首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A major attraction of voxel-based morphometry (VBM) is that it allows researchers to explore large datasets with minimal human intervention. However, the validity and sensitivity of the Statistical Parametric Mapping (SPM2) approach to VBM are the subject of considerable debate. We visually inspected the SPM2 gray matter segmentations for 101 research participants and found a gross inclusion of non-brain tissue surrounding the entire brain as gray matter in five subjects and focal areas bordering the brain in which non-brain tissue was classified as gray matter in many other subjects. We also found many areas in which the cortical gray matter was incorrectly excluded from the segmentation of the brain. The major source of these errors was the misregistration of individual brain images with the reference T1-weighted brain template. These errors could be eliminated if SPM2 operated on images from which non-brain tissues (scalp, skull, and meninges) are removed (brain-extracted images). We developed a modified SPM2 processing pipeline that used brain-extracted images as inputs to test this hypothesis. We describe the modifications to the SPM2 pipeline that allow analysis of brain-extracted inputs. Using brain-extracted inputs eliminated the non-brain matter inclusions and the cortical gray matter exclusions noted above, reducing the residual mean square errors (RMSEs, the error term of the SPM2 statistical analyses) by over 30%. We show how this reduction in the RMSEs profoundly affects power analyses. SPM2 analyses of brain-extracted images may require sample sizes only half as great as analyses of non-brain-extracted images.  相似文献   

2.
目的 介绍一种动态模糊聚类算法并利用该算法对磁共振图像进行分割研究。方法 首先对磁共振颅脑图像进行预处理去掉颅骨和肌肉等非脑组织,只保留大脑组织,然后利用模糊K- 均值聚类算法计算脑白质、脑灰质和脑脊液的模糊类属函数。结果 模糊K- 均值聚类算法能很好地分割出磁共振颅脑图像中的灰质、白质和脑脊液。结论 利用模糊K- 均值聚类算法分割磁共振颅脑图像能获得较好的分割效果。  相似文献   

3.
Zhu C  Jiang T 《NeuroImage》2003,18(3):685-696
A local image model is proposed to eliminate the adverse impact of both artificial and inherent intensity inhomogeneities in magnetic resonance imaging on intensity-based image segmentation methods. The estimation and correction procedures for intensity inhomogeneities are no longer indispensable because the highly convoluted spatial distribution of different tissues in the brain is taken into consideration. On the basis of the local image model, multicontext fuzzy clustering (MCFC) is proposed for classifying 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid automatically. In MCFC, multiple clustering contexts are generated for each pixel, and fuzzy clustering is independently performed in each context to calculate the degree of membership of a pixel to each tissue class. To maintain the statistical reliability and spatial continuity of membership distributions, a fusion strategy is adopted to integrate the clustering outcomes from different contexts. The fusion result is taken as the final membership value of the pixel. Experimental results on both real MR images and simulated volumetric MR data show that MCFC outperforms the classic fuzzy c-means (FCM) as well as other segmentation methods that deal with intensity inhomogeneities.  相似文献   

4.
Altaye M  Holland SK  Wilke M  Gaser C 《NeuroImage》2008,43(4):721-730
Spatial normalization and segmentation of infant brain MRI data based on adult or pediatric reference data may not be appropriate due to the developmental differences between the infant input data and the reference data. In this study we have constructed infant templates and a priori brain tissue probability maps based on the MR brain image data from 76 infants ranging in age from 9 to 15 months. We employed two processing strategies to construct the infant template and a priori data: one processed with and one without using a priori data in the segmentation step. Using the templates we constructed, comparisons between the adult templates and the new infant templates are presented. Tissue distribution differences are apparent between the infant and adult template, particularly in the gray matter (GM) maps. The infant a priori information classifies brain tissue as GM with higher probability than adult data, at the cost of white matter (WM), which presents with lower probability when compared to adult data. The differences are more pronounced in the frontal regions and in the cingulate gyrus. Similar differences are also observed when the infant data is compared to a pediatric (age 5 to 18) template. The two-pass segmentation approach taken here for infant T1W brain images has provided high quality tissue probability maps for GM, WM, and CSF, in infant brain images. These templates may be used as prior probability distributions for segmentation and normalization; a key to improving the accuracy of these procedures in special populations.  相似文献   

5.
目的利用期望值最大化方法进行磁共振图像的人脑组织分割。方法在分析当前常用的医学图像分割方法的基础上,提出一种基于统计理论的期望值最大化分割方法,并给出了相应的理论算法模型和实现步骤,最后用Visual C 6.0编程,并对磁共振大脑图像进行实验,并与应用SPM软件对同一幅图像的分割结果进行分析比较。结果本文分割方法与SPM软件的分割结果非常接近,大脑灰质、白质、脑脊液等组织之间边界清晰,总体不确定性较小。结论本文分割方法切实可行,分割效果较好,为进一步的磁共振图像分析和疾病研究提供了一种有效工具。  相似文献   

6.
The segmentation of MR images of the neonatal brain is an essential step in the study and evaluation of infant brain development. State-of-the-art methods for adult brain MRI segmentation are not applicable to the neonatal brain, due to large differences in structure and tissue properties between newborn and adult brains. Existing newborn brain MRI segmentation methods either rely on manual interaction or require the use of atlases or templates, which unavoidably introduces a bias of the results towards the population that was used to derive the atlases. We propose a different approach for the segmentation of neonatal brain MRI, based on the infusion of high-level brain morphology knowledge, regarding relative tissue location, connectivity and structure. Our method does not require manual interaction, or the use of an atlas, and the generality of its priors makes it applicable to different neonatal populations, while avoiding atlas-related bias. The proposed algorithm segments the brain both globally (intracranial cavity, cerebellum, brainstem and the two hemispheres) and at tissue level (cortical and subcortical gray matter, myelinated and unmyelinated white matter, and cerebrospinal fluid). We validate our algorithm through visual inspection by medical experts, as well as by quantitative comparisons that demonstrate good agreement with expert manual segmentations. The algorithm’s robustness is verified by testing on variable quality images acquired on different machines, and on subjects with variable anatomy (enlarged ventricles, preterm- vs. term-born).  相似文献   

7.
A simple automatic procedure for segmentation of gray and white matter in high resolution 1.5T T1-weighted MR human brain images was developed and validated. The algorithm is based on histogram shape analysis of MR images that were corrected for scanner nonuniformity. Calibration and validation was done on a set of 80 MR images of human brains. The automatic method's values for the gray and white matter volumes were compared with the values from thresholds set twice by the best three of six raters. The automatic procedure was shown to perform as good as the best rater, where the average result of the best three raters was taken as reference. The method was also compared with two other histogram-based threshold methods, which yielded comparable results. The conclusion of the study thus is that automated threshold based methods can separate gray and white matter from MR brain images as reliably as human raters using a thresholding procedure.  相似文献   

8.
Obtaining validation data and comparison metrics for segmentation of magnetic resonance images (MRI) are difficult tasks due to the lack of reliable ground truth. This problem is even more evident for images presenting pathology, which can both alter tissue appearance through infiltration and cause geometric distortions. Systems for generating synthetic images with user-defined degradation by noise and intensity inhomogeneity offer the possibility for testing and comparison of segmentation methods. Such systems do not yet offer simulation of sufficiently realistic looking pathology. This paper presents a system that combines physical and statistical modeling to generate synthetic multi-modal 3D brain MRI with tumor and edema, along with the underlying anatomical ground truth, Main emphasis is placed on simulation of the major effects known for tumor MRI, such as contrast enhancement, local distortion of healthy tissue, infiltrating edema adjacent to tumors, destruction and deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and pathology. The new method synthesizes pathology in multi-modal MRI and diffusion tensor imaging (DTI) by simulating mass effect, warping and destruction of white matter fibers, and infiltration of brain tissues by tumor cells. We generate synthetic contrast enhanced MR images by simulating the accumulation of contrast agent within the brain. The appearance of the the brain tissue and tumor in MRI is simulated by synthesizing texture images from real MR images. The proposed method is able to generate synthetic ground truth and synthesized MR images with tumor and edema that exhibit comparable segmentation challenges to real tumor MRI. Such image data sets will find use in segmentation reliability studies, comparison and validation of different segmentation methods, training and teaching, or even in evaluating standards for tumor size like the RECIST criteria (response evaluation criteria in solid tumors).  相似文献   

9.
Liu T  Li H  Wong K  Tarokh A  Guo L  Wong ST 《NeuroImage》2007,38(1):114-123
We present a method for automated brain tissue segmentation based on the multi-channel fusion of diffusion tensor imaging (DTI) data. The method is motivated by the evidence that independent tissue segmentation based on DTI parametric images provides complementary information of tissue contrast to the tissue segmentation based on structural MRI data. This has important applications in defining accurate tissue maps when fusing structural data with diffusion data. In the absence of structural data, tissue segmentation based on DTI data provides an alternative means to obtain brain tissue segmentation. Our approach to the tissue segmentation based on DTI data is to classify the brain into two compartments by utilizing the tissue contrast existing in a single channel. Specifically, because the apparent diffusion coefficient (ADC) values in the cerebrospinal fluid (CSF) are more than twice that of gray matter (GM) and white matter (WM), we use ADC images to distinguish CSF and non-CSF tissues. Additionally, fractional anisotropy (FA) images are used to separate WM from non-WM tissues, as highly directional white matter structures have much larger fractional anisotropy values. Moreover, other channels to separate tissue are explored, such as eigenvalues of the tensor, relative anisotropy (RA), and volume ratio (VR). We developed an approach based on the Simultaneous Truth and Performance Level Estimation (STAPLE) algorithm that combines these two-class maps to obtain a complete tissue segmentation map of CSF, GM, and WM. Evaluations are provided to demonstrate the performance of our approach. Experimental results of applying this approach to brain tissue segmentation and deformable registration of DTI data and spoiled gradient-echo (SPGR) data are also provided.  相似文献   

10.
Vovk U  Pernus F  Likar B 《NeuroImage》2006,32(1):54-61
Intensity inhomogeneity in MR images is an undesired phenomenon, which often hampers different steps of quantitative image analysis such as segmentation or registration. In this paper, we propose a novel fully automated method for retrospective correction of intensity inhomogeneity. The basic assumption is that inhomogeneity correction could be improved by integrating spatial and intensity information from multiple MR channels, i.e., T1, T2, and PD weighted images. Intensity inhomogeneities of such multispectral images are removed simultaneously in a four-step iterative procedure. First, the probability distribution of image intensities and corresponding spatial features is calculated. In the second step, intensity correction forces that tend to minimize joint entropy of multispectral image are estimated for all image voxels. Third, independent inhomogeneity correction fields are obtained for each channel by regularization and normalization of voxel forces, and last, corresponding partial inhomogeneity corrections are performed separately for each channel. The method was quantitatively evaluated on simulated and real MR brain images and compared to three other methods.  相似文献   

11.
We propose a framework for the robust and fully-automatic segmentation of magnetic resonance (MR) brain images called “Multi-Atlas Label Propagation with Expectation–Maximisation based refinement” (MALP-EM). The presented approach is based on a robust registration approach (MAPER), highly performant label fusion (joint label fusion) and intensity-based label refinement using EM. We further adapt this framework to be applicable for the segmentation of brain images with gross changes in anatomy. We propose to account for consistent registration errors by relaxing anatomical priors obtained by multi-atlas propagation and a weighting scheme to locally combine anatomical atlas priors and intensity-refined posterior probabilities. The method is evaluated on a benchmark dataset used in a recent MICCAI segmentation challenge. In this context we show that MALP-EM is competitive for the segmentation of MR brain scans of healthy adults when compared to state-of-the-art automatic labelling techniques. To demonstrate the versatility of the proposed approach, we employed MALP-EM to segment 125 MR brain images into 134 regions from subjects who had sustained traumatic brain injury (TBI). We employ a protocol to assess segmentation quality if no manual reference labels are available. Based on this protocol, three independent, blinded raters confirmed on 13 MR brain scans with pathology that MALP-EM is superior to established label fusion techniques. We visually confirm the robustness of our segmentation approach on the full cohort and investigate the potential of derived symmetry-based imaging biomarkers that correlate with and predict clinically relevant variables in TBI such as the Marshall Classification (MC) or Glasgow Outcome Score (GOS). Specifically, we show that we are able to stratify TBI patients with favourable outcomes from non-favourable outcomes with 64.7% accuracy using acute-phase MR images and 66.8% accuracy using follow-up MR images. Furthermore, we are able to differentiate subjects with the presence of a mass lesion or midline shift from those with diffuse brain injury with 76.0% accuracy. The thalamus, putamen, pallidum and hippocampus are particularly affected. Their involvement predicts TBI disease progression.  相似文献   

12.
目的 探讨基于自动分割技术联合基于体素的形态学(VBM)观察帕金森病(PD)患者全脑灰质异常区域及分布特征的应用价值。方法 基于自动分割技术,应用FIRST工具对29例PD患者(PD组)及30名健康人(对照组)的T1图像皮层下灰质结构精确分割,对比两组各灰质结构体积。并应用VBM方法对两组脑灰质图像进行比较。结果 两组右侧壳核皮层下灰质体积差异有统计学意义(t=10.201,P<0.05)。与对照组比较,PD组脑灰质体积(右侧初级运动皮层,双侧额叶、边缘叶、部分左侧小脑后叶、右侧小脑前叶、右侧小脑后叶、右侧颞叶、顶叶、壳核及左侧枕叶)广泛减少,部分左侧小脑后叶体积增加,两侧半球脑体积缺失不对称(右侧大于左侧)。结论 通过FIRST工具可精确分割并直接计算皮层下灰质结构体积,应用VBM技术可定量分析脑结构形态学异常;二者结合可较全面地表现PD脑灰质体积广泛减少的形态学特点。  相似文献   

13.
In the study of early brain development, tissue segmentation of neonatal brain MR images remains challenging because of the insufficient image quality due to the properties of developing tissues. Among various brain tissue segmentation algorithms, atlas-based brain image segmentation can potentially achieve good segmentation results on neonatal brain images. However, their performances rely on both the quality of the atlas and the spatial correspondence between the atlas and the to-be-segmented image. Moreover, it is difficult to build a population atlas for neonates due to the requirement of a large set of tissue-segmented neonatal brain images. To combat these obstacles, we present a longitudinal neonatal brain image segmentation framework by taking advantage of the longitudinal data acquired at late time-point to build a subject-specific tissue probabilistic atlas. Specifically, tissue segmentation of the neonatal brain is formulated as two iterative steps of bias correction and probabilistic-atlas-based tissue segmentation, along with the longitudinal atlas reconstructed by the late time image of the same subject. The proposed method has been evaluated qualitatively through visual inspection and quantitatively by comparing with manual delineations and two population-atlas-based segmentation methods. Experimental results show that the utilization of a subject-specific probabilistic atlas can substantially improve tissue segmentation of neonatal brain images.  相似文献   

14.
A robust method for extraction and automatic segmentation of brain images   总被引:10,自引:0,他引:10  
A new protocol is introduced for brain extraction and automatic tissue segmentation of MR images. For the brain extraction algorithm, proton density and T2-weighted images are used to generate a brain mask encompassing the full intracranial cavity. Segmentation of brain tissues into gray matter (GM), white matter (WM), and cerebral spinal fluid (CSF) is accomplished on a T1-weighted image after applying the brain mask. The fully automatic segmentation algorithm is histogram-based and uses the Expectation Maximization algorithm to model a four-Gaussian mixture for both global and local histograms. The means of the local Gaussians for GM, WM, and CSF are used to set local thresholds for tissue classification. Reproducibility of the extraction procedure was excellent, with average variation in intracranial capacity (TIC) of 0.13 and 0.66% TIC in 12 healthy normal and 33 Alzheimer brains, respectively. Repeatability of the segmentation algorithm, tested on healthy normal images, indicated scan-rescan differences in global tissue volumes of less than 0.30% TIC. Reproducibility at the regional level was established by comparing segmentation results within the 12 major Talairach subdivisions. Accuracy of the algorithm was tested on a digital brain phantom, and errors were less than 1% of the phantom volume. Maximal Type I and Type II classification errors were low, ranging between 2.2 and 4.3% of phantom volume. The algorithm was also insensitive to variation in parameter initialization values. The protocol is robust, fast, and its success in segmenting normal as well as diseased brains makes it an attractive clinical application.  相似文献   

15.
Hyde DE  Duffy FH  Warfield SK 《NeuroImage》2012,62(3):2161-2170
Electromagnetic source localization (ESL) provides non-invasive evaluation of brain electrical activity for neurology research and clinical evaluation of neurological disorders such as epilepsy. Accurate ESL results are dependent upon the use of patient specific models of bioelectric conductivity. While the effects of anisotropic conductivities in the skull and white matter have been previously studied, little attention has been paid to the accurate modeling of the highly conductive cerebrospinal fluid (CSF) region. This study examines the effect that partial volume errors in CSF segmentations have upon the ESL bioelectric model. These errors arise when segmenting sulcal channels whose widths are similar to the resolution of the magnetic resonance (MR) images used for segmentation, as some voxels containing both CSF and gray matter cannot be definitively assigned a single label. These problems, particularly prevalent in pediatric populations, make voxelwise segmentation of CSF compartments a difficult problem. Given the high conductivity of CSF, errors in modeling this region may result in large errors in the bioelectric model. We introduce here a new approach for using estimates of partial volume fractions in the construction of patient specific bioelectric models. In regions where partial volume errors are expected, we use a layered gray matter-CSF model to construct equivalent anisotropic conductivity tensors. This allows us to account for the inhomogeneity of the tissue within each voxel. Using this approach, we are able to reduce the error in the resulting bioelectric models, as evaluated against a known high resolution model. Additionally, this model permits us to evaluate the effects of sulci modeling errors and quantify the mean error as a function of the change in sulci width. Our results suggest that both under and over-estimation of the CSF region leads to significant errors in the bioelectric model. While a model with fixed partial volume fraction is able to reduce this error, we see the largest improvement when using voxel specific partial volume estimates. Our cross-model analyses suggest that an approximately linear relationship exists between sulci error and the error in the resulting bioelectric model. Given the difficulty of accurately segmenting narrow sulcal channels, this suggests that our approach may be capable of improving the accuracy of patient specific bioelectric models by several percent, while introducing only minimal additional computational requirements.  相似文献   

16.
The segmentation of brain tissue from nonbrain tissue in magnetic resonance (MR) images, commonly referred to as skull stripping, is an important image processing step in many neuroimage studies. A new mathematical algorithm, a model-based level set (MLS), was developed for controlling the evolution of the zero level curve that is implicitly embedded in the level set function. The evolution of the curve was controlled using two terms in the level set equation, whose values represented the forces that determined the speed of the evolving curve. The first force was derived from the mean curvature of the curve, and the second was designed to model the intensity characteristics of the cortex in MR images. The combination of these forces in a level set framework pushed or pulled the curve toward the brain surface. Quantitative evaluation of the MLS algorithm was performed by comparing the results of the MLS algorithm to those obtained using expert segmentation in 29 sets of pediatric brain MR images and 20 sets of young adult MR images. Another 48 sets of elderly adult MR images were used for qualitatively evaluating the algorithm. The MLS algorithm was also compared to two existing methods, the brain extraction tool (BET) and the brain surface extractor (BSE), using the data from the Internet brain segmentation repository (IBSR). The MLS algorithm provides robust skull-stripping results, making it a promising tool for use in large, multi-institutional, population-based neuroimaging studies.  相似文献   

17.
Cerebral abnormalities such as white matter hyperintensity (WMH), cortical infarct (CI), and lacunar infarct (LI) are of clinical importance and frequently present in patients with stroke and dementia. Up to date, there are limited algorithms available to automatically delineate these cerebral abnormalities partially due to their complex appearance in MR images. In this paper, we describe an automated multi-stage segmentation approach for labeling the WMH, CI, and LI using multi-modal MR images. We first automatically segment brain tissues (white matter, gray matter, and CSF) based on the T1-weighted image and then identify hyperintense voxels based on the fluid attenuated inversion recovery (FLAIR) image. We finally label the WMH, CI, and LI based on the T1-weighted, T2-weighted, and FLAIR images. The segmentation accuracy is evaluated using a community-based sample of 272 old adults. Our results show that the automated segmentation of the WMH, CI, and LI is comparable with manual labeling in terms of spatial location, volume, and the number of lacunes. Additionally, the WMH volume is highly correlated with the visual grading score based on the Age-Related White Matter Changes (ARWMC) protocol. The evaluations against the manual labeling and ARWMC visual grading suggest that our algorithm provides reasonable segmentation accuracy for the WMH, CI, and LI.  相似文献   

18.
A fully automated brain tissue segmentation method is optimized and extended with white matter lesion segmentation. Cerebrospinal fluid (CSF), gray matter (GM) and white matter (WM) are segmented by an atlas-based k-nearest neighbor classifier on multi-modal magnetic resonance imaging data. This classifier is trained by registering brain atlases to the subject. The resulting GM segmentation is used to automatically find a white matter lesion (WML) threshold in a fluid-attenuated inversion recovery scan. False positive lesions are removed by ensuring that the lesions are within the white matter. The method was visually validated on a set of 209 subjects. No segmentation errors were found in 98% of the brain tissue segmentations and 97% of the WML segmentations. A quantitative evaluation using manual segmentations was performed on a subset of 6 subjects for CSF, GM and WM segmentation and an additional 14 for the WML segmentations. The results indicated that the automatic segmentation accuracy is close to the interobserver variability of manual segmentations.  相似文献   

19.
Extraction of the brain-i.e. cerebrum, cerebellum, and brain stem-from T1-weighted structural magnetic resonance images is an important initial step in neuroimage analysis. Although automatic algorithms are available, their inconsistent handling of the cortical mantle often requires manual interaction, thereby reducing their effectiveness. This paper presents a fully automated brain extraction algorithm that incorporates elastic registration, tissue segmentation, and morphological techniques which are combined by a watershed principle, while paying special attention to the preservation of the boundary between the gray matter and the cerebrospinal fluid. The approach was evaluated by comparison to a manual rater, and compared to several other leading algorithms on a publically available data set of brain images using the Dice coefficient and containment index as performance metrics. The qualitative and quantitative impact of this initial step on subsequent cortical surface generation is also presented. Our experiments demonstrate that our approach is quantitatively better than six other leading algorithms (with statistical significance on modern T1-weighted MR data). We also validated the robustness of the algorithm on a very large data set of over one thousand subjects, and showed that it can replace an experienced manual rater as preprocessing for a cortical surface extraction algorithm with statistically insignificant differences in cortical surface position.  相似文献   

20.
We describe and evaluate a practical, automated algorithm based on local statistical mixture modeling for segmenting single-channel, T1-weighted volumetric magnetic resonance images of the brain into gray matter, white matter, and cerebrospinal fluid. We employed a stereological sampling method to assess, prospectively, the performance of the method with respect to human experts on 10 normal T1-weighted brain scans acquired with a three-dimensional gradient echo pulse sequence. The overall kappa statistic for the concordance of the algorithm with the human experts was 0.806, while that among raters, excluding the algorithm, was 0.802. The algorithm had better agreement with the modal expert decision (kappa = 0.878). The algorithm could not be distinguished from the experts by this measure. We also validated the algorithm on a simulated MR scan of a digital brain phantom with known tissue composition. Global gray matter and white matter errors were 1% and <1%, respectively, and correlation coefficients with the underlying tissue model were 0.95 for gray matter, 0.98 for white matter, and 0.95 for cerebrospinal fluid. In both approaches to validation, we evaluated both local and global performance of the algorithm. Human experts generated slightly higher global gray matter proportion estimates on the test brain scans relative to the algorithm (3.7%) and on the simulated MR scan relative to the true tissue model (4.4%). The algorithm underestimated gray in some subcortical nuclei which contain admixed gray and white matter. We demonstrate the reliability of the method on individual 1 NEX data sets of the test subjects, and its insensitivity to the precise values of initial model parameters. The output of this algorithm is suitable for quantifying cerebral cortical tissue, using a commonly performed commercial pulse sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号