首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The mechanism(s) by which the oral sulfonylurea, tolazamide, exerts its extrapancreatic hypoglycemic effects was studied using rat epididymal adipose tissue maintained 20-44 h in the presence or absence of the drug. Insulin binding, hexose transport and glucose metabolism were compared in adipocytes isolated from the cultured tissue. In contrast to earlier reports that suggested that sulfonylureas alter the binding of insulin, neither receptor number nor affinity were changed by tolazamide treatment. The uptake of the glucose analogs 2-deoxyglucose and 3-0-methylglucose in the absence of insulin (i.e., basal) was also unchanged. However, exposure to tolazamide resulted in a potentiation of the stimulatory effects of insulin by approximately 30% at each hormone concentration assayed (0.4-40 ng/ml). This potentiation was dependent on the tolazamide concentration (0.003-0.30 mg/ml), with a maximal effect observed at therapeutic levels. A tolazamide analog hypoglycemic activity in vivo was found not to enhance either basal or insulin-stimulated uptake in vitro. Conversion of 0.1-5.0 mM glucose to CO2 and total lipids in the presence of insulin was also potentiated by tolazamide treatment. The inability of the drug to directly stimulate basal glucose uptake was paralleled by its lack of effect on glucose metabolism. At 50 mM glucose, where transport is no longer rate-limiting, tolazamide did not potentiate metabolism in the absence or the presence of insulin. These studies demonstrate that tolazamide in vitro alters postreceptor insulin action without influencing the receptor, and suggests insulin-stimulated hexose transport as the cellular process responsible for the hypoglycemic effect of sulfonyureas in adipose tissue.  相似文献   

2.
3.
Primary human muscle cell cultures were established and the regulation of glucose transport was investigated. Primary cultures were allowed to proceed to the stage of myotubes through fusion of myoblasts or were used for clonal selection based on fusion potential. In clonally selected cultures, hexose (2-deoxy-glucose) uptake into myotubes was linear within the time of study and inhibitable by cytochalasin B (IC50 = 400 nM). Cytochalasin B photolabeled a protein(s) of 45,000-50,000 D in a D-glucose-protectable manner, suggesting identity with the glucose transporters. In the myotube stage, the cells expressed both the GLUT1 and GLUT4 glucose transporter protein isoforms at an average molar ratio of 7:1. Preincubation in media of increasing glucose concentrations (range 5-25 mM) progressively decreased the rate of 2-deoxyglucose uptake. Insulin elevated 2-deoxyglucose uptake in a dose-dependent manner, with half maximal stimulation achieved at 3.5 nM. Insulin also stimulated the transport of the nonmetabolizable hexose 3-O-methylglucose, as well as the activity of glycogen synthase, responsible for nonoxidative glucose metabolism. The oral antihyperglycemic drug metformin stimulated the cytochalasin B-sensitive component of both 2-deoxyglucose and 3-O-methylglucose uptake. Maximal stimulation was observed at 8 h of exposure to 50 microM metformin, and this effect was not prevented by incubation with the protein-synthesis inhibitor cycloheximide. The relative effect of metformin was higher in cells incubated in 25 mM glucose than in 5 mM glucose, consistent with its selective action in hyperglycemic conditions in vivo. Metformin (50 microM for 24 h) was more effective than insulin (1 microM for 1 h) in stimulating hexose uptake and the hormone was effective on top of the stimulation caused by the biguanide, suggesting independent mechanisms of action.  相似文献   

4.
To determine whether the impaired insulin-stimulated glucose uptake in obese individuals is associated with altered insulin receptor signaling, we measured both glucose uptake and early steps in the insulin action pathway in intact strips of human skeletal muscle. Biopsies of rectus abdominus muscle were taken from eight obese and eight control subjects undergoing elective surgery (body mass index 52.9 +/- 3.6 vs 25.7 +/- 0.9). Insulin-stimulated 2-deoxyglucose uptake was 53% lower in muscle strips from obese subjects. Additional muscle strips were incubated in the basal state or with 10(-7) M insulin for 2, 15, or 30 min. In the lean subjects, tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 (IRS-1), measured by immunoblotting with anti-phosphotyrosine antibodies, was significantly increased by insulin at all time points. In the skeletal muscle from the obese subjects, insulin was less effective in stimulating tyrosine phosphorylation (maximum receptor and IRS-1 phosphorylation decreased by 35 and 38%, respectively). Insulin stimulation of IRS-1 immunoprecipitable phosphatidylinositol 3-kinase (PI 3-kinase) activity also was markedly lower in obese subjects compared with controls (10- vs 35-fold above basal, respectively). In addition, the obese subjects had a lower abundance of the insulin receptor, IRS-1, and the p85 subunit of PI 3-kinase (55, 54, and 64% of nonobese, respectively). We conclude that impaired insulin-stimulated glucose uptake in skeletal muscle from severely obese subjects is accompanied by a deficiency in insulin receptor signaling, which may contribute to decreased insulin action.  相似文献   

5.
The genetically obese Zucker rat (fa/fa) is characterized by a severe resistance to the action of insulin to stimulate skeletal muscle glucose transport. The goal of the present study was to identify whether the defect associated with this insulin resistance involves an alteration of transporter translocation and/or transporter activity. Various components of the muscle glucose transport system were investigated in plasma membranes isolated from basal or maximally insulin-treated skeletal muscle of lean and obese Zucker rats. Measurements of D- and L-glucose uptake by membrane vesicles under equilibrium exchange conditions indicated that insulin treatment resulted in a four-fold increase in the Vmax for carrier-mediated transport for lean animals [from 4.5 to 17.5 nmol/(mg.s)] but only a 2.5-fold increase for obese rats [from 3.6 to 9.1 nmol/(mg.s)]. In the lean animals, this increase in glucose transport function was associated with a 1.8-fold increase in the transporter number as indicated by cytochalasin B binding, a 1.4-fold increase in plasma membrane GLUT4 protein, and a doubling of the average carrier turnover number (intrinsic activity). In the obese animals, there was no change in plasma membrane transporter number measured by cytochalasin B binding, or in GLUT4 or GLUT1 protein. However, there was an increase in carrier turnover number similar to that seen in the lean litter mates. Measurements of GLUT4 mRNA in red gastrocnemius muscle showed no difference between lean and obese rats. We conclude that the insulin resistance of the obese rats involves the failure of translocation of transporters, while the action of insulin to increase the average carrier turnover number is normal.  相似文献   

6.
Peripheral resistance to insulin is a prominent feature of both insulin-dependent and non-insulin-dependent diabetes. Skeletal muscle is the primary site responsible for decreased insulin-induced glucose utilization in diabetic subjects. Glucose transport is the rate-limiting step for glucose utilization in muscle, and that cellular process is defective in human and animal diabetes. The transport of glucose across the muscle cell plasma membrane is mediated by glucose transporter proteins, and two isoforms (GLUT1 and GLUT4) are expressed in muscle. Insulin acutely increases glucose transport in muscle by selectively stimulating the recruitment of the GLUT4 transporter (but not GLUT1) from an intracellular pool to the plasma membrane. In skeletal muscles of streptozocin-induced diabetic rats, there is a decreased GLUT4 protein content in intracellular and plasma membranes. In these rats, insulin induced the mobilization of GLUT4 from the internal pool, but the incorporation of the transporter protein into the plasma membrane is diminished. Conversely, the content of the GLUT1 transporter increases in the plasma membrane of these diabetic rats. Normalization of glycemia with phlorizin fully restores the amount of GLUT1 and GLUT4 proteins to normal levels in the plasma membrane without altering insulin levels. This suggests that glycemia regulates the number of glucose transporters at the cell surface, GLUT1 varying directly and GLUT4 inversely, to glycemia. The regulatory role of glycemia also can be seen in diabetic dogs in vivo, where correction of hyperglycemia with phlorizin restores, at least in part, the defective metabolic clearance rate of glucose seen in these animals. In addition to acutely stimulating glucose transport in muscle, insulin controls exercise- and possibly stress-mediated glucose uptake in vivo, by preventing hyperglycemia and by restraining the effects of catecholamines on lipolysis and/or muscle glycogenolysis. Finally, we postulated a neural pathway that requires the permissive effect of insulin to increase glucose uptake by the muscle. Thus, insulin, glucose, and neural pathways regulate muscle glucose utilization in vivo and are, therefore, important determinants of glucoregulation in diabetes.  相似文献   

7.
Defects of glucose transport and phosphorylation may underlie insulin resistance in obesity and non-insulin-dependent diabetes mellitus (NIDDM). To test this hypothesis, dynamic imaging of 18F-2-deoxy-glucose uptake into midthigh muscle was performed using positron emission tomography during basal and insulin-stimulated conditions (40 mU/m2 per min), in eight lean nondiabetic, eight obese nondiabetic, and eight obese subjects with NIDDM. In additional studies, vastus lateralis muscle was obtained by percutaneous biopsy during basal and insulin-stimulated conditions for assay of hexokinase and citrate synthase, and for immunohistochemical labeling of Glut 4. Quantitative confocal laser scanning microscopy was used to ascertain Glut 4 at the sarcolemma as an index of insulin-regulated translocation. In lean individuals, insulin stimulated a 10-fold increase of 2-deoxy-2[18F]fluoro-D-glucose (FDG) clearance into muscle and significant increases in the rate constants for inward transport and phosphorylation of FDG. In obese individuals, the rate constant for inward transport of glucose was not increased by insulin infusion and did not differ from values in NIDDM. Insulin stimulation of the rate constant for glucose phosphorylation was similar in obese and lean subjects but reduced in NIDDM. Insulin increased by nearly twofold the number and area of sites labeling for Glut 4 at the sarcolemma in lean volunteers, but in obese and NIDDM subjects translocation of Glut 4 was attenuated. Activities of skeletal muscle HK I and II were similar in lean, obese and NIDDM subjects. These in vivo and ex vivo assessments indicate that impaired glucose transport plays a key role in insulin resistance of NIDDM and obesity and that an additional impairment of glucose phosphorylation is evident in the insulin resistance of NIDDM.  相似文献   

8.
To examine the relationship between plasma insulin concentration and intracellular glucose metabolism in control and diabetic rats, we measured endogenous glucose production, glucose uptake, whole body glycolysis, muscle and liver glycogen synthesis, and rectus muscle glucose-6-phosphate (G-6-P) concentration basally and during the infusion of 2, 3, 4, 12, and 18 mU/kg.min of insulin. The contribution of glycolysis decreased and that of muscle glycogen synthesis increased as the insulin levels rose. Insulin-mediated glucose disposal was decreased by 20-30% throughout the insulin dose-response curve in diabetics compared with controls. While at low insulin infusions (2 and 3 mU/kg.min) reductions in both the glycolytic and glycogenic fluxes contributed to the defective tissue glucose uptake in diabetic rats, at the three higher insulin doses the impairment in muscle glycogen repletion accounted for all of the difference between diabetic and control rats. The muscle G-6-P concentration was decreased (208 +/- 11 vs. 267 +/- 18 nmol/g wet wt; P less than 0.01) compared with saline at the lower insulin infusion, but was gradually increased twofold (530 +/- 16; P less than 0.01 vs. basal) as the insulin concentration rose. The G-6-P concentration in diabetic rats was similar to control despite the reduction in glucose uptake. These data suggest that (a) glucose transport is the major determinant of glucose disposal at low insulin concentration, while the rate-limiting step shifts to an intracellular site at high physiological insulin concentration; and (b) prolonged moderate hyperglycemia and hypoinsulinemia determine two distinct cellular defects in skeletal muscle at the levels of glucose transport/phosphorylation and glycogen synthesis.  相似文献   

9.
A major defect contributing to impaired insulin action in human obesity is reduced glucose transport activity in skeletal muscle. This study was designed to determine whether the improvement in whole body glucose disposal associated with weight reduction is related to a change in skeletal muscle glucose transport activity and levels of the glucose transporter protein GLUT4. Seven morbidly obese (body mass index = 45.8 +/- 2.5, mean +/- SE) patients, including four with non-insulin-dependent diabetes mellitus (NIDDM), underwent gastric bypass surgery for treatment of their obesity. In vivo glucose disposal during a euglycemic clamp at an insulin infusion rate of 40 mU/m2 per min was reduced to 27% of nonobese controls (P less than 0.01) and improved to 78% of normal after weight loss of 43.1 +/- 3.1 kg (P less than 0.01). Maximal insulin-stimulated glucose transport activity in incubated muscle fibers was reduced by approximately 50% in obese patients at the time of gastric bypass surgery but increased twofold (P less than 0.01) to 88% of normal in five separate patients after similar weight reduction. Muscle biopsies obtained from vastus lateralis before and after weight loss revealed no significant change in levels of GLUT4 glucose transporter protein. These data demonstrate conclusively that insulin resistance in skeletal muscle of mobidly obese patients with and without NIDDM cannot be causally related to the cellular content of GLUT4 protein. The results further suggest that morbid obesity contributes to whole body insulin resistance through a reversible defect in skeletal muscle glucose transport activity. The mechanism for this improvement may involve enhanced transporter translocation and/or activation.  相似文献   

10.
A critical defect in type 2 diabetes is impaired insulin-stimulated glucose transport and metabolism in muscle and adipocytes. To understand the metabolic adaptations this elicits, we generated mice with targeted disruption of the GLUT4 glucose transporter in both adipocytes and muscle (AMG4KO). In contrast to total body GLUT4-null mice, AMG4KO mice exhibit normal growth, development, adipose mass, and longevity. They develop fasting hyperglycemia and glucose intolerance and are at risk for greater insulin resistance than mice lacking GLUT4 in only one tissue. Hyperinsulinemic-euglycemic clamp studies showed a 75% decrease in glucose infusion rate and markedly reduced 2-deoxyglucose uptake into skeletal muscle (85-90%) and white adipose tissue (65%). However, AMG4KO mice adapt by preferentially utilizing lipid fuels, as evidenced by a lower respiratory quotient and increased clearance of lipids from serum after oral lipid gavage. While insulin action on hepatic glucose production and gluconeogenic enzymes is impaired, hepatic glucokinase expression, incorporation of 14C-glucose into lipids, and hepatic VLDL-triglyceride release are increased. The lipogenic activity may be mediated by increased hepatic expression of SREBP-1c and acetyl-CoA carboxylase. Thus, inter-tissue communication results in adaptations to impaired glucose transport in muscle and adipocytes that involve increased hepatic glucose uptake and lipid synthesis, while muscle adapts by preferentially utilizing lipid fuels. Genetic determinants limiting this "metabolic flexibility" may contribute to insulin resistance and type 2 diabetes in humans.  相似文献   

11.
We have developed an in vitro muscle preparation suitable for metabolic studies with human muscle tissue and have investigated the effects of obesity and non-insulin-dependent diabetes mellitus (NIDDM) on glucose transport. Transport of 3-O-methylglucose and 2-deoxyglucose was stimulated approximately twofold by insulin in muscle from normal nonobese subjects and stimulation occurred in the normal physiological range of insulin concentrations. In contrast to insulin stimulation of 3-O-methylglucose and 2-deoxyglucose transport in muscle from normal, nonobese subjects, tissue from morbidly obese subjects, with or without NIDDM, were not responsive to insulin. Maximal 3-O-methylglucose transport was lower in muscle of obese than nonobese subjects. Morbidly obese patients, with or without NIDDM, have a severe state of insulin resistance in glucose transport. The novel in vitro human skeletal muscle preparation herein described should be useful in investigating the mechanism of this insulin resistance.  相似文献   

12.
To investigate whether skeletal muscle is resistant to insulin in insulinopenic states, insulin binding and biological effects on glucose utilization were studied in isolated soleus muscles from 24- or 48-h-fasted mice and from streptozotocin-diabetic mice. Both 48-h fasting and diabetes led to an increase in insulin binding at insulin concentrations <3.4 nM. In both states, submaximal concentrations of insulin were also more effective in stimulating muscle 2-deoxyglucose uptake and glycogen synthesis, and in activating glycogen synthase. This resulted in a two- to fourfold leftward shift in the insulin dose-response curves in muscles from both groups compared with control. No change in insulin binding or biological effects was detected in muscles from 24-h-fasted mice. Maximal insulin effectiveness on 2-deoxyglucose uptake and glycolysis was either unchanged or only slightly enhanced in 48-h-fasted mice and in diabetic animals, compared with controls. Maximal insulin effects on glycogen synthesis and glycogen synthase activation were unaltered by fasting or diabetes. Basal glucose uptake and glycolysis were similar in all groups of mice. In conclusion, when soleus muscles from 48-h-fasted mice and from diabetic mice are compared with controls it can be observed that, (a) at low insulin concentrations insulin binding is increased and insulin effectiveness in stimulating glucose transport and metabolism is enhanced; (b) biological responses to maximally effective insulin concentrations are either unaltered or slightly increased; (c) basal rates of glucose transport and metabolism are essentially unaltered. These results indicate that in insulinopenic states soleus muscle is not insulin resistant in vitro but is hypersensitive to low concentrations of insulin, and normally responsive to maximally effective doses of the hormone.  相似文献   

13.
Prevention of fat-induced insulin resistance by salicylate   总被引:49,自引:0,他引:49  
Insulin resistance is a major factor in the pathogenesis of type 2 diabetes and may involve fat-induced activation of a serine kinase cascade involving IKK-beta. To test this hypothesis, we first examined insulin action and signaling in awake rats during hyperinsulinemic-euglycemic clamps after a lipid infusion with or without pretreatment with salicylate, a known inhibitor of IKK-beta. Whole-body glucose uptake and metabolism were estimated using [3-(3)H]glucose infusion, and glucose uptake in individual tissues was estimated using [1-(14)C]2-deoxyglucose injection during the clamp. Here we show that lipid infusion decreased insulin-stimulated glucose uptake and activation of IRS-1-associated PI 3-kinase in skeletal muscle but that salicylate pretreatment prevented these lipid-induced effects. To examine the mechanism of salicylate action, we studied the effects of lipid infusion on insulin action and signaling during the clamp in awake mice lacking IKK-beta. Unlike the response in wild-type mice, IKK-beta knockout mice did not exhibit altered skeletal muscle insulin signaling and action following lipid infusion. In summary, high-dose salicylate and inactivation of IKK-beta prevent fat-induced insulin resistance in skeletal muscle by blocking fat-induced defects in insulin signaling and action and represent a potentially novel class of therapeutic agents for type 2 diabetes.  相似文献   

14.
Physical exercise promotes glucose uptake into skeletal muscle and makes the working muscles more sensitive to insulin. To understand the role of insulin receptor (IR) signaling in these responses, we studied the effects of exercise and insulin on skeletal muscle glucose metabolism and insulin signaling in mice lacking insulin receptors specifically in muscle. Muscle-specific insulin receptor knockout (MIRKO) mice had normal resting 2-deoxy-glucose (2DG) uptake in soleus muscles but had no significant response to insulin. Despite this, MIRKO mice displayed normal exercise-stimulated 2DG uptake and a normal synergistic activation of muscle 2DG uptake with the combination of exercise plus insulin. Glycogen content and glycogen synthase activity in resting muscle were normal in MIRKO mice, and exercise, but not insulin, increased glycogen synthase activity. Insulin, exercise, and the combination of exercise plus insulin did not increase IR tyrosine phosphorylation or phosphatidylinositol 3-kinase activity in MIRKO muscle. In contrast, insulin alone produced a small activation of Akt and glycogen synthase kinase-3 in MIRKO mice, and prior exercise markedly enhanced this insulin effect. In conclusion, normal expression of muscle insulin receptors is not needed for the exercise-mediated increase in glucose uptake and glycogen synthase activity in vivo. The synergistic activation of glucose transport with exercise plus insulin is retained in MIRKO mice, suggesting a phenomenon mediated by nonmuscle cells or by downstream signaling events.  相似文献   

15.
We examined insulin's effects on glucose transport and on subcellular transporter distribution in isolated human omental adipocytes of various sizes. Insulin stimulated 3-O-methylglucose transport by twofold in small cells, while a smaller and insignificant effect was measured in large cells. In the small cells, basal concentrations of glucose transporters were 2.9 and 17.2 pmol/mg membrane protein in the plasma and the low density microsomal membranes, respectively. Increasing cell size was associated with a 50% decrease in the concentration of transporters in each fraction, with no change in their total number per cell. Insulin stimulated the translocation of transporters from the intracellular pool to the plasma membranes, irrespective of cell size. Thus, insulin resistance at the postreceptor level, observed in human obesity, may be associated with a relative depletion of total transporters per cell together with a reduction in their intrinsic activity at the plasma membrane level.  相似文献   

16.
Chronic insulin therapy improves but does not restore impaired insulin-mediated muscle glucose uptake in human diabetes or muscle glucose uptake, transport, and transporter translocation in streptozocin diabetic rats. To determine whether this inability is due to inadequate insulin replacement, we studied fasted streptozocin-induced diabetic Lewis rats either untreated or after islet transplantation under the kidney capsule. Plasma glucose was increased in untreated diabetics and normalized by the islet transplantation (110 +/- 5, 452 +/- 9, and 102 +/- 3 mg/dl in controls, untreated diabetics, and transplanted diabetics, respectively). Plasma membrane and intracellular microsomal membrane vesicles were prepared from hindlimb skeletal muscle of basal and maximally insulin-stimulated rats. Islet transplantation normalized plasma membrane carrier-mediated glucose transport Vmax, plasma membrane glucose transporter content, and insulin-induced transporter translocation. There were no differences in transporter intrinsic activity (Vmax/Ro) among the three groups. Microsomal membrane GLUT4 content was reduced by 30% in untreated diabetic rats and normal in transplanted diabetics, whereas the insulin-induced changes in microsomal membrane GLUT4 content were quantitatively similar in the three groups. There were no differences in plasma membrane GLUT1 among the groups and between basal and insulin stimulated states. Microsomal membrane GLUT1 content was increased 60% in untreated diabetics and normalized by the transplantation. In conclusion, an adequate insulin delivery in the peripheral circulation, obtained by islet transplantation, fully restores the muscle glucose transport system to normal in streptozocin diabetic rats.  相似文献   

17.
Insulin increases capillary recruitment in vivo and impairment of this may contribute to muscle insulin resistance by limiting either insulin or glucose delivery. In the present study, the effect of progressively decreased rat muscle perfusion on insulin action using graded occlusion with MS (microspheres; 15 mum in diameter) was examined. EC (energy charge), PCr/Cr (phosphocreatine/creatine ratio), AMPK (AMP-activated protein kinase) phosphorylation on Thr(172) (P-AMPKalpha/total AMPK), oxygen uptake, nutritive capacity, 2-deoxyglucose uptake, Akt phosphorylation on Ser(473) (P-Akt/total Akt) and muscle 2-deoxyglucose uptake were determined. Arterial injection of MS (0, 9, 15 and 30 x 10(6) MS/15 g of hindlimb muscle, as a bolus) into the pump-perfused (0.5 ml x min(-1) x g(-1) of wet weight) rat hindlimb led to increased pressure (-0.5+/-0.8, 15.9+/-2.1, 28.7+/-4.6 and 60.3+/-9.4 mmHg respectively) with minimal changes in oxygen uptake. Nutritive capacity was decreased from 10.6+/-1.0 to 3.8+/-0.9 micromol x g(-1) of muscle x h(-1) (P<0.05) with 30 x 10(6) MS. EC was unchanged, but PCr/Cr was decreased dose-dependently to 61% of basal with 30 x 10(6) MS. Insulin-mediated increases in P-Akt/total Akt decreased from 2.15+/-0.35 to 1.41+/-0.23 (P<0.05) and muscle 2-deoxyglucose uptake decreased from 130+/-19 to 80+/-12 microg x min(-1) x g(-1) of dry weight (P<0.05) with 15 x 10(6) MS; basal P-AMPKalpha in the absence of insulin was increased, but basal P-Akt/total Akt and muscle 2-deoxyglucose uptake were unaffected. In conclusion, partial occlusion of the hindlimb muscle has no effect on basal glucose uptake and marginally impacts on oxygen uptake, but markedly impairs insulin delivery to muscle and, thus, insulin-mediated Akt phosphorylation and glucose uptake.  相似文献   

18.
The effect of insulinopenic diabetes on the expression of glucose transporters in the small intestine was investigated. Enterocytes were sequentially isolated from jejunum and ileum of normal fed rats, streptozotocin-diabetic rats, and diabetic rats treated with insulin. Facilitative glucose transporter (GLUT) 2, GLUT5, and sodium-dependent glucose transporter 1 protein content was increased from 1.5- to 6-fold in enterocytes isolated from diabetic animals in both jejunum and ileum. Insulin was able to reverse the increase in transporter protein expression seen after induction of diabetes. There was a four- to eightfold increase in the amount of enterocyte glucose transporter mRNA after diabetes with greater changes in sodium-dependent glucose transporter 1 and GLUT2 than in GLUT5 levels. In situ hybridization showed that after the induction of diabetes there was new hybridization in lower villus and crypt enterocytes that was reversed by insulin treatment. Thus, the increase in total hexose transport caused by diabetes is due to a premature expression of hexose transporters by enterocytes along the crypt-villus axis, causing a cumulative increase in enterocyte transporter protein during maturation. These changes are likely to represent an adaptive response by the organism to increase nutrient absorption in a perceived state of tissue starvation. These adaptive changes may lead to exacerbation of hyperglycemia in uncontrolled diabetes.  相似文献   

19.
Role of the glucosamine pathway in fat-induced insulin resistance.   总被引:4,自引:3,他引:4       下载免费PDF全文
To examine whether the hexosamine biosynthetic pathway might play a role in fat-induced insulin resistance, we monitored the effects of prolonged elevations in FFA availability both on skeletal muscle levels of UDP-N-acetyl-hexosamines and on peripheral glucose disposal during 7-h euglycemic-hyperinsulinemic (approximately 500 microU/ml) clamp studies. When the insulin-induced decrease in the plasma FFA levels (to approximately 0.3 mM) was prevented by infusion of a lipid emulsion in 15 conscious rats (plasma FFA approximately 1.4 mM), glucose uptake (5-7 h = 32.5+/-1.7 vs 0-2 h = 45.2+/-2.8 mg/kg per min; P < 0.01) and glycogen synthesis (P < 0.01) were markedly decreased. During lipid infusion, muscle UDP-N-acetyl-glucosamine (UDP-GlcNAc) increased by twofold (to 53.4+/-1.1 at 3 h and to 55.5+/-1.1 nmol/gram at 7 h vs 20.4+/-1.7 at 0 h, P < 0.01) while glucose-6-phosphate (Glc-6-P) levels were increased at 3 h (475+/-49 nmol/gram) and decreased at 7 h (133+/-7 vs 337+/-28 nmol/gram at 0 h, P < 0.01). To discern whether such an increase in the skeletal muscle UDP-GlcNAc concentration could account for the development of insulin resistance, we generated similar increases in muscle UDP-GlcNAc using three alternate experimental approaches. Euglycemic clamps were performed after prolonged hyperglycemia (18 mM, n = 10), or increased availability of either glucosamine (3 micromol/kg per min; n = 10) or uridine (30 micromol/kg per min; n = 4). These conditions all resulted in very similar increases in the skeletal muscle UDP-GlcNAc (to approximately 55 nmol/gram) and markedly impaired glucose uptake and glycogen synthesis. Thus, fat-induced insulin resistance is associated with: (a) decreased skeletal muscle Glc-6-P levels indicating defective transport/phosphorylation of glucose; (b) marked accumulation of the endproducts of the hexosamine biosynthetic pathway preceding the onset of insulin resistance. Most important, the same degree of insulin resistance can be reproduced in the absence of increased FFA availability by a similar increase in skeletal muscle UDP-N-acetyl-hexosamines. In conclusion, our results support the hypothesis that increased FFA availability induces skeletal muscle insulin resistance by increasing the flux of fructose-6-phosphate into the hexosamine pathway.  相似文献   

20.
Insulin resistance plays a primary role in the development of type 2 diabetes and may be related to alterations in fat metabolism. Recent studies have suggested that local accumulation of fat metabolites inside skeletal muscle may activate a serine kinase cascade involving protein kinase C-theta (PKC-theta), leading to defects in insulin signaling and glucose transport in skeletal muscle. To test this hypothesis, we examined whether mice with inactivation of PKC-theta are protected from fat-induced insulin resistance in skeletal muscle. Skeletal muscle and hepatic insulin action as assessed during hyperinsulinemic-euglycemic clamps did not differ between WT and PKC-theta KO mice following saline infusion. A 5-hour lipid infusion decreased insulin-stimulated skeletal muscle glucose uptake in the WT mice that was associated with 40-50% decreases in insulin-stimulated tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and IRS-1-associated PI3K activity. In contrast, PKC-theta inactivation prevented fat-induced defects in insulin signaling and glucose transport in skeletal muscle. In conclusion, our findings demonstrate that PKC-theta is a crucial component mediating fat-induced insulin resistance in skeletal muscle and suggest that PKC-theta is a potential therapeutic target for the treatment of type 2 diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号