首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The organization of facilitatory convergence from cutaneous afferents (Skin) and the corticospinal tract (pyramidal tract, Pyr) in pathways to forelimb motoneurones of mainly distal muscles was studied in anaesthetized cats by analysing postsynaptic potentials (PSPs), which were spatially facilitated by combinations of stimuli to the two sources at different time intervals. Conditioning Pyr volleys facilitated Skin-evoked PSPs of fixed (1.2–3.6 ms) central latencies (Skin PSPs), suggesting that disynaptic and polysynaptic skin reflex pathways are facilitated from the pyramidal tract. The shortest latencies (1.2–1.7 ms) of pyramidal facilitation suggested direct connection of pyramidal fibres with last order neurones of skin reflex pathways. Conditioning Skin volleys facilitated Pyr-evoked PSPs of fixed, mostly disynaptic latencies (1.0–2.5 ms; Pyr PSPs), suggesting that pyramido-motoneuronal pathways are facilitated from Skin at a premotoneuronal level. The shortest pathway from skin afferents to the premotor neurones appeared to be monosynaptic. Although Pyr and Skin volleys were mutually facilitating, the facilitation curve of Pyr PSPs and that of Skin PSPs were discontinuous to each other, with the peak facilitation at different Skin-Pyr volley intervals. Transection of the dorsal column (DC) at the C5/C6 border had little effect on the latencies or amplitudes evoked by maximal stimulation and the pyramidal facilitation of Skin PSPs. In contrast, the facilitation of Pyr PSPs by Skin stimulation was greatly decreased after the DC transection, and the facilitation curve of Pyr PSPs was continuous to that of Skin PSPs, with no separate peak. Latencies of Pyr PSPs ranged similarly to those in DC intact preparations. More rostral DC transection (C4/C5 border) reduced Skin-facilitated Pyr excitatory PSPs (EPSPs) less than C5/C6 lesions, suggesting that the C5 segment also contains neurones mediating Skin-facilitated Pyr EPSPs. The results show that convergence from skin afferents and the corticospinal tract occurs at premotor pathways of different cervical segments. We suggest that corticospinal facilitation of skin reflex occurs mostly in the brachial segments and Skin facilitation of cortico-motoneuronal effects takes place largely in the rostral cervical segments and partly in the brachial segments.  相似文献   

2.
Summary The purpose of this work was to determine the number and morphology of pyramidal tract (PT) axons in the cat, using electron microscopy, modern methods of fixation, and computer-assisted morphometric analysis. Sections taken at the level of the medullary pyramids in three animals were fixed and magnified up to 10,000 x to produce photomicrographs. Morphological data were entered into computer files for analysis by tracing axon perimeters on micrographs mounted on a digitizer tablet. The number of axons per PT averaged 415,000, of which 88% were myelinated and 12% were unmyelinated. 90% of the myelinated axons fell in the diameter range 0.5–4.5 m. Axons larger than 9 m diameter accounted for 1% of the total; the largest were 20–23 m. Myelinated axon mean diameter was 1.98 m; because of the skewed distribution, with many small axons and a few very large axons, median diameter was 1.60 m. Size distribution was relatively uniform throughout the PT cross section, with all sizes represented in all regions. However, the more medial regions had a higher proportion of small fibers than the more lateral regions: mean medial diameter was 1.85 m while mean lateral diameter was 2.09 m. Myelin sheath thickness averaged 7.9% of fiber diameter for axons up to 11 m, but was constant at 0.9 m for larger fibers. Myelinated fibers were distorted from the circular shape in cross section, with a mean circularity index (or form factor) of 0.85, which implies that the fibers could swell about 15% without rupture of the cell membrane. Unmyelinated fibers averaged 0.18 m diameter (range 0.05–0.6 m); the largest unmyelinated axons were larger than the smallest myelinated axons. It is concluded that previous work greatly underestimated the number of axons in the cat pyramidal tract.  相似文献   

3.
Summary We studied the pattern of stepping in cats, before and after the placement of lesions in the corticospinal system. We found a deficit after the lesions, which was characterized by increased extension of the involved hindlimbs during the stance (E2–E3) phase of the step cycle. This deficit lasted two weeks or less. It may reflect loss of inhibitory influences upon extensor motoneuron pools.  相似文献   

4.
Summary Pyramidal command of Skin Potential Response (SPR) was investigated in 20 cats paralyzed by gallamine and under a halothane anaesthetic. For each animal, a transection of the medulla sparing only the pyramidal tract was carried out. The pyramidal tract and Mesencephalic Reticular Formation (MRF) were stimulated before and after the transection. Results taken before transection show that the SPR can be elicited from stimulation of the pyramidal tract and the MRF. After transection, stereotaxic stimulations of the pyramidal tract still evoked the SPR even after aspiration of the medullary tissue posterior to the section and overlying the pyramids. Control reticular stimulations with higher stimulus intensities failed to evoke the SPR. These results show that stimulation of the pyramidal tract can elicit the SPR independently of reticulospinal neurons. It is hypothesized that a group of corticospinal fibers could transmit volleys having autonomic activity on preganglionic autonomic neurons of the intermediate zone of the grey matter.A.H. Sequeira-Martinho is a research fellow of the Instituto Nacional de Investigaçao Cientifica (INIC), Lisboa, Portugal  相似文献   

5.
Summary The organization of corticocortical connections in the representation of the forepaw in cat primary somatosensory cortex (SI) was studied following injections of various tracers into different cortical cytoarchitectonic areas. Small injections of horseradish peroxidase, wheat germ agglutinin-conjugated HRP, Phaseolus vulgaris leukoagglutinin, or fast blue were placed into the representation of the forepaw in areas 3b, 1, or 2. The positions of labeled neurons in SI and the surrounding cortical areas were plotted on flattened surface reconstructions to determine the organization of the corticocortical connections within SI. A strong, reciprocal projection linked the two forepaw representations which have been described in area 3b and the part of area 2 which lies in the anterior bank of the lateral ansate sulcus (see Iwamura and Tanaka 1978a, b). Dense projections also linked these areas with SII, as previously reported (Burton and Kopf 1984a). Additional projections to area 3b arose primarily from areas 3a and 1. Projections to area 2 were more widespread than those to area 3b, and arose from all other areas of SI as well as from areas 4 and 5a. All injections into SI tended to label groups of neurons which lay in mediolateral strips. Corticocortical projection neurons which were most heavily labeled by SI injections were pyramidal cells in layer III. Additional projections from area 2 to 3b, area 5a to 2, and SII to areas 2 and 3b arose from layer VI as well. Although neurons of layers III and VI were always the most densely labeled, large injections into SI labeled neurons in layers II and V as well.  相似文献   

6.
Summary The distribution of corticospinal projection neurons in adult rats was determined using a retrograde tracing technique. Horseradish peroxidase (HRP) and an emulsifier (Nonidet) were injected into the 5th and 6th segments of the cervical spinal cord. The greatest concentrations of HRP-positive neurons were distributed in area 4 and rostral area 6/8 (motor cortices) and medial area 3 and caudal area 2 (somatosensory cortices). The largest labeled neurons were in areas 4 and 3. HRP-positive neurons were absent or few in regions of motor and somatosensory fields which contained the face representation. Less dense concentrations of retrogradely labeled neurons were also in posterior parietal and association areas 14, 39 and 40, rostral occipital visual areas 18a and 18b, and anterior cingulate and prefrontal areas 24a, 24b, and 32. The topography of the corticospinal pathway was determined by injecting HRP without Nonidet into the cervical, upper thoracic, lower thoracic, or lumbar spinal cord. Although the distribution of labeled neurons decreased with distance down the spinal cord, the size of the corticospinal neurons in each cytoarchitectonic area was not significantly different regardless of where the injection was placed. For example, upper thoracic cord injections retrogradely labeled neurons in each of the regions containing neurons filled by cervical cord injections, however, lumbar injections retrogradely labeled neurons only in caudal areas 4 and 3 and in area 18b. The distribution of corticospinal neurons in rats is similar to the organization of the corticospinal system in higher animals. The origin of corticospinal neurons in occipital and cingulate cortices may be related to visuomotor and visceromotor control.  相似文献   

7.
The method of retrograde axonal transport of horseradish peroxidase was employed to examine the topographic organization of corticospinal and corticotrigeminal neurons in the rat. In both the first somatic sensory (SI) area and the motor (MI) area of the cortex these labeled corticofugal neurons, all of which are found in layer V, are grouped in a well organized, somatotopic pattern. Corticospinal projections which extend to lumbar levels of the spinal cord originate only from neuronal somata located in the hindlimb representation of SI and MI. Those neurons projecting to the cervical enlargement have somata mainly in the forelimb representation of SI and MI and the ventrolateral part of the trunk representation within SI. Cortical projections to the rostral cervical spinal segments appear to originate mainly from the neck and posterior head representations of SI and MI, though this conclusion is clearest for SI. Finally, neurons located exclusively within the head, muzzle, and vibrissal representation of SI project to the spinal trigeminal complex. Corticofugal neurons near the frontal pole and in an area of cortex ventrolateral to SI also project to the spinal cord. The areas involved are probably homologous to the supplementary motor (MII) and second somatic sensory (SII) areas respectively. The corticospinal and corticotrigeminal projections from these areas also appear to be organized in a somatotopic manner.It is concluded that in the rat, as in other species, the corticospinal and corticotrigeminal neurons in the sensorimotor cortex are arranged somatotopically. The somatotopic pattern found correlates remarkably well with that determined by single unit, evoked potential and cortical stimulation techniques.  相似文献   

8.
Forelimb movements and motor skills were studied in adult cats in order to determine the effect of brain damage inflicted at different postnatal ages. The unilateral lesion included the cortical areas from which the pyramidal tract originates in cat: areas 4 and 6 corresponding to the motor cortex; areas 3, 2 and 1 corresponding to the primary somatosensory cortex; and part of area 2 prae-insularis corresponding to the secondary somatosensory cortex. Forelimb performance of a food-retrieving task requiring proximal as well as distal muscles was assessed by comparing the limb contralateral to the damaged hemisphere (affected limb) with the limb contralateral to the intact hemisphere (non-affected limb) that appeared to perform the task as well as both limbs of control animals. In simple task-related movements, all operated animals were rapidly able to achieve the goal with the affected limb, whatever the age at lesion. In complex tasks, the ability to achieve the goal with the affected limb decreased with increasing age at lesion. Recovery of distal skills, i.e. grasping and wrist rotation, did not occur in animals operated on after the 23rd postnatal day (PND), and recovery of proximal skills, i.e. amplitude and precision of the reaching movement, did not occur in animals operated on after the 45th PND. The critical time for the recovery of distal skills lies somewhere between the 23rd and 30th PND, whereas for the recovery of proximal skills it lies somewhere between the 45th and 60th PND. These critical dates for the recovery of motor skills support the Kennard doctrine. Different critical times for proximal and distal skills may be explained in terms of different stages of sensorimotor development in kitten. It is hypothesised that recovery only occurs if brain damage is inflicted before maturation of the nervous system underlying a given motor skill.  相似文献   

9.
The influence of the corticothalamic projections from somatosensory areas I and II (SI and SII) on the transmission of tactile information through the ventroposterolateral (VPL) thalamus was investigated by examining the effects of cooling-induced, reversible inactivation of SI and/or SII on the responsiveness of 32 VPL neurons to controlled tactile stimulation of the distal forelimb in anaesthetized cats. Both the response levels and spontaneous activity were unaffected in 21 (66%) of the VPL neurons as a result of inactivation of SI or SII singly, or both SI and SII simultaneously. In the remaining 11 neurons, 10 displayed a reduction in response level, an effect observed over the whole of the stimulus-response relations for the neurons studied at different stimulus amplitudes, and one neuron displayed an increase in response level in association with cortical inactivation. When responses in VPL neurons were affected by inactivation of one cortical somatosensory area, they were not necessarily affected by inactivation of the other. Of 14 neurons studied for the effects of the separate inactivation of SI alone and of SII alone, 7 were affected, one from both areas, but the remaining 6 were affected by inactivation of only one of these areas. Phaselocking, and therefore the precision of impulse patterning in the responses of VPL neurons to skin vibration, was unchanged by the cortical inactivation irrespective of whether the response level was affected. The results suggest that SI and SII may exert a facilitatory influence on at least a third of VPL neurons and in this way may modulate the gain of transmission of tactile signalling through the thalamus.  相似文献   

10.
Summary Horseradish-peroxidase was used to anterogradely label and thus to trace the growth of corticospinal axons in rats ranging in age from one day to six months. Three to eight HRP-gels were implanted in the left cerebral hemisphere of the cortex. In each spinal cord three levels were studied, the cervical intumescence (C5), the mid-thoracic region (T5) and the lumbar enlargement (L3). The methodology employed for the electron microscopic visualization of HRP has been described previously (Joosten et al. 1987a).The outgrowth of labelled unmyelinated corticospinal tract axons in the rat spinal cord primarily occurs during the first ten postnatal days. The outgrowth of the main weve of these fibres is preceded by a number of pathfinding axons, characterized by dilatations at their distal ends, the growth cones. By contrast, later appearing unmyelinated axons, which presumably grow along the pathfinding axons, do not exhibit such growth cones. The first labelled pioneer axons can be observed in the cervical intumescence at postnatal day one (P1), in the mid-thoracic region at day three (P3) and in the lumbar enlargement at day five (P5).Prior to the entrance of the axons, the prospective corticospinal area or the pre-arrival zone is composed of fascicles consisting of unlabelled, unmyelinated fibres surrounded by lucent amorphous structures. During the outgrowth phase of the corticospinal fibres some myelinated axons could be observed within the outgrowth area even before day 14. These axons, however, were never labelled. These findings strongly suggest that the outgrowth area, which is generally denoted as the pyramidal tract, contains other axons besides the corticospinal fibres (and glial cells). The process of myelination of the labelled corticospinal tract axons in the rat spinal cord starts rostrally (C5) at about day 14 and progresses caudally during the third and fourth postnatal weeks. Although myelination seems to be largely complete at day 28 at all three spinal cord levels, some labelled unmyelinated axons are still present in the adult stage.  相似文献   

11.
Summary The corticothalamic projection from the anterior ectosylvian gyrus in the cat has been studied with the silver impregnation method of Nauta. The second somatosensory cortical area (SII) projects upon the ipsilateral nucleus ventralis posterolateralis (VPL), nucleus ventralis posteromedialis (VPM), the posterior thalamic region (PO) and to a slight extent upon the reticular nucleus of the thalamus (R), the centrum medianum (CM), the parvocellular part of VPM (VPMpc) and the nucleus ventralis posterior inferior (VPI). A somatotopical arrangement in the projection upon the ventro-basal (VB) complex has been demonstrated and a topical arrangement in the corticothalamic fibers from SII to PO is also evident. The transitional area between SII and the second auditory cortex sends fibers mainly to the entire magnocellular part of the medial geniculate body (MGmc) and to a lesser degree to the principal division of this nucleus (MGp). The corticofugal fibers from SII follow various and rather complicated circuitous routes before they end in the different thalamic nuclei. The experimental findings are discussed in the light of recent anatomical and physiological observations. It is shown that zones B and C of SII which have been shown by Carreras and Andersson (1963) to possess a large number of place and modality specific neurons project upon the VB-complex. On the other hand, zone A which contains a majority of place and modality unspecific neurons sends its fibers exclusively to PO. Finally the problem of thalamocortical projections to SII is briefly discussed. Addendum: After the present paper had been submitted for publication the work of DeVito (1967) came to the author's knowledge. Several of the findings made by DeVito have been confirmed in the present study. On the other hand, DeVito has not considered Carreras and Andersson's zones A, B and C in SII and she does not describe a somatotopical arrangement in the projection from SII upon the VB complex and PO.  相似文献   

12.
Summary 1. The effect of stimulating the contralateral pyramid has been investigated with intracellular recording from 128 long propriospinal neurones (long PNs) in the C3-Th1 segments of the cat. Long PNs were identified by the antidromic activation from the Th13 segment. They were located in laminae VII–VIII of Rexed. Single pyramidal stimulation evoked monosynaptic EPSPs in 15/40 of the long PNs in cats with intact pyramid. In 15 other long PNs, a train of three to four pyramidal stimuli evoked EPSPs with latencies indicating a minimal disynaptic linkage. The remaining 25% of the long PNs lacked mono- or disynaptic pyramidal EPSPs. In a few cases longer latency excitation was observed. 2. The location of the intercalated neurones which mediate the disynaptic pyramidal EPSPs was investigated by making four different lesions of the corticofugal fibres: 1) at the border of the C5 and C6 segments, 2) at the border of the C2 and C3 segments, 3) at the caudal part of the pyramid; three mm rostral to the decussation and 4) at the level of the trapezoid body. Stimulation of the corticofugal fibres was made either rostral to lesion 3 (rPyr) in order to activate neurones in a cortico-bulbospinal pathway or caudal to lesion 3 (cPyr) to activate neurones in a corticospinal pathway. In the former case, in one experiment, stimulation was made in the pyramid between lesions 3 and 4 (double pyramidal lesion). In case of cPyr stimulation, lesions 1 and 2 were added sequentially in order to investigate if the corticospinal excitation was mediated via C3–C4 PNs. All lesions were made mechanically, except lesion 2 which in some of the experiments was performed by reversible cooling. 3. Stimulation in the pyramid rostral to lesion 3 and in between lesions 3 and 4 evoked disynaptic EPSPs in the long PNs, which shows that they were mediated via reticulospinal neurones. Stimulation in cPyr after lesion 3 elicited disynaptic EPSPs, which remained after lesion 1 but were abolished after adding lesion 2. It is concluded that the disynaptic cPyr EPSPs were mediated via intercalated neurones in the C3–C4 segments. 4. When the disynaptic cPyr EPSP was conditioned with a single volley in nucleus ruber and/or in tectum, it was markedly facilitated, especially when the conditioned volley was applied simultaneously with the effective cPyr volley. The results show that the intercalated neurones in the C3–C4 segments receive monosynaptic convergence from cortico-, rubro- and tectospinal] fibres. Stimulation in the lateral reticular nucleus (LRN) evoked monosynaptic EPSPs. These EPSPs had similar latencies and shapes as those previously recorded in forelimb motoneurones and which have been shown to be due to activation of ascending branches of the C3–C4 PNs. This finding in addition to the striking similarity of the descending input pattern of long PNs as compared to the forelimb motoneurones strongly suggest that short C3–C4 PNs project both to long PNs as well as to forelimb motoneurones. 5. Spatial facilitation of disynaptic EPSPs in long PNs was also observed between rPyr volleys and tectal volleys. The results suggest that common reticulospinal neurones which project to the long PNs receive monosynaptic convergence from corticofugal and tectofugal fibres but in some of the reticulospinal neurones the main input is cortical and in others tectal. Monosynaptic EPSPs were evoked from the medial part of the reticular formation, from 2 mm caudal to 6 mm rostral of the obex level. These EPSPs were presumably due to direct activation of reticulospinal neurones. 6. Convergence of disynaptic excitation mediated by cortico-propriospinal and cortico-reticulospinal routes was observed in about 12% of the long PNs. Convergence of monosynaptic corticospinal and disynaptic corticoreticulospinal and/or cortico-propriospinal input was observed in about 15% of the long PNs. 7. The role of the monosynaptic pyramidal input and disynaptic corticoreticulospinal and cortico-propriospinal (mediated by short C3–C4 PNs) inputs to long PNs is discussed in relation to postural control during movements of head and forelimb.  相似文献   

13.
Summary Controlled electrical stimulation of an ampullar nerve in the inner ear was used to demonstrate vestibular projections to the motor cortex of cats anaesthetized with chloralose. Macroelectrode recordings from the cortical surface in the somatomotor region, around the cruciate sulcus, show two kinds of vestibular evoked responses: the latency, shape and distribution of these potentials indicate a different origin for each type, as do also the results of experiments investigating somato-vestibular interactions. A study of the somatic and vestibular inputs to individual pericruciate neurons, and of their possible output into the pyramidal tract, revealed that 1. the vestibular afferents (reaching 40% of the population studied) are principally distributed among the somatic neurons receiving their input from several limbs, and 2. some of the cortical cells receiving vestibular afferents contribute axons to the pyramidal tract. Results are discussed with respect to the possible functional significance of such a vestibular input to the motor area for the adequate performance of movements.Chercheur qualifié FNRS (Belgique).Aspirant FNRS (Belgique).  相似文献   

14.
Interneuronal convergence of corticospinal and segmental pathways involved with the generation of extensor activities during locomotion was investigated in decerebrate and partially spinalized cats. L-dihydroxyphenylalanine (L-DOPA) was slowly injected until long-latency, long-lasting discharges could be evoked by the stimulation of contralateral flexor reflex afferents (coFRA) and the group I autogenetic inhibition was reversed to polysynaptic excitation in extensor motoneurons. Under these conditions, we stimulated in alternation the contralateral pyramidal tract (PT), group I afferents from knee and ankle extensor muscles, and both stimuli together. We did the same for the stimulation of PT and of coFRA. Clear polysynaptic EPSPs could be evoked from all three sources in 32 extensor motoneurons. Convergence was inferred from spatial facilitation, which occurred when the amplitude of the EPSPs evoked by the combined stimuli was notably larger than the algebraic sum of the EPSPs evoked by individual stimulation. Spatial facilitation was found between PT and extensor group I inputs in 30/59 tests (51%) in 20 motoneurons and in all cases (6/6) between PT and coFRA in six motoneurons. When fictive locomotion was induced with further injection of L-DOPA, PT descending volleys from the same stimulating site could reset the stepping rhythm by initiating bursts of activity in all extensors. These results indicate that at least some of the corticospinal fibers project onto interneurons shared by the coFRA and the polysynaptic excitatory group I pathways to extensors. The implications of such convergence patterns on the organization of the extensor "half-center" for locomotion are discussed.  相似文献   

15.
Summary The projections to the midbrain from the spinal cord have been investigated in the cat with the degeneration technique and by using horseradish peroxidase (HRP) as an anterograde tracer. Two types of spinal cord lesions were performed: 1) Cordotomies at cervical or thoracic levels transecting the ventral and lateral funiculi. 2) Transections of the ventral, ventrolateral, dorsolateral or dorsal funiculus, respectively, at cervical levels. In the anterograde tracing experiments HRP was injected into the spinal cord at cervical, lumbar or sacral levels.The results show large projections to the lateral and ventrolateral parts of the periaqueductal gray (PAG1), the posterior pretectal nucleus (PP) and the nucleus of Darkschewitsch (D). More moderate projections go to the medial division of the periaqueductal gray (PAGm), the cuneiform nucleus (CF), the mesencephalic reticular formation (MRF), lateral part of the deep layer of the superio colliculus (SP) and magnocellular medial geniculate nucleus (GMmc), while scattered spinal fibers are present in the dorsal part of the periaqueductal gray (PAGd), the external inferior collicular nucleus (IX), the intermediate layer of the superior colliculus (SI), the lateral part of the red nucleus (NR) and in the Edinger-Westphal portion of the oculomotor nucleus (3). In addition a few fibers are present in the interstitial nucleus of Cajal (CA) and anterior pretectal nucleus (PAc).The results indicate that at midcervical levels most of the spinomesencephalic fibers ascend in the ventral funiculus, with only a moderate fraction ascending in the ventral half of the lateral funiculus. Almost no fibers ascend in the dorso-lateral funiculus and none appear to pass in the dorsal funiculus.No distinct somatotopic pattern was found in the spinomesencephalic projections, but more fibers from cervicobrachial segments terminate in the rostral than in the caudal parts of the terminal fields in PAG, CF, SP and IX, while the lumbar fibers were more numberous in the caudal parts. PP seems to receive spinal fibers mainly from the caudal half of the cord.  相似文献   

16.
Summary The effect of stimulation of the Entopeduncular nucleus on the thalamic ventrolateral nucleus (VL) was studied by recording with macroelectrodes and microelectrodes in cats anesthetized with chloralose or under local analgesia. An asynaptic response (0.5 ms shortest latency) was evoked in the VL following the Entopeduncular stimulation. It is demonstrated that this response is attributable to the activation of the Entopeduncular-VL fibers described by anatomists. The postsynaptic events revealed, since only a small proportion of VL cells are affected by Entopeduncular stimulation, that the influence exerted by the Entopeduncular nucleus on the VL is much weaker than the cerebellar one.  相似文献   

17.
In the present study we have investigated the relative rostrocaudal position of the neurons in the substantia nigra, which project to the ipsilateral or contralateral neostriatum. The retrograde tract tracer horseradish peroxidase was implanted into the striatum on one side. The substantia nigra, ventral tegmental area and retrorubral area ipsilateral and contralateral to the site of implantation were examined for labeled cells. The distributions of the cells which give rise to the crossed and uncrossed nigrostriatal projections were found to be inverse. More labeled cells were found in the rostral than the caudal part of the substantia nigra ipsilateral to the site of horseradish peroxidase implantation. In contrast, there was a greater likelihood of finding labeled cells in the middle and caudal parts of the contralateral substantia nigra than in the rostral part. Sparse projections from the ipsilateral and contralateral retrorubral area and ventral tegmental area were also found.  相似文献   

18.
Experiments were performed in two groups of cats with the retrograde fluorescent double-labelling technique, in order to determine the existence of axonal branching of cortico-cortical neurones of area SI. Associative SI-SII and callosal SI-SII neurones were retrogradely labelled in one group of animals and callosal SI-SI and SI-SII neurones in another group. In each group, double-labelled cells were extremely rare in SI. The present study shows that different sets of cortico-cortical projections, which originate from the same layers and from the same zone of area SI, arise overwhelmingly from separate populations of neurones.  相似文献   

19.
L S Jen  Y M Cheung  K L Chow 《Neuroscience》1989,29(2):479-493
The distribution and morphology of individual uncrossed retinogeniculate fibers in both normal and monocularly enucleated adult Dutch-belted rabbits were studied using horseradish peroxidase and wheat germ agglutinin conjugated to horseradish peroxidase as neuronal markers. The results showed that the uncrossed retinogeniculate fibers were distributed almost entirely in the ipsilateral segment of the dorsal nucleus of the lateral geniculate body, and the extent of terminal distribution of the fibers observed in rabbits with one eye enucleated during the young adult stage was essentially the same as that in the normal rabbit. Most of the uncrossed retinogeniculate fibers appeared to arise as collateral branches of optic tract fibers which were apparently destined for the pretectum or the superior colliculus. The uncrossed retinogeniculate fibers labeled by the wheat germ agglutinin conjugated to horseradish peroxidase passed through the dorsal nucleus of the lateral geniculate body without any branching until they reached the ipsilateral segment. There they could be divided into several morphological types although the possibility that they may represent different classes of a continuum cannot be ruled out.  相似文献   

20.
Quantitative and qualitative analysis of crossed vs uncrossed projections from the substantia nigra, entopeduncular nucleus and individual cerebellar nuclei to the thalamus was undertaken in nine adult cats using retrograde labeling with horseradish peroxidase and fluorescent dyes. The results indicate that about 90% of entopeduncular nucleus neurons and 50% of substantia nigra neurons give rise to ipsilateral projections to the thalamus whereas the contralateral component of these projections originates from about 10 and 7% neurons of entopeduncular nucleus and substantia nigra, respectively. Some of the fibers constituting the contralateral component are represented by branching axon collaterals of the neurons projecting ipsilaterally. In the basal ganglia thalamic projection, its minor component (contralateral) targets the ventral anterior and ventral medial nuclei the same as its major component (ipsilateral). However, some preferential distribution of the contralateral projections to the ventral medial nucleus appears to exist. In regard to the cerebellothalamic projections it was found that about 90% of neurons located in the dentate and interpositus nuclei and 50% of neurons in the fastigial nucleus project to the contralateral thalamus while 16% of dentate nucleus neurons and 40% of fastigial nucleus neurons give rise to the ipsilateral cerebellothalamic projections. A considerable number of ipsilateral cerebellothalamic fibers are represented by divergent axon collaterals of the same neurons projecting to the contralateral thalamus. The cerebellothalamic projections from all cerebellar nuclei including the fastigial nucleus are targeted primarily to the ventral lateral nucleus both contra- and ipsilaterally. The ventral medial nucleus receives bilateral input from the fastigial nucleus which originates from about one quarter of the thalamus projecting neurons in this nucleus. Of all other cerebellar nuclei only the dentate nucleus projects to the ventral medial nucleus and this projection is exclusively contralateral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号