting signal that facilitates trafficking of mammalian GPCRs from endosomes to lysosomes for degradation, but not all GPCRs use this pathway. Moreover, there are distinct types of ubiquitin conjugations that are known to serve diverse functions in controlling a wide range of cellular processes, suggesting broad roles for GPCR ubiquitination. In this review, we highlight recent studies that illustrate various roles for ubiquitin in regulation of GPCR function. Ubiquitination is known to target many GPCRs for lysosomal degradation, and current studies now indicate that basal ubiquitination, deubiquitination, and transubiquitination of certain GPCRs are important for controlling cell surface expression and cellular responsiveness. In addition, novel functions for ubiquitin in regulation of GPCR dimers and in mediating differential GPCR regulation induced by biased agonists have been reported. We will discuss the implications of these new discoveries for ubiquitin regulation of GPCR function in the context of drug development.  相似文献   

12.
Assay technologies that measure the activation of heterotrimeric (alphabetagamma) G proteins by G-protein-coupled receptors (GPCRs) are well established within the pharmaceutical industry, either for pharmacological characterization or for the identification of natural or surrogate receptor ligands. Despite recent evidence indicating that GPCR-linked signalling events might not be mediated exclusively by G proteins, G-protein activation remains a common benchmark for assessing GPCR family members. Thus, assay systems that translate ligand-mediated modulation of GPCRs into G-protein-dependent intracellular responses still represent key components of both basic research and the drug discovery process. In this article, the current knowledge and recent progress of integrating Galpha subunits into assay systems for GPCR drug discovery will be reviewed. Emphasis is given to novel promiscuous and chimeric Galpha proteins. Because of their ability to interact with a wide range of GPCRs, such novel G proteins are likely to be incorporated rapidly into drug discovery programmes.  相似文献   

13.
G protein-coupled receptors (GPCRs) are membrane-embedded proteins responsible for signal transduction; these receptors are, therefore, among the most important pharmaceutical drug targets. In the absence of X-ray structures, there have been numerous attempts to model the three-dimensional (3D) structure of GPCRs. In this review, the current status of GPCR modeling is evaluated, highlighting recent progress made in rhodopsin-based homology modeling and de novo modeling technology. Assessment of recent rhodopsin-based homology modeling studies indicates that, despite significant progress, these models do not yield hit rates that are sufficiently high for in silico screening (10 to 40% when screening for known binders). In contrast, the PREDICT modeling algorithm, which is independent of the rhodopsin structure, has now been fully validated in the context of drug discovery. PREDICT models are successfully used for drug discovery, yielding excellent hit rates (85 to 100% when screening for known binders), leading to the discovery of nanomolar-range new chemical entities for a variety of GPCR targets. Thus, 3D models of GPCRs should now allow the use of productive structure-based approaches for drug discovery.  相似文献   

14.
Crucial as molecular sensors for many vital physiological processes, seven-transmembrane domain G protein-coupled receptors (GPCRs) comprise the largest family of proteins targeted by drug discovery. Together with structures of the prototypical GPCR rhodopsin, solved structures of other liganded GPCRs promise to provide insights into the structural basis of the superfamily's biochemical functions and assist in the development of new therapeutic modalities and drugs. One of the greatest technical and theoretical challenges to elucidating and exploiting structure-function relationships in these systems is the emerging concept of GPCR conformational flexibility and its cause-effect relationship for receptor-receptor and receptor-effector interactions. Such conformational changes can be subtle and triggered by relatively small binding energy effects, leading to full or partial efficacy in the activation or inactivation of the receptor system at large. Pharmacological dogma generally dictates that these changes manifest themselves through kinetic modulation of the receptor's G protein partners. Atomic resolution information derived from increasingly available receptor structures provides an entrée to the understanding of these events and practically applying it to drug design. Supported by structure-activity relationship information arising from empirical screening, a unified structural model of GPCR activation/inactivation promises to both accelerate drug discovery in this field and improve our fundamental understanding of structure-based drug design in general. This review discusses fundamental problems that persist in drug design and GPCR structural determination.  相似文献   

15.
G protein-coupled receptor allosterism and complexing   总被引:22,自引:0,他引:22  
G protein-coupled receptors (GPCRs) represent the largest family of cell-surface receptors. These receptors are natural allosteric proteins because agonist-mediated signaling by GPCRs requires a conformational change in the receptor protein transmitted between two topographically distinct binding sites, one for the agonist and another for the G protein. It is now becoming increasingly recognized, however, that the agonist-bound GPCR can also form ternary complexes with other ligands or "accessory" proteins and display altered binding and/or signaling properties in relation to the binary agonist-receptor complex. Allosteric sites on GPCRs represent novel drug targets because allosteric modulators possess a number of theoretical advantages over classic orthosteric ligands, such as a ceiling level to the allosteric effect and a potential for greater GPCR subtype-selectivity. Because of the noncompetitive nature of allosteric phenomena, the detection and quantification of such effects often relies on a combination of equilibrium binding, nonequilibrium kinetic, and functional signaling assays. This review discusses the development and properties of allosteric receptor models for GPCRs and the detection and quantification of allosteric effects. Moreover, we provide an overview of the current knowledge regarding the location of possible allosteric sites on GPCRs and candidate endogenous allosteric modulators. Finally, we discuss the potential for allosteric effects arising from the formation of GPCR oligomers or GPCRs complexed with accessory cellular proteins. It is proposed that the study of allosteric phenomena will become of progressively greater import to the drug discovery process due to the advent of newer and more sensitive GPCR screening technologies.  相似文献   

16.
Because G-protein coupled receptors (GPCRs) continue to represent excellent targets for the discovery and development of small-molecule therapeutics, it is posited that additional protein components of the signal transduction pathways emanating from activated GPCRs themselves are attractive as drug discovery targets. This review considers the drug discovery potential of two such components: members of the "regulators of G-protein signaling" (RGS protein) superfamily, as well as their substrates, the heterotrimeric G-protein α subunits. Highlighted are recent advances, stemming from mouse knockout studies and the use of "RGS-insensitivity" and fast-hydrolysis mutations to Gα, in our understanding of how RGS proteins selectively act in (patho)physiologic conditions controlled by GPCR signaling and how they act on the nucleotide cycling of heterotrimeric G-proteins in shaping the kinetics and sensitivity of GPCR signaling. Progress is documented regarding recent activities along the path to devising screening assays and chemical probes for the RGS protein target, not only in pursuits of inhibitors of RGS domain-mediated acceleration of Gα GTP hydrolysis but also to embrace the potential of finding allosteric activators of this RGS protein action. The review concludes in considering the Gα subunit itself as a drug target, as brought to focus by recent reports of activating mutations to GNAQ and GNA11 in ocular (uveal) melanoma. We consider the likelihood of several strategies for antagonizing the function of these oncogene alleles and their gene products, including the use of RGS proteins with Gα(q) selectivity.  相似文献   

17.
G protein-coupled receptors (GPCRs) belong to a superfamily of cell surface signalling proteins that have a pivotal role in many physiological functions and in multiple diseases, including the development of cancer and cancer metastasis. Current drugs that target GPCRs - many of which have excellent therapeutic benefits - are directed towards only a few GPCR members. Therefore, huge efforts are currently underway to develop new GPCR-based drugs, particularly for cancer. We review recent findings that present unexpected opportunities to interfere with major tumorigenic signals by manipulating GPCR-mediated pathways. We also discuss current data regarding novel GPCR targets that may provide promising opportunities for drug discovery in cancer prevention and treatment.  相似文献   

18.
G protein-coupled receptors (GPCRs) are ligand-activated cell membrane proteins and represent the most important class of drug targets. GPCRs adopt several active conformations that stimulate different intracellular G proteins (and other transducers) and thereby modulate second messenger levels, eventually resulting in receptor-specific cell responses. It is increasingly accepted that not only the type of active signaling protein but also the duration of its stimulation and the subcellular location from where receptors signal distinctly contribute to the overall cell response. However, the molecular principles governing such spatiotemporal GPCR signaling and their role in disease are incompletely understood. Genetically encoded, fluorescent biosensors—in particular for the GPCR/cAMP signaling axis—have been pivotal to the discovery and molecular understanding of novel concepts in spatiotemporal GPCR signaling. These include GPCR priming, location bias, and receptor-associated independent cAMP nanodomains. Here, we review such technologies that we believe will illuminate the spatiotemporal organization of other GPCR signaling pathways that define the complex signaling architecture of the cell.  相似文献   

19.
The G-protein coupled receptor (GPCR) gene family represents one of the largest families in the mammalian genome. The flexibility of signalling and widespread tissue distribution of these receptors has allowed GPCRs to be employed in the physiological regulation of nearly all biological functions. This, coupled with the fact that it is possible to chemically produce highly specific ligands to these receptors have made GPCRs attractive targets for pharmacological intervention in a wide variety of disease states. When targeting GPCRs in therapeutic drug design it is traditional, and eminently sensible, to focus on ligands that will provide agonism, antagonism or allosteric modulation. However, as more is understood of the mechanisms that regulate GPCRs, and in particular the dynamic covalent modifications that might endow tissue specific functions, then these regulatory processes may provide alternative targets for GPCR drug discovery. In this review we consider three of the covalent modifications which are considered to regulate the function of GPCRs namely; receptor phosphorylation, palmitoylation and ubiquitination. In particular, we will describe the mechanisms of modification, the functional consequences and the relationship between these three covalent modification events.  相似文献   

20.
Importance of the field: In recent times many G protein-coupled receptors (GPCRs) have been shown to dimerise/oligomerise and, in some cases, such structural organization has been found to be essential for receptor function or to play a modulatory role in living cells. The fact that these complexes may display differential pharmacology through, for example, the formation of a new binding pocket or signalling properties, as well as different functions or regulation in physiological tissues, offers novel opportunities for drug discovery. As a consequence, it seems necessary to develop new approaches suitable for GPCR heterodimer identification and selective ligand screening. Areas covered in this review: This review gives an overview of new strategies that have been developed in an effort to incorporate the possibilities added by GPCR hetero-oligomerisation on the screening of compounds as drug candidates. What the reader will gain: The reader will gain a wider knowledge about how the current understanding of GPCR oligomeric structure and function has mandated that hetero-oligomeric receptors must be considered as novel targets in the identification of future lead compounds. Take home message: For the improvement of novel drug discovery, more structural and functional information on the process of receptor oligomerisation is needed, and the realisation that the function of GPCRs can be greatly influenced by other interacting receptors or proteins also demands consideration in the lead-compound developing process in order to achieve better therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号