首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Sixteen non-obese, non-smoking males, ages 20-30 yr, were assigned to one of two training groups, exercising on a cycle ergometer 3 d/wk for 18 wk: high-intensity (H; N = 7; 80-85% Vo2max, 25 min/session) or low-intensity (L; N = 9; 45% VO2max, 50/min/session). Data were obtained at 3-wk intervals for Vo2max, body weight, percent body fat, and 12-h fasting blood levels of cholesterol (CHOL), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). The average post-training increase in VO2max for group H (0.56 l X min-1, 8.5 ml X min-1 X kg-1) was not significantly (P greater than 0.05) greater than for group L (0.45 l X min-1, 6.5 ml X min-1 X kg-1). Significant reductions in percent body fat occurred in both groups, amounting to an average fat loss of approximately 1.35 kg. No statistically significant changes in CHOL, TG, HDL-C, LDL-C, CHOL/HDL-C, or HDL-C/LDL-C occurred in either group. However, changes in HDL-C after 18 wk of training were inversely correlated (r = -0.57, P less than 0.05) with pre-training levels. We conclude that 1) the minimum exercise training-intensity threshold for improving aerobic capacity is at least 45% Vo2max; 2) 18 wk of high- or low-intensity exercise training is ineffective in significantly altering CHOL, TG, HDL-C, LDL-C, CHOL/HDL-C, and HDL-C/LDL-C in young male subjects with low blood lipid levels, and 3) exercise training-induced changes in HDL-C are dependent upon initial pre-training levels.  相似文献   

2.
This study examined the effect of high-intensity interval training on the VO2 response during severe, constant-load exercise. Prior to, and following training, 10 females (V O2 peak 37.4+/-6.0 mL kg-1 min-1) performed a graded exercise test to determine VO2 peak and lactate threshold (LT) and a 6 min cycle test (CT) at the pre-training VO2 peak intensity. Training involved high-intensity intervals (2 min work, 1 min rest) performed 3x week for 8 weeks. Breath-by-breath data from 0 to 6 min during the CT were smoothed using 5s averages and fit to a bi-exponential model starting from 20s. Training resulted in significant improvements in VO2 max (2.34+/-0.37-2.78+/-0.30 L min-1), power at VO2 max (170+/-26-204+/-25 W) and power at LT (113+/-17-136+/-20 W) (p<0.05). Following training, the VO2 response showed a significant increase in the amplitude of the primary phase (A1) (1396+/-103-1695+/-100 mL min-1; p<0.05) and end-exercise VO2 (VO2 EE), with no difference (p>0.05) in the time constants of either phase or the amplitude of the slow component (318+/-67-380+/-48 mL; p=0.15). In conjunction, accumulated oxygen deficit (AOD) (43.7+/-9.8-17.2+/-2.8 mL O2 eq kg-1) and anaerobic contribution to the CT (19.4+/-4.4-7.2+/-1.2%) were significantly reduced. In contrast to previous moderate-intensity research, a high-intensity interval training program increased A1 and VO2 EE for the same absolute exercise intensity, decreasing the AOD during a severe-intensity CT.  相似文献   

3.
The effect of endurance training on reflex venomotor control during an orthostatic challenge was investigated in 11 sedentary male volunteers. An exercise (E) group (n = 6) underwent 12 weeks of endurance exercise training, whereas a control (C) group (n = 5) remained sedentary. Training significantly increased VO2max values in E (pre-training: 37.0 +/- 2.5 ml.kg-1.min-1; post training: 44.6 +/- 2.5 ml.kg-1.min-1), while C showed no significant change. During exposures to two levels of lower body negative pressure (-10 and -40 mm Hg), both C and E groups showed similar graded decreases in forearm venous volume (FVV). The magnitude of the FVV decreases did not differ between groups or when comparing pre-training and post-training values. We conclude that the reflex venoconstrictor response to LBNP was not affected by endurance training.  相似文献   

4.
The purpose of this study was to examine the effect of short-term training on maximum oxygen uptake (VO2 max) and two different measures of endurance performance. Endurance was determined for 15 female subjects (7 training, 8 control) as (1) exercise time to exhaustion at 80% VO2 max (T80%) and (2) the highest relative exercise intensity tolerable during a 30-minute test (T30 min), before and after a 6-week training period. In addition, VO2 max and the work rate equivalent to a blood lactate concentration of 4 mmol.l-1 (OBLA) were determined. Maximum oxygen uptake increased by 24% (p less than 0.01) for the training group (TG) and 7% (p less than 0.01) for the control group (CG). Cumulative average work rate (CAWR) during T30 min increased by 25% for the TG while there was no change for the CG. No significant difference was found pre- and post-training in the %VO2 max (estimated from CAWR) at which the TG and CG performed T30 min. Exercise time to exhaustion on T80% increased by 347% (p less than 0.01) and 16% (NS) for the TG and the CG respectively. Good correlations were found between VO2 max and CAWR (W) (pre-training r = 0.84; post-training r = 0.83), OBLA (W) and CAWR (W) (pre-training r = 0.89; post-training r = 0.88) and change in endurance time and the change in submaximal blood lactate concentration (r = 0.70, p less than 0.01). The results of this study suggest that the ability to sustain a high relative exercise intensity is not enhanced following short-term training.  相似文献   

5.
PURPOSE: The aim of this study was to determine the relationship between the right-to-left ventricular red cell pulmonary transit times (PTT) during intense exercise and circulating white blood cell (WBC) counts in highly trained endurance athletes. We postulated that high levels of WBCs preexercise would slow PTT. Eleven endurance-trained athletes (VO2max = 69.6 +/- 7.7 mL.kg-1.min-1; weight = 75.0 +/- 6.2 kg; height = 181.0 +/- 7.1 cm) performed 6.5 min constant-load, near-maximal cycling exercise (approximately 92% VO2max) on two different days. Preexercise WBC counts were measured in arterial blood drawn from the radial artery 30 min before exercise. PTT was measured during the 3rd min of exercise by first-pass radionuclide cardiography using centroid and deconvolution analysis, whereas cardiac output (Q) was measured during the last 2.5 min of exercise via a count-based ratio method from the MUGA technique. RESULTS: Combined mean PTT from both deconvolution and centroid analysis at minute three of exercise was 2.45 +/- 0.21 s, whereas the preexercise WBC count was 5.3 +/- 1.6 x 109.L-1. Cardiopulmonary blood volume at minute three of exercise was 1.22 +/- 0.13 L, VO2 was 4.58 +/- 0.44 L.min-1, and Q was 30.2 +/- 4.2 L.min-1. We found that PTT was negatively correlated with circulating WBC (r = -0.61; adjusted r2 = 0.30; P = 0.04; N = 11) but not with the dispersion (spread) of transit times around the mean (r = 0.19; P = 0.57). CONCLUSION: This suggests that athletes with higher circulating numbers of WBCs preexercise have faster (shorter) red cell transit times through the lung during intense exercise.  相似文献   

6.
Exercise training below and above the lactate threshold in the elderly   总被引:3,自引:0,他引:3  
In this study we report the effects of training at intensities below and above the lactate threshold on parameters of aerobic function in elderly subjects (age range 65-75 yr). The subjects were randomized into high-intensity (HI, N = 8; 75% of heart rate reserve = approximately 82% VO2max = approximately 121% of lactate threshold) and low-intensity (LI, N = 9; 35% of heart rate reserve = approximately 53% VO2max = approximately 72% of lactate threshold) training groups which trained 4 d.wk-1 for 30 min.session-1 for 8 wk. Before and after the training, subjects performed an incremental exercise test for determination of maximal aerobic power (VO2max) and lactate threshold (LT). In addition, the subjects performed a 6-min single-stage exercise test at greater than 75% of pre-training VO2max (SST-High) during which cardiorespiratory responses were evaluated each minute of the test. After training, the improvements in VO2max (7%) for LI and HI were not different from one another (delta VO2max for LI = 1.8 +/- 0.7 ml.kg-1.min-1; delta VO2max for HI = 1.8 +/- 1.0 ml.kg-1.min-1) but were significantly greater (P = 0.02) than the post-testing change observed in the control group (N = 8). Training improved the LT significantly (10-12%; P less than 0.01) and equally for both LI and HI (delta LT for for LI = 2.3 +/- 0.6 ml O2.kg-1.min-1; delta LT for HI = 1.8 +/- 0.8 ml O2.kg-1.min-1).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
It appears that training benefits are compromised if excessive training is performed at intensities that are either too low or too high. This suggests a need for accurate methods to monitor training intensity. It has been suggested that heart rate (HR) or lactate concentration ([La -]) can be used to accurately monitor training intensity. The purpose of the present study therefore, was to examine whether the relationship between HR, [La -] and intensity determined during a kayak graded exercise test (GXT) remained stable during constant-intensity kayak exercise. Sixteen trained kayak paddlers, (22 +/- 4 y, peak V.O (2) = 3.7 +/- 0.9 l x min (-1)) performed a GXT on a wind-braked kayak ergometer. They then performed a 20-min constant-load test on the kayak ergometer at a power output corresponding to their lactate inflection (LI) intensity. Eight subjects also performed a 20-min constant-load test at a power output corresponding to their lactate threshold (LT) intensity. Differences between constant-load and GXT values were determined using one-way ANOVA (p < 0.05). There were no significant differences between values for HR and V.O (2) derived from the GXT and those measured during both constant-load tests. However, while [La -] also provided a valid marker of the LI training intensity (1.8 +/- 0.3 v 2.1 +/- 0.8 mmol x l (-1)), [La -] did not provide a valid marker of the LT training intensity (3.8 +/- 0.7 v 5.1 +/- 1.4 mmol x l (-1)). These results suggest that HR, but not [La -1], is similar during both a GXT and constant-load exercise at the LT intensity.  相似文献   

8.
The present investigation was conducted to determine whether critical power (CP) assesses the ability to perform continuous aerobic exercise and to determine whether training-induced changes in aerobic endurance are reflected by changes in the slope, but not the y-intercept of the CP function. Twelve healthy, active, but untrained male students (mean age +/- SD = 19.1 +/- 0.8 yr) undertook 8 wk of cycle ergometer endurance training (30-40 min a day, three times a week) at an intensity corresponding to their CP. Six control subjects of similar age and initial training status refrained from regular exercise for the same period. Before and immediately following the training period, each of the 18 participants completed three cycle ergometer tests to determine their CP function, an incremental exercise task to establish their maximal oxygen uptake (VO2max), and 40 min of continuous cycle ergometry at or near their calculated CP. CP was significantly correlated with endurance time at 270 W (r = 0.65, P < 0.05) and with the mean power that could be maintained for 40 min (r = 0.87-0.95, P < 0.01), but overestimated the latter by less than 6%. In response to endurance training, CP increased from a mean of 196 +/- 40.9 W to 255 +/- 28.4 W (31%) (ANCOVA, P < 0.01), while the mean power output maintained for 40 min of exercise increased from 190 +/- 34.5 W to 242 +/- 34.9 W (28%). VO2max increased from 49.2 +/- 7.8 ml.kg-1.min-1 to 53.4 +/- 6.4 ml.kg-1.min-1 (8.5%) (P < 0.01).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
PURPOSE: Endurance training improves the oxygen delivery and muscle metabolism. Muscle oxygen saturation measured by near infrared spectroscopy (IR-SO(2)), which is primarily influenced by the local delivery/demand balance, should thus be modified by training. We examined this effect by determining the influence of change in blood lactate and muscle capillary density with training on IR-SO(2) in seven healthy young subjects. METHODS: Two submaximal exercise tests at 50% (Ex1) and 80% pretraining VO(2max) (Ex2) were performed before and after a 4-wk endurance-training program. RESULTS: VO(2max) increased only slightly (+8%, NS) with training but the training effect was confirmed by the increased capillary density (+31%, P < 0.01) and citrate synthase activity (50%, P < 0.01), determined from muscle biopsy samples. Before training, blood lactate increased during the first 5 min of Ex1 and then remained constant (3.8 +/- 0.5 mmol x L(-1), P < 0.01), whereas it increased continuously during Ex2 (8.9 +/- 1.8 mmol x L(-1), P < 0.001). After training, lactate decreased significantly and remained constant during the two bouts of exercise (2.0 +/- 0.4 and 3.7 +/- 1.2 at the end of Ex1 and Ex2, respectively, both P < 0.001). During Ex1, IR-SO(2) dropped initially at the onset of exercise and recovered progressively without reaching the resting level. Training did not change this pattern of IR-SO(2). During Ex2, IR-SO(2) decreased progressively during the 15 min of exercise (P < 0.05); IR-SO2 kept constant after the initial drop after training. We found a significant relationship (r = 0.42, P = 0.03) between blood lactate and IR-SO(2) at the end of both bouts of exercise; this relationship was closer before training. By contrast, IR-SO(2) or IR-BV was not related to the capillary density. CONCLUSION: The training-induced adaptation in blood lactate influences IR-SO(2) during mild- to hard-intensity exercise. Thus, NIRS could be used as a noninvasive monitoring of training-induced adaptations.  相似文献   

10.
PURPOSE: We postulated that the relationship between VO2 and work rate (VO2-WR relationship) during incremental exercise is dependent on O2 availability, and that training-induced adaptations alter this relationship. We therefore studied the effect of endurance training on VO2 response during incremental exercise in normoxia and hypoxia (FIO2=0.134). METHODS: Before and after training (6 d.wk, 4 wk), eight subjects performed incremental exercises under normoxia and hypoxia and one constant-work rate exercise in normoxia at 80% of pretraining VO2max. The slopes of the VO2-WR relationship during incremental exercise were calculated using all the points (whole slope) or only points before the lactate threshold (pre-LT slope). The difference between VO2max measured and VO2max expected from the pre-LT slope (DeltaVO2) was determined, as was the difference between VO2 at minute 10 and VO2 at minute 4 during the constant-work rate exercise (DeltaVO2(10'-4')). RESULTS: In normoxia, training induced a significant decrease in the whole slope (11.0+/-1.0 vs 9.9+/-0.4 mL.min.W, P<0.05). In hypoxia, training induced a significant increase in the pre-LT slope (8.7+/-1.2 vs 9.8+/-0.7 mL.min.W; P<0.05) and the whole slope (8.5+/-1.2 vs 9.4+/-0.5 mL.min.W; P<0.05). A significant correlation between the decrease of DeltaVO2 and the decrease of DeltaVO2(10'-4') with training was found in normoxia (P<0.01, r=0.79). CONCLUSIONS: Taken together, these results indicate that adaptations induced by endurance training are associated with more efficient incremental and constant-workload exercise performed in normoxia. Moreover, training contributes to improved O2 delivery during moderate exercise performed in hypoxia, and to enhanced near-maximal exercise tolerance.  相似文献   

11.
Nine healthy male subjects differing in their training status (VO2 max 54 +/- 7 ml.min-1.kg-1, mean +/- SD; 43-64 ml.min-1 kg-1, range) exercised on two occasions separated by one week. On each occasion, having fasted overnight, subjects exercised for 1 h on an electrically braked cycle ergometer at a workload equivalent to 70 per cent VO2 max (test A) or at a fixed workload of 140 W (test B). Each test was assigned in a randomized manner and was performed at an ambient temperature of 22.5 +/- 0.0 degrees C and a relative humidity of 85 +/- 0 per cent. Absolute exercise workload was the most successful predictor of sweat loss during test A (r = 0.82, p less than 0.01). Sweat loss was also related to VO2 max tests A (r = 0.67, p less than 0.05) and B (r = 0.67, p less than 0.05). There was no relationship between resting pre-exercise core temperature and VO2 max. However, core temperature recorded during the final min of exercise in test B was inversely related to VO2 max (r = -0.86, p less than 0.01). As a consequence, core temperature during the final minute of exercise was also related to the relative exercise intensity (% VO2 max) performed (r = 0.82, p less than 0.01). The heart rate response during test B was inversely related to VO2 max (r = -0.71, p less than 0.05) and was positively related to the relative exercise intensity performed (r = 0.68, p less than 0.05). No relationship was found between weighted mean skin temperature during the final minute of exercise and the relative (r = 0.26) or absolute (r = 0.03) workloads performed during exercise. The results of the present experiment suggest that cardiovascular fitness (as indicated by VO2 max) will have a significant influence upon the thermoregulatory responses of Man during exercise.  相似文献   

12.
AIM: We hypothesized that an extremely high pedal rate would induce much more type II muscle fibers recruitment even at an early phase of the same absolute work rate compared with normal pedal rates, and would result in changed amplitude of the pulmonary oxygen uptake slow component (VO(2)SC) during heavy constant-load exercise. METHODS: Two square-wave transitions of constant-load exercise were carried out at an exercise intensity corresponding to a VO(2) of 130% of the ventilatory threshold. The amplitude of the VO(2)SC in phase III during heavy constant-load exercise was determined at normal (60 rpm) and extremely high pedal rates (110 rpm). The VO(2) kinetics were analyzed by nonlinear regression. RESULTS: Although the absolute work rates were almost identical in the two pedal rates cycling exercise, the amplitude of the VO(2) in phase II (phase II amplitude), end-exercise VO(2) (EEVO(2)) and blood lactate accumulation ([La]) were significantly greater at 110 rpm than at 60 rpm (2 260+/-242 vs 1.830+/-304 mL.min(-1) for phase II amplitude; P<0.01, 2 350+/-265 vs 1 709+/-342 mL.min(-1) for EEVO(2); P<0.01, 6.4+/-1.3 vs 3.2+/-1.3 mmol.L(-1) for [La]; P<0.01, respectively). The amplitude of the VO(2)SC in phase III also revealed a significantly higher value at 110 rpm compared with 60 rpm (416+/-73 vs 201+/-89 mL.min(-1), P<0.01). In spite of the appearance of greater VO(2)SC at 110 rpm, no corresponding changes in integrals of the electromyography (EMG) signal and mean power frequency were observed. CONCLUSIONS: The results of this study indicate that the amplitude of the VO(2)SC was greater in higher pedal rate during the same work rate constant-load cycling exercise, which might be associated with a progressive increase in the adenosine triphosphate requirement of already recruited muscle fibers in exercising muscle.  相似文献   

13.
Nine sedentary men (53 +/- 3 yr) were studied before and after 6 d of endurance exercise training to determine the effects on maximal oxygen uptake (VO2max), and on the heart rate, blood pressure, and metabolic responses to a standard bout of steady-state sub-maximal exercise. The subjects exercised approximately 1 h.d-1 at about 68% of VO2max. The 6-d protocol elicited no improvement in VO2max (2.50 +/- 0.14 before vs 2.58 +/- 0.15 l.min-1 after training). Heart rates were significantly lower by 5 to 8 b.min-1, systolic blood pressures were reduced by 16 to 19 mm Hg, and blood lactate concentrations were 25 to 35% less at the same exercise intensities (60, 70, and 80% of VO2max) after 6 d of exercise. Rate pressure product was about 15% lower at the same exercise intensity after 6 d of training (P less than 0.05). The respiratory exchange ratio during submaximal exercise was 0.02 to 0.04 units lower (P less than 0.05; P less than 0.01) after 6 d of exercise, indicating a shift in substrate utilization favoring fat oxidation. These findings suggest that short-term endurance training can induce heart rate, blood pressure, and metabolic adaptations to sub-maximal exercise before there is a significant increase in VO2max in sedentary, middle-aged men who are capable of vigorous exercise.  相似文献   

14.
Adaptations in aerobic exercise responses as well as the relationship between aerobic exercise responses and running performance were examined in a group of previously trained adolescent runners (n = 9; 15.9 +/- 1.0 years) over the course of a competitive cross-country season. Running economy (RE), submaximal blood lactate concentration [BLa] and VO2max were assessed before and immediately after the season. Five-km race time improved (P < 0.05) from 18.68 +/- 1.10 min at the beginning of the season to 18.16 +/- 1.11 min at the end of the season. Significant increases were observed in peak VO2 (61.6 +/- 3.5 to 65.3 +/- 2.9 mL x kg(-1) x min(-1)) and graded exercise test time (11.32 +/- 1.56 to 12.22 +/- 0.79 min). There was a tendency for RE (P = 0.051) to worsen slightly and for [BLa] (P = 0. 057) to decline as a result of training. At the beginning of the season submaximal [BLa] at 14 km x hr(-1) (r = 0.86) and graded exercise test time (r = -0.87) were significantly related to 5-km time. At the end of the season, RE (r = 0.78) and [BLa] (r = 0.77) at 14 km x hr(-1) and graded exercise test time (r = -0.69) were significantly related to race time. In this well-trained group of runners, further training during the cross-country season increased peak VO2 and improved race time. Submaximal [BLa] and graded exercise test time appear to be the most robust predictors of performance, while RE became a significant predictor of race time at the end of the season.  相似文献   

15.
INTRODUCTION: End-exercise VO2 during heavy, constant-load exercise is reduced after endurance training, due to an attenuated VO2 slow component. PURPOSE/METHODS: To determine whether the training-induced reduction in end-exercise VO2 was associated with reduced muscle use, we measured VO2 and T2 changes in magnetic resonance images in the final minute of two 15-min constant-load cycle rides, one above lactate threshold and the other below lactate threshold. These measures were repeated after a 4-wk period in eight subjects who trained on a cycle ergometer and seven controls. RESULTS: There were no changes in end-exercise VO2 or active muscle after training in either group during low-intensity cycling, in which no VO2 slow component was present. During high-intensity cycling, in which there was a slow component before training, the training group experienced a significant reduction (P < 0.05) in end-exercise VO2 (2625 +/- 673; 2567 +/- 605 mL.min (-1) and the T2 of the vastus lateralis (35.6 +/- 1.4; 34.5 +/- 0.9 ms). CONCLUSION: These results support the hypothesis that reduction in end-exercise VO2 (and the VO2 slow component) after training is due to reduced muscle use during heavy, constant load cycling.  相似文献   

16.
Determinants of the training response in elderly men   总被引:1,自引:0,他引:1  
As part of a prospective randomized trial of the effect of regular exercise in older men, factors determining the magnitude of VO2max increase observed with endurance training were examined in 88 elderly [age 62.9 +/- 3.0 (SD) yr] males. VO2max before and after training was recorded as the highest VO2 observed during two incremental treadmill tests. One year of thrice weekly training sessions increased VO2max (12%, P less than 0.05) in the training group relative to baseline and to a control group (n = 100). The association between the post-training VO2max (VO2max, T2) and the following explanatory variables was assessed using multiple regression analysis: the initial VO2max (VO2max, T1); the reason for stopping the initial treadmill test: leisure time activity during the year previous to the study: the training intensity (speed of walking or running, pulse rate during training, and percentage of heart rate reserve); pulmonary function (forced expiratory volume in 1 s); adiposity (skinfold thickness at 8 sites) and frequency of training. VO2max T1, speed of walking or running during training, reason for stopping the treadmill test, and skinfold thickness were significantly related to post-training VO2max. The intensity and frequency of the training stimulus explained over 10% of the variance in the training effect. Subjects whose test was halted because of fatigue increased VO2max more than those whose test was discontinued for medical or other reasons, even when speed of running was held constant. Previous activity had only a weak effect on training response. The total variance explained by these independent variables was 62%.  相似文献   

17.
PURPOSE: To determine the relationship that exists between VO2max and cycling economy/efficiency during intense, submaximal exercise in world-class road professional cyclists. METHODS Each of 11 male cyclists (26+/-1 yr (mean +/- SEM); VO2max: 72.0 +/- 1.8 mL x kg(-1) x min(-1)) performed: 1) a ramp test for O2max determination and 2) a constant-load test of 20-min duration at the power output eliciting 80% of subjects' VO2max during the previous ramp test (mean power output of 385 +/- 7 W). Cycling economy (CE) and gross mechanical efficiency (GE) were calculated during the constant-load tests. RESULTS: CE and GE averaged 85.2 +/- 2.3 W x L(-1) x min(-1) and 24.5 +/- 0.7%, respectively. An inverse, significant correlation was found between 1) VO2max (mL x kg(-0.32) x min(-1)) and both CE (r = -0.71; P = 0.01) and GE (-0.72; P = 0.01), and 2) VO2max (mL x kg(-1) x min(-1)) and both CE (r = -0.65; P = 0.03) and GE (-0.64; P = 0.03). CONCLUSIONS: A high CE/GE seems to compensate for a relatively low VO2max in professional cyclists.  相似文献   

18.
This study was designed to test the hypothesis that pregnancy has an added training effect (increases "absolute" VO2max) in well-conditioned, recreational athletes. VO2max was measured serially in 20 nonpregnant recreational athletes who maintained their exercise within +/- 10% of initial levels over a 15-month period and 20 similar women who conceived and continued exercise at a reduced level during pregnancy with a return to within 20% of initial levels by 12 wk postpartum. Initially the two groups were similar in terms of age (30 +/- 1 vs 30 +/- 2 yr), weight 57.6 +/- 7.2 vs 59.7 +/- 7.5 kg), max pulse rate (189 +/- 8 vs 187 +/- 10 bpm), and absolute (3083 +/- 469 vs 3138 +/- 464 ml.min-1) VO2max. In the nonpregnant group the values obtained 15 months later were unchanged (weight = 57.8 +/- 6.6 kg, max pulse = 191 +/- 7 bpm, VO2max = 2977 +/- 397 ml.min-1) while those who conceived had a significant increase in absolute VO2max that was evident 12-20 wk postpartum and was maintained at the time of final testing 36-44 wk postpartum (3368 +/- 435 ml.min-1). Both weight (60.1 +/- 8.1 kg) and maximum pulse rate (185 +/- 12 bpm) were unchanged. These data indicate that pregnancy is followed by a small but significant increase in VO2max in recreational athletes who maintain a moderate to high level of exercise performance during and after pregnancy.  相似文献   

19.
Maximum aerobic power (VO2 max), maximum anaerobic power (AP max), submaximal exercise heart rate (HRsub), and performance times for distances of 15m, 600 m, 3.22 km, and 10 km were evaluated in 12 male runners prior to and after 7 weeks of a running programme at each individual's maximum steady-state (MSS) pace. MSS pace, a running speed at which blood lactate is believed to equal 2.2 mmol . l-1, was calculated from weekly 3.22 km runs utilising the regression equation of LaFontaine et al (1981). During the training period, the mean MSS pace increased 11.3% from 3.76 to 4.19 m.s.-1. Body weight and maximal exercise heart rate were unaffected by MSS training. However, MSS training was associated with increases (p less than 0.05) in absolute VO2 max (8.9%) and VO2 max relative to body weight (8.1%), absolute AP max (3.7%) and AP max, relative to body weight (4.3%); decreases in resting HR (5.4%) and HRsub (6.9%); and decreases in performance times for runs of 15m (1.8%), 600 m (4.4%), 3.22 km (9.6%), and 10 km (12.1%). MSS paces determined prior to the pre- and post-training 10 km races were significantly related to the pre-training (r = 0.98) and post-training 10 km (r = 0.95) performance paces. Pretraining MSS pace, maximal aerobic power, and performance times for the 3.22 km and 10 km distances were highly related to improvements in MSS pace and performance times for the 3.22 km and 10 km runs. Our findings indicate that training at MSS pace is an effective method to increase maximal aerobic and anaerobic power, and decrease performance times for short- and middle-distance running events. Pre-training running performance may predict the magnitude of improvement due to MSS pace training.  相似文献   

20.
PURPOSE: To test the hypothesis that muscle fiber recruitment patterns influence the oxygen uptake (VO2) kinetic response, constant-load exercise was performed after glycogen depletion of specific fiber pools. METHODS: After validation of protocols for the selective depletion of Type I and II muscle fibers, 19 subjects performed square-wave exercise at 80% VT (moderate) and at 50% of the difference between VT and VO2max (heavy) without any prior depleting exercise (CON), after HIGH (10 x 1-min exercise bouts at 120% VO2max), and after LOW (3 h of exercise at 30% VO2max) exercise. RESULTS: Differences in VO2 kinetic parameters were only observed in heavy exercise AFTER HIGH: the VO2 primary component was higher (1.75 +/- 0.12 L x min) compared with CON (1.65 +/- 0.11 L x min, P < 0.05), and the VO2 slow component was lower (0.18 +/- 0.03 L x min) compared with CON (0.24 +/- 0.04 L x min, P < 0.05). CONCLUSIONS: The results indicate that the VO2 response to heavy constant-load exercise can be altered by depletion of glycogen in the Type II muscle fibers, lending support to the theory that muscle fiber recruitment influences both the VO2 primary and slow component amplitudes during heavy intensity exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号