首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study involves development of amphiphilic gels consisting solely of nonionic surfactants bearing cyclosporine and characterized for microstructure, gelation temperature, and in vitro drug release into dermis. The formulation is nonirritant and suitable for topical application. Gels consisting of cyclosporine were prepared using different methods by mixing the solid gelator (sorbitan or glyceryl fatty acid esters) and the liquid phase (liquid sorbitan esters or polysorbates) and heating them at 60°C to form a clear isotropic sol phase, and cooling this sol phase to form an opaque semisolid at room temperature. Gel microstructure was examined by phase contrast microscopy while gelation temperatures were measured by melting point apparatus and differential scanning calorimetry. These amphiphilic gels were evaluated in vitro for topical as well as transdermal delivery using rat skin mounted in a Franz diffusion cell. Gel microstructures consisted mainly of clusters of tubules of gelator molecules that had aggregated upon cooling of the sol phase, forming a 3D network throughout the continuous phase. The gels demonstrated thermoreversibility with robust gel network. At temperatures near the skin surface temperature, the gels softened considerably and moreover, it facilitated the drug to accumulate in dermis, thus making an ideal delivery vehicle of cyclosporine topically that can be used in treatment of psoriasis. Thus amphiphilic gels were demonstrated as the ideal vehicle for topical use of cyclosporine.  相似文献   

2.
The explosive development of protein and peptide drugs has ushered in a great need for effective delivery systems for such drugs. Two decades of studies of protein delivery from polymeric systems has revealed the great potential of gels that respond to environmental stimuli, such as temperature, pH, etc. Protein and peptide release can be engineered to occur in a pulsatile mode. The mechanism of this release is greatly affected by polymer design. 'Intelligent' amphiphilic copolymers emerge as a novel trend in the application of thermodynamically stable self-assembling lyophilic colloids to protein and peptide delivery.  相似文献   

3.
A commercial suspension of nanoparticles (Eudragit RS 30D) was used to manufacture a gel for topical application. Gels were prepared by mixing a polycationic polymer (Eudragit(?) RS 30D) and a low molecular weight heparin (LMWH), an antithrombotic agent. Gels formed spontaneously at a ratio of 1:1 as a result of electrostatic interactions between the polyanionic drug and the polycationic polymer. Different types of heparin were used: Bemiparin, Enoxaparin (Lovenox), Nadroparin (Fraxiparin) and Tinzaparin (Innohep). Several LMWH concentrations were tested. Rheological measurements were performed to investigate the gel behavior. Gel formation was confirmed by dynamic rheological measurements as the elastic modulus (G') was higher than the viscous one (G″). The amount of heparin incorporated into the gel matrix was determined. A maximum of incorporation (100%) was reached using a heparin solution of 600 IU/mL. The release kinetics of LMWH from the gel were also studied. Regardless of the LMWH used in the formulation, a biphasic release profile was observed. Accordingly, a burst effect was observed. Afterwards, the release rate became steady. The penetration of the LMWH through the dermal barrier was also investigated.  相似文献   

4.
Metastatic cancer cells degrade extracellular matrix containing collagen. In this study, a variety of different polymer prodrugs have been synthesized and embedded in collagen gels for application in a metastasis-associated drug delivery system (DDS). Dendrimer-doxorubicin (Dox) prodrugs were prepared with different surfaces, including collagen peptides and polyethylene glycol. Furthermore, Dox was conjugated to linear poly(glutamic acid) (poly-Glu) instead of the dendrimer. The cytotoxicities of each of these polymer prodrug systems against the poorly invasive MCF-7 and highly invasive MDA-MB-231 cells were similar. The highly invasive MDA-MB-231 cells, however, were more sensitive than the MCF-7 cells to the polymer prodrugs-embedded collagen gels, suggesting that these polymer prodrugs/collagen hybrid gels would be useful for the development of metastasis-associated DDSs. The cytotoxicities of the polymer prodrugs were dependent on their chemical compositions. The collagen peptide-conjugated dendrimer prodrug/collagen hybrid gel demonstrated in vivo anticancer effects in an orthotopic metastatic mouse model.From the Clinical EditorIn this study, a variety of polymer prodrugs have been synthesized and embedded in collagen gels to be used in a metastasis-associated drug delivery system, demonstrating in vivo anticancer effects in an orthotopic metastatic mouse model.  相似文献   

5.
A novel glucose-sensitive gel formulation, containing concanavalin A and specific polysaccharides, was stabilised via covalent coupling to two structurally different carbomers. The bonding was done to minimise leaching of gel components thereby preventing toxicity and preserving the working mechanism of the gel. Increased gel stability was introduced by covalently bonding amine groups present on the lysine residues of concanavalin A to carboxylic moieties on Carbopol 934P NF and 941P NF using carbodiimide chemistry. The introduction of dextran then produced a glucose-sensitive formulation that transformed from gel to sol in the presence of free glucose. Rheological examination of glucose-sensitive gels stabilised in this way and containing varying concentrations of glucose was conducted with a cone and plate viscometer used in continual rotation mode. A decrease in viscosity over the chosen glucose concentration range was exhibited by both carbomer-stabilised formulations. The subsequent testing of such formulations in in-vitro diffusion experiments revealed that the leaching of concanavalin A from the covalently coupled gels is restricted significantly with respect to non-coupled formulations. In addition, insulin delivery in response to glucose in the physiologically relevant glucose concentration range has been demonstrated using the carbomer-stabilised gels at 37 degrees C. The performance of this self-regulating drug delivery system has been improved in terms of increased gel stability with reduced component leaching.  相似文献   

6.
The poor bioavailability and therapeutic response exhibited by conventional ophthalmic preparations due to rapid precorneal elimination, dilution and nasolacrimal drainage of the drug may be vanquished by the use of in situ gelling systems that are instilled as drops in to the eye and undergo a sol-gel transition in the cul-de-sac. Timolol eye drops may cause systemic side effects in glaucoma patients due to absorption of the drug into systemic circulation. In situ gelling system of this drug can provide localized effect with reduced contraindications, improved patient compliance and better therapeutic index. The present work describes the formulation and evaluation of an ophthalmic delivery system of an antiglaucoma drug, timolol maleate (TM) based on the concept of pH-triggered in situ gelation. Polyacrylic acid (carbopol) was used as the gelling agent in combination with chitosan (amine polysaccharide), which was acted as a viscosity-enhancing agent. Formulations were evaluated for pH, viscosity, gelling capacity and drug content. The 0.4% w/v carbopol/0.5% w/v chitosan based in situ gelling system was in liquid state at room temperature and at the pH formulated (pH 6.0) and underwent rapid transition into the viscous gel phase at the pH of the tear fluid (lacrimal fluid) (pH 7.4). The in vitro drug release and in vivo effects of the developed in situ gelling system were compared with that of Glucomol® (a 0.25% TM ophthalmic solution), 0.4% w/v carbopol solution as well as liposomal formulation. The results clearly demonstrated that developed carbopol-chitosan based formulation was therapeutically efficacious and showed a fickian (diffusion controlled) type of release behaviour over 24 h periods. The developed system is thus a viable alternative to conventional eye drops and can also prevent the rapid drainage as in case of liposomes.  相似文献   

7.
8.
Topical application of plasmid DNA represents an attractive route of gene delivery. Although chitosan (CS) has been widely investigated as a gene-carrier, there is very limited information about the skin application of CS-based systems for DNA. This study evaluated pDNA-loaded chitosan nanoparticles (CS-NPs) for skin gene delivery. NPs were prepared by inducing the gelation of CS upon interaction with sodium tripolyphosphate. pSV-β-Gal was used as a reporter gene. The size, surface charge, and the other in vitro characteristics of CS-NPs were examined. Primary human dermal fibroblast cells (HDF) and mouse fibroblast NIH 3T3 cell lines (ATCC CCL-92) were used for in vitro transfection studies. In in vivo study, CS-NPs were applied to the skin of baby and adult Sprague Dawley rats by spreading on the shaved area of the back of animals. During a week animals were sacrificed and skin biopsies were taken for β-Gal expression. β-galactosidase enzyme activity was determined spectrophotometrically at 420?nm. The distribution of β-galactosidase expressing cells within the skin tissue was observed by X-gal histochemical method. β-galactosidase was continuously expressed at the nanoparticle-treated skin during the 7 days. High and continuous β-Gal expressions were obtained with CS-NPs, although it was low in the first day. When a comparison was made between the data of baby and adult rats, markedly high transfection were measured in the skin samples of the baby rats. NPs protected pDNA against the enzyme and serum attacks. In conclusion, CS-NPs showed in vivo transfection potential in rats for skin gene delivery.  相似文献   

9.
Microemulsions for topical delivery of estradiol   总被引:14,自引:0,他引:14  
Estradiol has been widely used for the treatment of hormonal insufficiencies. Due to its extensive first pass metabolism after oral administration, transdermal administration of estradiol in gels and emulsions has been used to improve its bioavailability, prolong activity and to optimize metabolic profile. The purpose of this study was to investigate microemulsions as delivery systems for estradiol. Various o/w microemulsions were used to deliver estradiol across human abdominal skin in vitro. Trasdermal flux of estradiol was determined using Franz-type diffusion cells and the samples were analyzed by high-performance liquid chromatography (HPLC). The permeation data showed that microemulsion formulations increased estradiol flux 200-700-fold over the control, but permeability coefficients were decreased by 5-18 times. The superior transdermal flux of estradiol was due to 1500-fold improvement in solubilization of estradiol by microemulsions. The results suggest that microemulsions are potential vehicles for improved topical delivery of estradiol.  相似文献   

10.
Aim: Nanoemulsion has shown many advantages in drug delivery systems. In this study, for the first time, analgesic and anti-inflammatory properties of a nanomelusion of almond oil with and without ibuprofen was compared with corresponding microemulsion and commercial topical gel of the drug using formalin and carrageenan tests, respectively.

Method: Almond oil (oil phase) was mixed with Tween 80 and Span 80 (surfactants), and ethanol (co-surfactant) and them distilled water (aqueous phase) was then added to the mixture at once. Prepared nanoemulsions were pre-emulsified into a 100?ml beaker using magnet/stirrer (1000?rpm). Then, using a probe ultrasonicator (Hielscher UP400s, Hielscher, Ringwood, NJ) the nanoemulsions were formed.

Results: The optimised nanoemulsion formulation containing 2.5% ibuprofen, showed improved analgesic and anti-inflammatory effects compared with commercial product and corresponding microemulsion product containing 5% ibuprofen (i.e. twice the content of ibuprofen in the nanoemulsion) in vivo. The nanoemulsion preparation showed superior analgesic activities during chronic phase. Also, it decreased the inflammation from the first hour, while the microemulsion and the commercial product started to show their anti-inflammatory effects after 2 and 3?h, respectively.

Conclusion: Our finding suggests that the size of the emulsion particles must be considered as an important factor in topical drug delivery systems.  相似文献   

11.
Fang JY  Leu YL  Chang CC  Lin CH  Tsai YH 《Drug delivery》2004,11(2):97-105
The application of lipid nano/submicron emulsions as topical drug carrier systems for the percutaneous absorption of flurbiprofen was investigated. The lipid emulsions were made up of isopropyl myristate (IPM), soybean oil, or coconut oil as the oil phase, egg lecithin as the predominant emulsifier, and double-distilled water as the external phase. Stearylamine (SA) and deoxycholic acid (DA) also were used to produce positively and negatively charged emulsions. To evaluate the physicochemical properties of the lipid emulsions, particle size by laser light scattering, the image of atomic force microscopy, and relaxation time values by Nuclear Magnetic Resonance (NMR) were determined. The in vitro permeation data showed that incorporation of SA significantly reduced the topical delivery of flurbiprofen. On the other hand, incorporation of DA exhibited no or a negligible effect on drug permeation. Enhancement of drug absorption was observed when adding oleic acid as part of the oil phase. The in vivo topical application of flurbiprofen from selected lipid emulsions showed a similar trend to the in vitro status. Furthermore, the intersubject variability was considerably reduced by lipid emulsions than by aqueous suspensions in both the in vitro and in vivo experiments. The irritant profiles of lipid emulsions showed that IPM elicited higher irritation than soybean oil. The incorporation of oleic acid also produced skin disruption. The results in the present study suggest the feasibility of lipid emulsions for the topical delivery of flurbiprofen.  相似文献   

12.
Flow behaviour and mechanical properties of 0:100, 15:85, and 30:70 v/v gelled ethanol:water mixtures are studied as a function of pH (4.0-7.0) and Carbopol Ultrez 10 concentration (0.1-0.5%). As previously reported individually for 30% v/v alcoholic Ultrez 10 gels, flow curves were adjusted to the Ostwald's model, and similar sigmoidal dose response functions were obtained to describe the pH dependence of consistency index and mechanical properties of the systems. The concentration dependence of flow indexes was also best adjusted to one-phase exponential decay functions. As a result, the influence of ethanol content on polymer network is meaningfully assessed by means of the obtained empirical parameters: bottom value of each variable (Y(max)), pH value required for a 50% polymer network development (pH(50)), and asymptotic flow index value for the fully structured gels (n(min)). Also, it is assessed the influence of cosolvent on the above-mentioned empirical variables, by studying pH-dependence of gelation in methanol:water, 1-propanol:water and 1-butanol:water 15:85% v/v mixtures. As a result, the alcohol induced variations in consistency and mechanical properties of hydroalcoholic gels were well correlated to modifications in the solubility parameter (delta(T)).  相似文献   

13.
The aim of the present study was the development of thermo-sensitive in-situ gels for in-vitro evaluation of ophthalmic delivery systems of ketorolac tromethamine (KT), based on methylcellulose (MC) in combination with hydroxypropylmethyl cellulose (HPMC). The gel temperature of 1% MC solution was observed at 60°C. It was found that 6% oral rehydration salt without dextrose (ORS) was capable to reduce the gel temperature below physiological temperature. HPMC was added to increase viscosity and drug release time. The results indicated a large increase in viscosity at 37°C with addition of HPMC whch provided sustained release of the drug over a 4h period. From in-vitro release studies, it could be concluded that the developed systems were thus a better alternative to conventional eye drops.  相似文献   

14.
Objectives The objectives of this study were to develop an intranasal insulin gel using Carbopol homogenization rather than neutralization and to examine the effectiveness of the gel compared with a subcutaneous injection. Methods Four factors, namely the molecular weight of polyethylene glycol (PEG), the concentration of Carbopol, the temperature of preparation and the type of absorption enhancer, were evaluated for their effect on viscosity and in‐vitro insulin release. Bioavailability of insulin from selected formulations was compared with an intranasal solution and subcutaneous injection in rabbits. Key findings Increasing the molecular weight of PEG and Carbopol concentration increased the gel viscosity and changed the release mechanism from diffusion to case II transport. Applying heat during preparation resulted in a lower viscosity gel and increased the in‐vitro insulin release. Among the two enhancers studied, sodium deoxycholate resulted in a higher viscosity gel than Tween 80. In vivo, the intranasal gel showed a stronger and longer hypoglycaemic effect with 1.7‐ and 3.1‐fold higher maximum decrease in blood glucose level and area above the curve, respectively, compared with the subcutaneous injection. Conclusions The homogenized Carbopol intranasal gel could be an efficient noninvasive way for insulin delivery but selection of gel components and method of preparation are critical for achieving the most desired effect.  相似文献   

15.
Formulation of Liposome for topical delivery of arbutin   总被引:1,自引:0,他引:1  
The aims of this study were to encapsulate arbutin (AR) in liposome to enhance the skin-whitening activity, and to investigate the effect of liposome formulation on the entrapment efficiency (EE%), skin permeation rate and skin deposition. The liposomes were prepared by a film dispersion method with several different formulations and were separated from the solution by using the gel-filtration method. The physical (size distribution, morphology) and chemical (drug entrapment efficiency, hairless mouse skin permeation and deposition) properties of liposomes were characterized. The entrapment efficiency in all liposome formulations varied between 4.35% and 17.63%, and was dependent on the lipid content. The particle sizes of liposomes were in the range of 179.9-212.8 nm in all liposome formulations. Although the permeation rate of AR in the liposome formulations decreased compared with AR solution, the deposition amount of AR in the epidermis/dermis layers increased in AR liposomal formulation. These results suggest that liposomal formulation could enhance the skin deposition of hydrophilic skin-whitening agents, thereby enhancing their activities.  相似文献   

16.
Skin penetration of topically applied diclofenac is important for the treatment of rheumatic diseases and actinic keratoses. We have studied the permeation of diclofenac across human cadaver epidermis in-vitro from four lecithin vesicle formulations and a few marketed semi-solid preparations. The lecithin vesicle formulations were prepared by dissolving the lipid contents (lecithin and sodium cholate) in a 1:1 mixture of methanol-chloroform, evaporating the solvents under vacuum, and hydrating the lipid layer with the drug solution in water or 10% ethanol. The vesicles were sonicated for 5 min to reduce the vesicle size and their size and Zeta potential were characterized. The cumulative amount and maximum flux of diclofenac was 69.7+/-40.3 micrograms and 4.77+/-3.16 micrograms/hcm(2) from lecithin vesicles containing sodium cholate and 10% ethanol, and is the highest of all formulations studied. The cumulative amount and mean maximum flux obtained from other formulations were in the range of 2.46+/-1.98-29.9+/-10.1 micrograms and 0.53+/-0.46-3.61+/-0.86 micrograms/hcm(2). Based on the results, lecithin vesicles of diclofenac appear to be advantageous for the topical delivery of diclofenac.  相似文献   

17.
SLN and NLC for topical delivery of ketoconazole   总被引:4,自引:0,他引:4  
The clinical use of ketoconazole has been related to some adverse effects in healthy adults, specially local reactions, such as severe irritation, pruritus and stinging. The purpose of the present work is the assessment of ketoconazole stability in aqueous SLN and NLC dispersions, as well as the physicochemical stability of these lipid nanoparticles, which might be useful for targeting this drug into topical route, minimizing the adverse side effects and providing a controlled release. Lipid particles were prepared using Compritol 888 ATO as solid lipid. The natural antioxidant alpha-tocopherol was selected as liquid lipid compound for the preparation of NLC. Ketoconazole loading capacity was identical for both SLN and NLC systems (5% of particle mass). SLN were physically stable as suspensions during 3 months of storage, but the SLN matrix was not able to protect the chemically labile ketoconazole against degradation under light exposure. In contrast, the NLC were able to stabilize the drug, but the aqueous NLC dispersion showed size increase during storage. Potential topical formulations are light-protected packaged SLN or NLC physically stabilized in a gel formulation.  相似文献   

18.
Abstract

The purpose of the current investigation was to explore the potential of polypropylene imine (PPI) dendrimers to deliver dithranol (DIT) topically and to evaluate its encapsulation, permeation and skin irritation potential. PPI (5.0 generation, 5.0?G) dendrimers and DIT-loaded PPI (DIT–PPI) were prepared and characterized by spectroscopy and transmission electron microscopy. DIT encapsulation, in vitro skin permeation study, skin irritation studies, fluorescent studies and tape stripping studies were performed. Loading of DIT was found to be pH dependent with maximum encapsulation at acidic pH (1.0?±?0.02, 17.2?±?0.56 and 57.1?±?1.32% at 7.4, 5.5 and 1.2 pH, respectively). DIT–PPI showed significantly enhanced permeation rate constant and lesser skin irritation (11.61?±?1.80?μg/cm2/h and 1.0, respectively) when compared with the plain DIT solution (2.72?±?0.31?μg/cm2/h and 2.3, respectively). Skin separation studies and confocal laser scanning microscope images showed that the dye-loaded dendrimers exhibits deposition of dye in pilosebaceous compartment. These studies demonstrate that PPI can be exploited to improve the topical bioavailability of the molecules in a controlled pattern. The enhanced accumulation of DIT via dendrimer carrier within the skin might help optimize targeting of this drug to the epidermal and dermal sites, thus creating new opportunities for well-controlled, modern topical application of DIT for the treatment of psoriasis.  相似文献   

19.
The aim of this study was to investigate the physical properties of a chitosan/glycerophosphate (GP) thermosensitive solution which gels at 37 degrees C and evaluate the in vitro release profiles of different model compounds. The gelation rate was dependent on the temperature and on the chitosan deacetylation degree. The solution containing 84%-deacetylated chitosan could be stored 3 months at 4 degrees C without apparent change in viscosity. The in vitro release profiles of the model compounds depended on the presence of GP in the chitosan solution, on their molecular weight and on the presence of lysozyme in the release media. They were not affected by the electrostatic charge of the model compound when present at low concentrations. During the first 4 h, the release was accompanied by a substantial loss of the gel weight which was mainly attributed to the leaching of water and excess GP. Scanning electron micrographs revealed that the solutions yield gels with a highly porous structure after 24 h of exposure to a continuous flow of phosphate buffered saline. These results indicate that the chitosan/GP thermosensitive solutions gel rapidly at body temperature, can remain in the sol state at 4 degrees C and can sustain the delivery of macromolecules.  相似文献   

20.
The clinical use of ketoconazole has been related to some adverse effects in healthy adults, specially local reactions, such as severe irritation, pruritus and stinging. The purpose of the present work is the assessment of ketoconazole stability in aqueous SLN and NLC dispersions, as well as the physicochemical stability of these lipid nanoparticles, which might be useful for targeting this drug into topical route, minimizing the adverse side effects and providing a controlled release. Lipid particles were prepared using Compritol®888 ATO as solid lipid. The natural antioxidant α-tocopherol was selected as liquid lipid compound for the preparation of NLC. Ketoconazole loading capacity was identical for both SLN and NLC systems (5% of particle mass). SLN were physically stable as suspensions during 3 months of storage, but the SLN matrix was not able to protect the chemically labile ketoconazole against degradation under light exposure. In contrast, the NLC were able to stabilize the drug, but the aqueous NLC dispersion showed size increase during storage. Potential topical formulations are light-protected packaged SLN or NLC physically stabilized in a gel formulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号