首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunocytochemical double and triple staining techniques were employed on whole mounts of the submucosal plexus from normal Wistar and non-diabetic BB rat jejunum and ileum, to determine the patterns of co-localization of vasoactive intestinal polypeptide-, peptide histidine-isoleucine-, somatostatin-, neuropeptide Y-, calcitonin gene-related peptide-, substance P-, and galanin-immunoreactive nerves. Neuropeptide Y immunoreactivity was found in 38% of submucosal plexus neurons, within the same neuronal elements as vasoactive intestinal polypeptide immunoreactivity (39% of submucosal plexus neurons) and peptide histidine-isoleucine immunoreactivity. A small population (1% of submucosal plexus neurons) containing vasoactive intestinal polypeptide- and peptide histide isoleucine-like immunoreactivity without NPY-like immunoreactivity was also observed. A significant population of fibers containing vasoactive intestinal polypeptide and galanin immunoreactivity were observed in the mucosa and submucosa, although no cell bodies were detected which contained both neuropeptides. Galanin-like immunoreactivity was seen in a small (2% of submucosal plexus neurons) population, not co-localized with any of the other neuropeptides examined. All somatostatin-immunoreactive neuronal elements (18% of submucosal plexus neurons) contained calcitonin gene-related peptide immunoreactivity, just over half of which also contained substance P immunoreactivity. An additional 25% of submucosal plexus neurons contained calcitonin gene-related peptide- without somatostatin-like immunoreactivity and 28% of submucosal plexus neurons contained substance P without somatostatin-like immunoreactivity. Some degree of co-localization was seen between calcitonin gene-related peptide- and substance P-like immunoreactivity, however, this could not be directly quantified.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The distribution and origin of the nerve fibres innervating the rat thyroid were studied by immunocytochemistry, retrograde tracing and denervation experiments. Immunocytochemistry revealed nerve fibres containing noradrenaline, neuropeptide Y, vasoactive intestinal peptide, peptide histidine-isoleucine, galanin, substance P, neurokinin A and calcitonin gene-related peptide around blood vessels and follicles. Many of these transmitter candidates were found to co-exist with each other in different combinations in different subpopulations of neurons. Sympathectomy eliminated all noradrenaline- and noradrenaline/neuropeptide Y-containing fibres in the thyroid. Cervical vagotomy eliminated about 50% of the galanin-, substance P- and calcitonin gene-related peptide-containing fibres. Local denervation (removal of the thyroid ganglion and the thyroid nerve) eliminated all galanin- and substance P-immunoreactive fibres and the majority of noradrenaline-, noradrenaline/neuropeptide Y-, vasoactive intestinal peptide- and calcitonin gene-related peptide-containing fibres in the thyroid gland. Injection of True Blue into the thyroid gland labelled cell bodies in the thyroid ganglion, the laryngeal ganglion, the superior cervical ganglion, the jugular-nodose ganglionic complex, the dorsal root ganglia (C2-C5) and the trigeminal ganglion. Judging from the number of labelled nerve cell bodies, the superior cervical ganglion and the thyroid ganglion contribute most to the thyroid innervation, while the laryngeal ganglion and the trigeminal ganglion contribute least. The True Blue-labelled ganglia were examined for the presence of various populations of nerve cell bodies (only major populations are listed). The thyroid ganglion harboured neuropeptide Y, vasoactive intestinal peptide and galanin/vasoactive intestinal peptide cell bodies (in order of predominance); the laryngeal ganglion galanin/vasoactive intestinal peptide, vasoactive intestinal peptide and calcitonin gene-related peptide cell bodies; the superior cervical ganglion noradrenaline/neuropeptide Y and noradrenaline cell bodies; the jugular ganglion calcitonin gene-related peptide, substance P/calcitonin gene-related peptide and galanin/substance P/calcitonin gene-related peptide cell bodies; the nodose ganglion vasoactive intestinal peptide and vasoactive intestinal peptide/galanin cell bodies; the dorsal root ganglia (C2-C5) and the trigeminal ganglion calcitonin gene-related peptide, substance P/calcitonin gene-related peptide and galanin/substance P/calcitonin gene-related peptide cell bodies.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
The arrangement of the enteric nerve plexuses in the colon of the guinea-pig and the distributions and projections of chemically specified neurons in this organ have been studied. Immunoreactivity for neuron specific enolase was used to examine the total population of neurons and individual subpopulations were studied using antibodies raised against calbindin, calcitonin gene-related peptide (CGRP), leu-enkephalin, gastrin releasing peptide (GRP), galanin, gamma aminobutyric acid, neurokinin A, neuropeptide Y (NPY), somatostatin, substance P, tyrosine hydroxylase and vasoactive intestinal peptide (VIP). Neuronal pathways within the colon were lesioned using myotomy and myectomy operations and extrinsic pathways running between the inferior mesenteric ganglia and the colon were also severed. Each of the antibodies revealed nerve cells and nerve fibres or only nerve fibres within the wall of the colon. VIP, galanin and GRP were in anally projecting pathways in the myenteric plexus, as they are in other species. In contrast, there are differences in the projection directions of enkephalin, substance P, NPY and somatostatin nerve fibres between regions and species. Surprisingly, somatostatin and NPY fibres have opposite projections in the small intestine and colon of the guinea-pig. The majority of nerve fibres that innervate the circular muscle, including fibres with immunoreactivity for VIP, enkephalin, substance P, NPY, galanin and GRP come from the myenteric ganglia. The mucosa is innervated by fibres from both the myenteric and submucous ganglia. The present results suggest that the guinea-pig distal colon is a suitable place in which to determine relations between structure, neurochemistry and functions of enteric neural circuits.  相似文献   

4.
An antibody specific for the C-terminus of rat alpha calcitonin gene-related peptide has been used in radioimmunoassay to measure concentrations of immunoreactive peptide in the upper gastrointestinal tract of capsaicin-treated and coeliac ganglionectomized rats, and to measure axonal transport velocities in the vagus and splanchnic nerves. In adult rats that had been treated soon after birth with capsaicin, immunoreactive calcitonin gene-related peptide in the stomach and duodenum was undetectable (less than 0.1 pmol/g) compared with 4-10 pmol/g in control rats. Removal of the coeliac ganglion also reduced concentrations of immunoreactive calcitonin gene-related peptide by 5-fold, but Leu-enkephalin and Met-enkephalin Arg6Gly7Leu8-immunoreactivities (which are thought to occur in intrinsic gut neurons) were unchanged by coeliac ganglionectomy. Concentrations of calcitonin gene-related peptide immunoreactivity in coeliac ganglia were depressed by 90% in capsaicin-treated rats but concentrations of opioid peptide immunoreactivity were similar to control. The results suggest calcitonin gene-related peptide-immunoreactivity in the upper gastrointestinal tract in the rat is predominantly of extrinsic afferent origin. Chromatographic separation on Sephadex G50, or high-performance liquid chromatography revealed that the major immunoreactive form in stomach extracts corresponded to intact calcitonin gene-related peptide, although there was evidence of smaller, less hydrophobic C-terminal fragments. Direct evidence of transport of calcitonin gene-related peptide toward the gut was obtained by ligation of the cervical vagus and greater splanchnic nerves. There was accumulation on the central side of ligatures, which suggested axonal transport velocities in the vagus of about 1.5 mm/h and 0.7 mm/h in splanchnic nerves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Projections of peptide-containing neurons in rat small intestine   总被引:7,自引:0,他引:7  
The distribution, origin and projections of nerve fibers containing vasoactive intestinal peptide, neuropeptide Y, somatostatin, substance P, enkephalin and calcitonin gene-related peptide were studied in the rat jejunum by immunocytochemistry and immunochemistry. Their origin was determined by the use of various procedures for extrinsic denervation (chemical sympathectomy, bilateral vagotomy or clamping of mesenterial nerves). The terminations of the different types of intramural nerve fibers were identified by examination of the loss of nerve fibers that followed local disruption of enteric nervous pathways (intestinal myectomy, transection or clamping). The majority of the peptide-containing nerve fibers in the gut wall were intramural in origin, each nerve fiber population having its own characteristic distribution and projection pattern. Nerve fibers emanating from the myenteric ganglia terminated within the myenteric ganglia and in the smooth muscle layers: those storing vasoactive intestinal peptide/neuropeptide Y, somatostatin and substance P were descending, those storing enkephalin were ascending and those containing calcitonin gene-related peptide projected in both directions. Nerve fibers emanating from the submucous ganglia terminated mainly within the submucous ganglia and in the mucosa: those storing calcitonin gene-related peptide or vasoactive intestinal peptide/neuropeptide Y were ascending and those storing substance P or somatostatin were both ascending and descending. Enkephalin nerve fibers could not be detected in the mucosa.  相似文献   

6.
The cellular origin of peptides derived from preprovasoactive intestinal peptide has been studied in rat stomach and ileum. Antisera specific for the C-terminal regions of the N-terminal flanking peptide (preprovasoactive intestinal peptide 22-80), bridging peptide (preprovasoactive intestinal peptide 111-124), C-terminal flanking peptide (preprovasoactive intestinal peptide 156-170) and vasoactive intestinal peptide were used in immunohistochemical studies on sections and whole mounts. All four antisera stained nerve fibres and cell bodies in the stomach and intestine. However, there were distinct differences in the pattern of colocalization of peptides derived from provasoactive intestinal peptide. In the sub-mucous plexus of the ileum virtually 100% of neurons reacting with vasoactive intestinal peptide antibodies also reacted with antibodies to the other three peptides. In contrast, in the stomach, while all vasoactive intestinal peptide-immunoreactive neurons of the myenteric plexus contained C-terminal flanking peptide- and bridging peptide-like immunoreactivity, only 50% of these cells reacted with the antiserum to N-terminal flanking peptide. The data indicate that in a population of neurons in the myenteric plexus of the rat stomach, preprovasoactive intestinal peptide is processed in such a way that the antigenic determinant of the N-terminal flanking peptide is not produced. In a second population of enteric neurons in the stomach, and in the intestine, it appears that processing of preprovasoactive intestinal peptide results in the production of peptides reacting with antibodies to vasoactive intestinal peptide, the flanking and bridging peptides.  相似文献   

7.
The distribution of peptide-containing neurons in the oesophagus, stomach and small and large intestine of the rat and the guinea-pig has been studied with the indirect immunofluorescence technique ofCoons &; Co-workers (1958) using antisera to substance P, vasoactive intestinal polypeptide (VIP), enkephalin, somatostatin, gastrin and neurotensin. (The gastrin antiserum is to the C-terminal portion and consequently reacts also with cholecystokinin (CCK)-like peptides.) For comparison, the noradrenergic innervation was visualized with antiserum to dopamine β-hydroxylase. For improved visualization of peptide-containing cell bodies, a mitotic inhibitor (colchicine or vinblastine) was applied locally on the different parts of the gastro-intestinal tract of several animals.Substance P-, VIP-, enkephalin- and somatostatin-like immunoreactivity was observed in all parts of the gastro-intestinal tract studied. Gastrin/CCK had a more limited distribution, especially in the guinea-pig and neurotensin was seen only in certain regions and layers of the rat gastro-intestinal tract.Immunoreactivity to all peptides except neurotensin was observed both in cell bodies and fibres; immunoreactivity to neurotensin has so far only been seen in nerve fibres. Substance P and enkephalin immunoreactive cells were often numerous in the myenteric plexus, whereas VIP and somatostatin immunoreactive cells were preferentially located in the submucous plexus. Some VIP immunoreactive cells were observed in the lamina propria. Large numbers of especially substance P-, VIP- and enkephalin-containing fibres were often seen in the circular muscle layer and in the two ganglionic plexuses. Substance P immunoreactive fibres formed the densest network in the ganglionic plexuses, whereas VIP immunoreactive fibres constituted the most impressive network in the lamina propria and often extended into the most superficial parts of the mucosa. Enkephalin immunoreactive structures were mainly confined to the circular and longitudinal muscle layers and the myenteric plexus. Somatostatin immunoreactive fibres were mainly found in the ganglionic plexuses.Peptide-containing fibres, particularly these containing substance P and VIP were often seen along blood vessels, but never with such a density as the noradrenergic (dopamine β-hydroxylase immunoreactive) fibres. No somatostatin or neurotensin immunoreactive fibres were observed in relation to clearly identifiable blood vessels.The possible coexistence of two peptides in one neuron was studied. For this part of the study the proximal colon and five antisera, namely substance P, VIP, enkephalin. somatostatin and gastrin/CCK antisera were selected. Evidence was obtained for the occurrence of a somatostatin-like and a gastrin/ CCK-like peptide in the same neurons. This may indicate a common precursor for the two peptides in these particular neurons. Each of the substance P-, VIP- and enkephalin-like peptides. on the other hand, seem to be present in different neuronal populations, which were themselves distinct from the somatostatin-gastrin/CCK immunoreactive neurons. In addition, somatostatin immunoreactive neurons different from the gastrin/CCK immunoreactive ones seem to exist. The gastrin/CCK immunoreactive fibres around blood vessels may represent a further, separate population of fibres, since no somatostatin immunoreactive fibres were seen at this location.The findings indicate the existence of numerous subpopulations of enteric neurons, each characterized by its content of a certain peptide (or peptides). The axons of most of these neurons probably terminate in the wall of the gastro-intestinal tract, but some seem to project to other organs. In addition, some peptide-containing fibres in the gastro-intestinal wall may have an extrinsic origin. The relationship between these peptide-containing neurons and the cholinergic enteric neurons and any of the other non-cholinergic. non-adrenergic inhibitory and excitatory neurons present in the enteric nervous system is not known. It is, however, noteworthy that a somatostatin-like peptide seems to be present in noradrenergic neurons of prevertebral ganglia that project to the intestine. The possibility must be kept in mind that one or more of the peptides in the gut could be localized in neurons that contain other potential transmitters, e.g. acetylcholine.The wide variety of pharmacological actions of these neuronal peptides on smooth muscle and neurons in the gut and on its blood vessels raises the possibility that some of them may be neurotransmitters.  相似文献   

8.
Projections of peptide-containing neurons in rat colon   总被引:8,自引:0,他引:8  
The distribution, origin and projections of nerve fibers containing vasoactive intestinal peptide, substance P, neuropeptide Y, galanin, gastrin-releasing peptide, calcitonin gene-related peptide, somatostatin or enkephalin were studied in the midcolon of the rat by immunocytochemistry and immunochemistry. Most of these nerve fibers had an intramural origin as was established by extrinsic denervation (serving of mesenterial nerves). Extrinsic denervation eliminated neuropeptide Y-containing fibers of presumably sympathetic origin together with sensory nerve fibers containing both substance P and calcitonin gene-related peptide. Co-existence of two peptides in the same neuron was studied by double immunostaining. This revealed co-existence of neuropeptide Y and vasoactive intestinal peptide in one population of intramural neurons; an additional population of intramural neurons was found to contain vasoactive intestinal peptide but not neuropeptide Y. All somatostatin-containing neurons in the submucous ganglia were found to harbor calcitonin gene-related peptide. A much larger population of submucous neurons containing calcitonin gene-related but not somatostatin was also detected. Some perivascular calcitonin gene-related peptide-containing nerve fibers (of intrinsic origin) harbored vasoactive intestinal peptide while others (of extrinsic origin) harbored substance P. The polarities and projections of the various peptide-containing intramural neurons in the transverse colon were studied by analysing the loss of nerve fibers upon local disruption of enteric nervous pathways (myectomy or intestinal clamping). Myenteric neurons containing vasoactive intestinal peptide, galanin, gastrin-releasing peptide, calcitonin gene-related peptide, somatostatin or vasoactive intestinal peptide/neuropeptide Y gave off 5-10-mm-long descending projections while those containing substance P or enkephalin issued approx. 5-mm-long ascending projections. Submucous neurons containing calcitonin gene-related peptide, somatostatin/calcitonin gene-related peptide or gastrin-releasing peptide issued both ascending (2-6 mm) and descending (2-6 mm) projections, those containing vasoactive intestinal peptide issued ascending (approx. 2 mm) projections, while those containing galanin or vasoactive intestinal peptide/neuropeptide Y lacked demonstrable oro-anal projections. Enkephalin-containing fibers could not be detected in the mucosa and the mucosal substance P-containing nerve fibers were too few to enable us to delineate their projections.  相似文献   

9.
The origin of calcitonin gene-related peptide in the thoracic spinal cord of the rat was investigated by radioimmunoassay and immunohistochemistry. In transverse sections from normal animals there was a dense staining of calcitonin gene-related peptide-immunoreactivity in laminae I, II and V of the dorsal horn. In parasagittal sections this was found to consist of rostrocaudally orientated fibres in laminae I and II and longitudinal bundles of fibres interspersed with a plexus of immunoreactivity in lamina V. After sectioning the thoracic spinal nerves there was a significant reduction in immunoreactivity in the dorsal horn of the spinal cord which was seen as a marked reduction of staining in lamina II and in the bundles of fibres in lamina V. Section of the splanchnic nerve slightly reduced staining in lamina I and virtually abolished the plexuses of immunoreactivity in lamina V. However, measurement of calcitonin gene-related peptide in samples from coeliac-ganglionized rats revealed an increase in immunoreactivity in regions of the spinal cord containing lamina V. These results provide evidence of a visceral and somatic afferent origin of calcitonin gene-related peptide in the thoracic spinal cord of the rat.  相似文献   

10.
The fluorescent dye Fast Blue was injected in anaesthetized rats into either skin, muscle or knee joint of the hindlimb. Following retrograde transport of the dye to lumbar dorsal root ganglia, the cell bodies of primary afferent neurons innervating these different target tissues were identified in ganglion sections by fluorescence microscopy. The sections were processed to demonstrate activity of the enzyme thiamine monophosphatase, or immunoreactivity to calcitonin gene-related peptide, substance P, or somatostatin, in Fast Blue labelled neurons. In all cases immunoreactivity to the antineurofilament antibody RT97 was used to classify dorsal root ganglion cells as being either small dark (RT97 negative, unmyelinated axons) or large light (RT97 positive, myelinated axons). The proportion of small dark cells labelled from each target decreased in the order: skin, muscle, joint. Thiamine monophosphatase and somatostatin were present only in small dark cells, while calcitonin gene-related peptide and substance P were found in both small dark and large light cells. In large light cells of all three targets, more contained calcitonin gene-related peptide than substance P. Among small dark cells, thiamine monophosphatase and somatostatin were found predominantly in skin afferents, while calcitonin gene-related peptide and substance P were more common in muscle and joint afferents. The chemical expression of primary afferents is therefore characteristic of the peripheral target they innervate. This could reflect either a maintained influence of the target on the afferents, or the factors which operate only during development.  相似文献   

11.
Extracts of muscle and mucosal layers of the rat stomach contained material cross-reacting in radioimmunoassays for the amphibian skin peptide bombesin. In the intestine, immunoreactive bom-besin was confined to the muscle layers. Two molecular forms of immunoreactive bombesin were identified; one of these components was eluted in a similar position to tetradecapeptide bombesin on gel filtration and accounted for about 90% of the immunoreactivity in intestinal extracts, compared with about 40% in stomach. The two components were distinguishable from synthetic bombesin, and from the structurally related peptide substance P, on the basis of their pattern of immunochemical properties with three different antisera. Immunohistochemical studies using the same antisera revealed a rich distribution of nerve fibres in the mucosa of the rat stomach, but few fibres were seen in the intestinal mucosa. Abundant fibres with bombesin-like immunoreactivity were found surrounding nerve cell bodies in the myenteric plexus throughout the gut. Immunoreactivc nerve cell bodies were not identified, neither was convincing evidence obtained to indicate the presence of bombesin in mucosal endocrine cells.The results support the possibilities that bombesin-like peptides are neurotransmitters in the gut and that they could play a role in the modulation of gastrointestinal motility and in the release of gastrin.  相似文献   

12.
P A Steele  M Costa 《Neuroscience》1990,38(3):771-786
In this study we sought to establish the distribution, projections and neurochemical coding of opioid immunoreactive neurons in secretomotor pathways of the guinea-pig ileum. Non-cholinergic secretomotor neurons in the submucous ganglia have been shown to be immunoreactive for dynorphin A 1-8, dynorphin A 1-17, dynorphin B and alpha neo-endorphin while cholinergic neurons have been shown to be immunoreactive for dynorphin A 1-8 only. Thus all submucous neurons in the guinea-pig ileum are immunoreactive for prodynorphin-derived peptides. Two major populations of opioid immunoreactive fibres projecting to the submucous ganglia have been established. Firstly, neurons immunoreactive for prodynorphin-derived peptides and vasoactive intestinal peptide project anally from the myenteric plexus to the submucous ganglia. Secondly, a substantial proportion of sympathetic postganglionic fibres immunoreactive for tyrosine hydroxylase, and projecting from the coeliac ganglion to submucous ganglia, have been shown to be immunoreactive for prodynorphin-derived peptides. Other smaller populations of opioid-immunoreactive neurons include fibres immunoreactive for substance P, enkephalin and dynorphin A 1-8 which project from the myenteric plexus to the non-ganglionated plexus of the submucosa. These fibres are probably excitatory motor neurons to the muscularis mucosae. The present paper has described several distinct populations of opioid immunoreactive neurons in secretomotor pathways of the guinea-pig ileum. Furthermore we have shown that these enteric or postganglionic sympathetic neurons contain opioid peptides in combination with other neurotransmitter substances. These results should provide a firmer basis on which to plan functional experiments to elucidate the physiological role of opioid peptides in the enteric nervous system.  相似文献   

13.
The distribution of several neuropeptides (vasoactive intestinal polypeptide, cholecystokinin octapeptide, substance P, neurotensin, methionine-enkephalin and somatostatin) in the hippocampal formation has been studied with immunocytochemical techniques. Numerous vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin-positive cell bodies were found within the hippocampus and subiculum. Neurotensin-positive cell bodies were found within the subiculum, but no substance P or methionine-enkephalin-containing cell bodies were seen in either hippocampus proper or subiculum. Vasoactive intestinal polypeptide and cholecystokinin-octapeptide-positive cell bodies were predominantly located in the stratum moleculare and stratum radiatum of CA 1-2 regions and dentate gyrus, whilst somatostatin-containing cell bodies were found mainly in the stratum oriens. Nerve fibres containing each of the six peptides were found within the hippocampus. Large numbers of vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin fibres innervated the pyramidal and granule cell layers, with smaller numbers in the stratum radiatum and fewer still in the stratum moleculare and stratum oriens. Other than a moderately dense neurotensin-positive fibre plexus in the dorsal subiculum, fewer neurotensin, substance P and methionine-enkephalin fibres were present. However, when present, these three peptides had a distribution restricted to a region close to the pyramidal layer in the CA 2/3 region and to the stratum moleculare of the CA 1 region. Peptide-containing fibres were identified entering or leaving the hippocampus in three ways, via (i) the fornix (all six peptides), (ii) the dorsal subiculum (neurotensin-positive fibres projecting to the cingulate cortex: somatostatin, vasoactive intestinal polypeptide, and cholecystokinin-octapeptide present in fibres running between the dorsal subiculum and occipito-parietal cortex) and (iii) the ventral subiculum (vasoactive intestinal polypeptide, cholecystokinin-octapeptide and somatostatin in fibres running between entorhinal cortex and hippocampus, and all six peptides in fibres crossing the amygdalo-hippocampal border). These findings indicate a major distinction between those peptides (vasoactive intestinal polypeptide, cholecystokinin-octapeptide, somatostatin, neurotensin) which are found in cell bodies intrinsic to the hippocampal formation and those peptides (substance P, methionine-enkephalin) which are found only in hippocampal afferents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Summary Using the indirect immunofluorescence method andin situ hybridization, the localization and levels of immunoreactivities and mRNAs for several neuropeptides were studied in lumbar dorsal root ganglia and spinal cord of untreated monkeys (Macaca mulatto) and after unilateral transection of the sciatic nerve. Immunoreactive galanin, calcitonin gene-related peptide, substance P and somatostatin and their mRNAs were found in cell bodies in dorsal root ganglia of untreated monkeys and on the contralateral side of the monkeys with unilateral sciatic nerve lesion. After axotomy there was a marked decrease in the number of calcitonin gene-related peptide-, substance P- and somatostatin-positive neurons in dorsal root ganglia ipsilateral to the lesion, whereas the number of galanin positive cells strongly increased. A few neuropeptide tyrosine-positive cells were seen in after axotomy, whereas no such neurons were found in controls. No vasoactive intestinal polypeptide-, peptide histidine isoleucine-, cholecystokinin-, dynorphin-, enkephalin-, neurotensin-or thyrotrophin releasing hormone-positive cell bodies were seen in dorsal root ganglia of any of the groups studied. In the dorsal horn of the spinal cord all peptide immunoreactivities described above, except thyrotropin releasing hormone, were found in varying numbers of nerve fibres with a similar distribution in untreated monkeys and in the contralateral dorsal horn in monkey with unilateral sciatic nerve lesion. Two cholecystokinin antisera were used directed against the C- and N-terminal portions, respectively, showing a distinctly different distribution pattern in the dorsal horn. Somatostatin- and dynorphin-like immunoreactivities were also observed in small neurons in the dorsal horn. No certain effect of axotomy on these interneurons could be seen. However, marked changes were observed after this type of lesion for some peptide containing fibres in the ipsilateral dorsal horn. Thus, there was a marked increase in galanin-like immunoreactivity, whereas calcitonin gene-related peptide-, substance P-, somatostatin-, peptide histidine isoleucine neurotensin- and cholecystokinin-like immunoreactivities decreased. No changes could be observed in neuropeptide tyrosine or enkephalin-positive fibres. The present results demonstrate marked ganglionic and transganglionic changes in peptide levels after peripheral axotomy. When compared to published results on the effect of axotomy on peptides in dorsal root ganglia and spinal cord of rat, both similarities and differences were encountered. Thus, in contrast to rat there was no marked upregulation of vasoactive intestinal polypeptide/peptide histidine isoleucine or neuropeptide tyrosine after axotomy in the monkey, whereas galanin was increased in both species. Both in monkey and rat, calcitonin gene-related peptide, substance P and somatostatin decreased. The decrease in neurotensin, peptide histidine isoleucine, and genuine cholecystokinin seen in monkey after axotomy has not been reported in the rat. Experimental studies on rat suggest that galanin may be an endogenous analgesic compound, active particularly after peripheral nerve lesions. We have therefore recently proposed that galanin agonists may be used in treatment of chronic pain, and the present demonstration that galanin is regulated in a similar fashion in a primate gives further support to the proposal to test galanin as an analgesic in human.  相似文献   

15.
The distribution of neurons and fibres that contain substance P, cholecystokinin-8, vasoactive intestinal polypeptide, corticotropin-releasing factor, calcitonin-gene-related peptide, choline acetyltransferase, tyrosine hydroxylase, somatostatin, leucine-enkephalin, and neuropeptide Y was examined in the parabigeminal nucleus of the rat by immunohistochemistry. Many choline acetyltransferase-like immunoreactive or calcitonin-gene-related peptide-like immunoreactive neurons were observed in the dorsal, middle and ventral subdivisions of the parabigeminal nucleus. A few corticotropin-releasing factor-like immunoreactive neurons were also seen in these three subdivisions. The double-immunostaining demonstrated that some choline acetyltransferase-like immunoreactive neurons in the dorsal and ventral subdivisions contained calcitonin-gene-related peptide. Fibres containing cholecystokinin-8, substance P or vasoactive intestinal polypeptide were abundant in the parabigeminal nucleus. Fibres containing cholecystokinin-8 were concentrated in the dorsal and ventral subdivisions, and the lateral margin of the middle subdivision, whereas many fibres containing substance P or vasoactive intestinal polypeptide existed in the lateral half of each subdivision. Fibres containing calcitonin-gene-related peptide or corticotropin-releasing factor were mostly observed around the immunoreactive neurons. Tyrosine hydroxylase-like immunoreactive fibres were scattered in the parabigeminal nucleus.  相似文献   

16.
Summary Rat periovarian adipose tissue contains unilocular adipocytes and some multilocular adipocytes that, following acclimation to cold, become more numerous and give rise to periovarian brown fat areas. We studied the occurrence and distribution of tyrosine hydroxylase, neuropeptide Y, substance P, calcitonin gene-related peptide, vasoactive intestinal peptide, methionine enkephalin, neurotensin, galanin, and cholecystokinin 9–20 in the nerves of rat periovarian tissue maintained at 20° C (control rats), acclimated at 4° C (cold-acclimated rats) and at 28° C (warm-acclimated rats). In the periovarian tissue of control and warm-acclimated rats, tyrosine hydroxylase-like, neuropeptide Y-like, substance P-like and calcitonin gene-related peptide-like immunoreactive elements (putative nerves) were present in the blood vessels. In the periovarian tissue of cold-acclimated rats, we found: (1) a more widespread vascular distribution of these neuropeptides; (2) tyrosine hydroxylase-like and calcitonin gene-related peptide-like immunoreactive elements among paucilocular and multilocular adipocytes (parenchymal-like nerves); (3) vasoactive intestinal peptide-like immunoreactive elements in some arteries. Investigation by EM showed the presence of heterogeneous non-myelinated axons both associated with capillaries and among paucilocular and multilocular adipocytes (parenchymal fibres) in periovarian brown fat areas. In conclusion, periovarian brown fat contains the same neuropeptides, with the same vascular and parenchymal distribution, already seen in typical depots of brown fat.  相似文献   

17.
K Ando  S Arai  K Kawamura 《Neuroscience》1990,36(2):521-533
The distribution and origin of nerves with calcitonin gene-related peptide, substance P or neurokinin A immunoreactivity in the walls of the cerebral arteries were investigated in three microchiropteran species. The supply of nerves immunoreactive for substance P and neurokinin A to the bat cerebral arteries is confined mostly to the vertebral and basilar arteries. The density of innervation of calcitonin gene-related peptide-immunoreactive nerves and that of nerves with substance P or neurokinin A immunoreactivity in the vertebrobasilar system differ among species: the Japanese large footed bat is innervated with nerves with calcitonin gene-related peptide, substance P and neurokinin A immunoreactivity with about the same density, whereas in the greater horseshoe bat, there are many substance P-immunoreactive nerves with very weak or no calcitonin gene-related peptide immunoreactivity, and in the bent-winged bat, calcitonin gene-related peptide immunoreactivity is not found in all nerves with substance P immunoreactivity in the pial arteries of all parts of the brain. Nearly all cells immunoreactive for substance P, calcitonin gene-related peptide or both in the trigeminal and cervical dorsal root ganglia were small. In the greater horseshoe bat and the bent-winged bat, there is a correlation between the level of expression of substance P and calcitonin gene-related peptide immunoreactivity in the cervical dorsal root and trigeminal ganglia and the cerebral perivascular nerves supplying the vertebrobasilar system. The cerebrovascular innervation of nerves with substance P immunoreactivity in small bats is similar to that of cats and guinea-pigs in which the trigeminal ganglia have been destroyed. These observations, in addition to absence of nerve cells showing substance P or calcitonin gene-related peptide immunoreactivity in the pial artery and in the nerve bundles accompanying the extracranial internal carotid and vertebral arteries, suggest that substance P-immunoreactive nerves with or without immunoreactivity to calcitonin gene-related peptide in the vertebrobasilar system of small bats originate exclusively from the cervical dorsal root ganglia. The remaining fibres probably originate in the trigeminal ganglia.  相似文献   

18.
Neuromedin U is a newly described regulatory peptide, found by radioimmunoassay in significant concentrations in both the brain and gut of the rat. The aim of the present study was to localize this peptide immunoreactivity to discrete structures of the gut and brain and to map its distribution using immunocytochemistry. In the gut, neuromedin U was confined to nerve fibres mainly in the myenteric and submucous plexuses and the mucosa of all areas except stomach. Immunoreactive ganglion cells were seen in both ganglionated plexuses and their number did not increase following colchicine administration. This observation and the finding that the population of neuromedin U-immunoreactive nerves in the ileum was not affected by complete extrinsic denervation indicated that the nerves are mostly intrinsic in origin. Colocalization studies revealed neuromedin U and calcitonin gene-related peptide were present in the same myenteric and submucosal ganglion cells. Transection experiments showed that, like calcitonin gene-related peptide-immunoreactive nerves, fibres containing neuromedin U project for very short distances in both an oral and anal direction. At the electron microscopic level, neuromedin U immunoreactivity, demonstrated using the immunogold technique, was localized to large granular vesicles. In the central nervous system, neuromedin U immunoreactivity was localized to fibres which were widespread throughout the brain, except in the cerebellum. The presence of neuromedin U-immunoreactive cell bodies was restricted to the rostrocaudal part of the arcuate nucleus. Colocalization studies showed that a proportion of the neuromedin U-immunoreactive cell bodies in the arcuate nucleus also contained pro-opiomelanocortin. Neuromedin U-immunoreactive fibres were first detected in the rat intestinal mucosa at day 1 after birth. In the brain, the arcuate nucleus showed neuromedin U-immunoreactive neuronal cell bodies at E16 but not at E14. In conclusion, neuromedin U is a new member of the group of molecules known as brain-gut peptides.  相似文献   

19.
We used an experimental model of neurogenic inflammation to study the contribution of the primary afferent peptides substance P, calcitonin gene-related peptide, galanin and somatostatin to plasma extravasation in rat synovium. Perfusion of the C-fiber excitotoxin, capsaicin (1.6 mM), through the knee joint of the pentobarbital anesthetized rat, increased plasma extravasation transiently (< 30 min). Perfusion of substance P (1 microM) or calcitonin gene-related peptide (100 nM), two primary afferent neuropeptides that are released by acute capsaicin administration, had no significant effect on plasma extravasation. Co-perfusion of these two neuropeptides, however, evoked an increase in plasma extravasation that was greater than that produced by capsaicin remaining above 250% of the baseline level by the end of the perfusion period (55 min). Capsaicin co-perfused with either galanin (100 nM) or somatostatin (1 microM) failed to increase plasma extravasation. Neither galanin nor somatostatin significantly affected increase in plasma extravasation induced by co-perfusion of substance P plus calcitonin gene-related peptide. Therefore, we suggest that galanin and somatostatin inhibit, presynaptically, the release of substance P and calcitonin gene-related peptide from primary afferent terminals. The interactions among these four neuropeptides provide a novel mechanism for the regulation of primary afferent neurogenic inflammation.  相似文献   

20.
In vitro anterograde tracing of axons in mesenteric nerve trunks using biotinamide in combination with immunohistochemical labelling was used to characterize the extrinsic nerve projections in the myenteric plexus of the mouse jejunum. Anterogradely-labelled spinal sensory fibres innervating the enteric nervous system were identified by their immunoreactivity for calcitonin gene-related peptide (CGRP), while sympathetic noradrenergic fibres were detected with tyrosine hydroxylase (TH), using confocal microscopy. The presence of these markers has been previously described in the spinal sensory and sympathetic fibres. Labelled extrinsic nerve fibres in the myenteric plexus were identified apposing enteric neurons that were immunoreactive for either calretinin (CalR), calbindin (CalB) or nitric oxide synthase (NOS). Of the total anterogradely labelled axons in the myenteric plexus, 20% were CGRP-immunoreactive. Labelled CGRP-immunoreactive varicosities were closely apposed to CalR-immunoreactive myenteric cells, many of which were Dogiel type I (40%; interneurons) or type II (20%; intrinsic sensory) neurons. Labelled CGRP-immunoreactive varicosities were also observed in close appositions to CalB-immunoreactive myenteric cell bodies, of which a small subset had type II morphology (18%; intrinsic sensory neurons). A further 43% of all biotinamide-filled fibres were immunoreactive for TH and these fibres were apposed to CalR-immunoreactive cell bodies (small-sized; excitatory motor neurons) and NOS-immunoreactive cell bodies (either type I or small neurons; inhibitory motor neurons and interneurons) in the myenteric plexus. The results provide a neurochemical and neuroanatomical basis for connections between dorsal root afferent neurons and myenteric neurons and suggest an anatomical substrate for the well-known modulation of enteric circuits from sympathetic nerves. No anterogradely-labelled fibres were stained for NOS-immunoreactivity, despite more than 60% of dorsal root ganglion (DRG) neurons retrogradely labelled from the jejunum showing NOS-immunoreactivity. This was due to a substantial, time-dependent, and apparently selective, loss of NOS from extrinsic axons under in vitro conditions. Lastly, a small population of non-immunoreactive biotinamide-filled fibres (<1%) gave rise to dense terminal structures around individual myenteric cell bodies lacking CalR, CalB or NOS. These specialized endings may represent vagal fibres or a subset of spinal sensory neurons that do not contain CGRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号