首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BACKGROUND: Allergy to grass pollen is typically associated with serum IgE antibodies to group 1 and/or group 5 allergens, and additionally often to one or several less prominent allergens. Most of the grass pollen allergens identified to date have been characterized in detail by molecular, biochemical and immunological methods, timothy grass being one of the most thoroughly studied species. However, a 20-kDa allergen frequently recognized by IgE antibodies from grass pollen allergics has so far escaped cloning and molecular characterization. OBJECTIVE: To clone and characterize the 20 kDa timothy grass pollen allergen Phl p 11. METHODS: Phl p 11 cDNA was cloned by PCR techniques, utilizing N-terminal amino acid sequence obtained from the natural allergen. Phl p 11 was expressed as a soluble fusion protein in Escherichia coli, purified to homogeneity and used for serological analysis and to study Phl p 11 specific induction of histamine release from basophils and skin reactivity in sensitized and control subjects. RESULTS: Phl p 11 cDNA defined an acidic polypeptide of 15.8 kDa with homology to pollen proteins from a variety of plant species and to soybean trypsin inhibitor. The sequence contained one potential site for N-linked glycosylation. Serological analysis revealed that recombinant Phl p 11 shared epitopes for human IgE antibodies with the natural protein and bound serum IgE from 32% of grass pollen-sensitized subjects (n = 184). Purified recombinant Phl p 11 elicited skin reactions and dose-dependent histamine release from basophils of sensitized subjects, but not in non-allergic controls. CONCLUSION: As the first representative of group 11 grass pollen allergens, Phl p 11 has been cloned and produced as a recombinant protein showing allergenic activity. One-third of grass pollen-sensitized subjects showed specific IgE reactivity to recombinant Phl p 11, corresponding in magnitude to a significant proportion of specific IgE to grass pollen extract.  相似文献   

2.
BACKGROUND: Ash, a wind-pollinated tree belonging to the family Oleaceae, is distributed world-wide and has been suggested as a potent allergen source in spring time. OBJECTIVE: The aim of this study was to determine the profile of allergen components in ash pollen in order to refine diagnosis and therapy for patients with sensitivity to ash pollen METHODS: The IgE reactivity profile of 40 ash pollen-allergic patients was determined by immunoblotting. Antibodies raised to purified pollen allergens from tree and grass pollens were used to identify cross-reactive structures in ash pollen extract. IgE immunoblot inhibition studies were performed with recombinant and natural pollen allergens to characterize ash pollen allergens and to determine the degree of cross-reactivity between pollen allergens from ash, olive, birch, grasses and weeds. RESULTS: The allergen profile of ash pollen comprises Fra e 1, a major allergen related to the major olive allergen, Ole e 1, and to group 11 grass pollen allergens, the panallergen profilin, a two EF-hand calcium-binding protein, a pectinesterase-like molecule and an allergen sharing epitopes with group 4 grass pollen allergens. Thus, the relevant allergens of ash are primarily allergens that share epitopes with pollen allergens from other tree, grass and weed species. CONCLUSIONS: Allergic symptoms to ash pollen can be the consequence of sensitization to cross-reactive allergens from other sources. The fact that ash pollen-allergic patients can be discriminated on the basis of their specific IgE reactivity profile to highly or moderately cross-reactive allergens has implications for the selection of appropriate forms of treatment.  相似文献   

3.
BACKGROUND: Almost no information is available regarding the prevalence of IgE-mediated allergies and the disease-eliciting allergens in tropical Africa. OBJECTIVE: To study IgE-mediated allergies and the allergen profile in allergic patients from Zimbabwe. METHODS: The frequency of sensitization to common environmental allergen sources was determined by skin prick testing in 650 allergic patients from Zimbabwe. Fifty representative sera were analysed for IgE reactivity to 20 respiratory and 20 food allergen extracts by multiallergen extract testing. The IgE reactivity profiles to recombinant pollen and mite allergens were compared between grass pollen- and mite-sensitized patients from Zimbabwe and central Europe. Sera from grass pollen-allergic patients were also analysed for IgE reactivity to nitrocellulose-blotted natural timothy grass and Bermuda grass pollen allergens. RESULTS: IgE-mediated allergies were found to be common in Zimbabwe. Similar to the situation in central Europe, mites and grass pollens represented the most prevalent allergen sources. However, the IgE reactivity profiles determined with single recombinant pollen and mite allergens revealed interesting differences between the European and African patients, which most likely reflect the local allergen exposure. CONCLUSIONS: The striking differences regarding sensitization to grass pollen and mite allergens between African and European patients revealed by recombinant allergen-based testing emphasize the need for component-resolved allergy testing to optimize allergy prevention and therapy in different populations.  相似文献   

4.
Grass pollen allergy affects approximately 40% of allergic patients. Subcutaneous allergen immunotherapy (SCIT) is the only allergen‐specific and disease‐modifying treatment available. Currently available therapeutic vaccines for the treatment of grass pollen allergy are based on natural grass pollen extracts which are either made from pollen of one cross‐reactive grass species or from several related grass species. Clinical studies have shown that SCIT performed with timothy grass pollen extract is effective for the treatment of grass pollen allergy. Moreover, it has been demonstrated that recombinant timothy grass pollen allergens contain the majority of relevant epitopes and can be used for SCIT in clinical trials. However, recent in vitro studies have suggested that mixes consisting of allergen extracts from several related grass species may have advantages for SCIT over single allergen extracts. Here, we review current knowledge regarding the disease‐relevant allergens in grass pollen allergy, available clinical studies comparing SCIT with allergen extracts from timothy grass or from mixes of several related grass species of the Pooideae subfamily, in vitro cross‐reactivity studies performed with natural allergen extracts and recombinant allergens and SCIT studies performed with recombinant timothy grass pollen allergens. In vitro and clinical studies performed with natural allergen extracts reveal no relevant advantages of using multiple grass mixes as opposed to single grass pollen extracts. Several studies analysing the molecular composition of natural allergen extracts and the molecular profile of patients' immune responses after SCIT with allergen extracts indicate that the major limitation for the production of a high quality grass pollen vaccine resides in intrinsic features of natural allergen extracts which can only be overcome with recombinant allergen‐based technologies.  相似文献   

5.
BACKGROUND: Most studies on pollen-related food allergy have so far focused on the association of birch/weed pollen allergens and plant food allergy. The aim of this study was to elucidate the allergen spectrum among a group of grass pollen-allergic patients from northern Europe and to relate the results to clinical histories of pollen-related food allergy. METHODS: Fifty-eight grass pollen-allergic patients answered a questionnaire regarding allergy to foods. Blood samples were taken to test IgE-reactivity to a large panel of pollen allergens and pollen- and nonpollen-related food allergens using crude allergen extracts and recombinant and native allergens. RESULTS: Three different groups of grass pollen-allergic patients were identified according to their IgE antibody profile: a grass pollen group only (19%), a grass and tree pollen group (29%) and a grass, tree and compositae (pan-) pollen group (48%). No sensitization to Bet v 1 as well as almost no IgE to plant food was observed in the grass pollen group. In contrast, nearly all patients in the two tree-related groups had IgE to Bet v 1, which reflected the high frequency of adverse reactions to typical birch-related food in these groups. Only four patients belonging to the pan-pollen group displayed IgE to profilin Phl p 12/Bet v 2. Patients in the pan-pollen group reported significantly more symptoms to food allergens compared with patients in the two other groups. The most frequently reported symptom was the oral allergy syndrome. CONCLUSIONS: Sensitization to grass pollen alone is rare among grass pollen-allergic patients from northern Europe. The majority of patients are in addition sensitized to birch (Bet v 1), which seems to be closely related to their pollen-derived food allergy. The study highlights the advantage of using well-defined allergen molecules for the diagnosis of cross-reactivity between pollen and food allergens.  相似文献   

6.
To date, eleven groups of grass pollen allergens eliciting a specific IgE response in atopic individuals have been identified. Groups 1 and 5 allergens are the most critical (major) pollen allergens leading to the sensitization of 90% and 65–85% allergic patients, respectively. Other allergens frequently involved in the IgE response include groups 2/3, 4, 6, 7, 10–13 allergens. Allergens found in various Pooideae exhibit high homology in terms of their amino acid sequence composition, which translates into significant cross-reactivity in terms of antibody (IgE and IgG) as well as T cell responses. Nevertheless, for a given allergen group, there is evidence of both interspecies (i.e. differences in amino acid sequences) and intraspecies (multigenes, post-translational modification, mRNA splicing or editing) molecular variability.  相似文献   

7.
Background Beech and oak pollen are potential allergen sources with a world‐wide distribution. Objective We aimed to characterize the allergen profile of beech and oak pollen and to study cross‐reactivities with birch and grass pollen allergens. Methods Sera from tree pollen‐allergic patients with evidence for beech and oak pollen sensitization from Basel, Switzerland, (n=23) and sera from birch pollen‐allergic patients from Vienna, Austria, (n=26) were compared in immunoblot experiments for IgE reactivity to birch (Betula pendula syn. verrucosa), beech (Fagus sylvatica) and oak (Quercus alba) pollen allergens. Subsequently, beech and oak pollen allergens were characterized by IgE inhibition experiments with purified recombinant and natural allergens and with allergen‐specific antibody probes. Birch‐, beech‐ and oak pollen‐specific IgE levels were determined by ELISA. Results Beech and oak pollen contain allergens that cross‐react with the birch pollen allergens Bet v 1, Bet v 2 and Bet v 4 and with the berberine bridge enzyme‐like allergen Phl p 4 from timothy grass pollen. Sera from Swiss and Austrian patients exhibited similar IgE reactivity profiles to birch, beech and oak pollen extracts. IgE levels to beech and oak pollen allergens were lower than those to birch pollen allergens. Conclusion IgE reactivity to beech pollen is mainly due to cross‐reactivity with birch pollen allergens, and a Phl p 4‐like molecule represented another predominant IgE‐reactive structure in oak pollen. The characterization of beech and oak pollen allergens and their cross‐reactivity is important for the diagnosis and treatment of beech and oak pollen allergy.  相似文献   

8.
Reduction in allergenicity of grass pollen by genetic engineering   总被引:3,自引:0,他引:3  
BACKGROUND: Hay fever and allergic asthma triggered by grass pollen allergens affect approximately 20% of the population in cool temperate climates. Ryegrass is the dominant source of allergens due to its prodigious airborne pollen production. Lol p 5 or group 5 is among the most important and widespread grass pollen allergen because it reacts with IgE antibodies of more than 90% of grass pollen-allergic patients, contains most of the grass pollen-specific IgE epitopes and elicits strong biological responses. Significant efforts have been made in developing diagnostic and therapeutic reagents for designing new and more effective immunotherapeutic strategies for treatment of allergic diseases. An alternative approach to this problem could be to reduce the amount of allergen content in the source plant. METHODS: High velocity microprojectile bombardment was used to genetically engineer ryegrass. Antisense construct targeted to one of major allergen, Lol p 5, was introduced. The expression of antisense RNA was regulated by a pollen-specific promoter. Pollen was analysed for IgE reactivity. RESULTS: Analysis of proteins with allergen-specific monoclonal and polyclonal antibodies did not detect Lol p 5 in the transgenic pollen. The transgenic pollen showed remarkably reduced allergenicity as reflected by low IgE binding capacity of pollen extract as compared to control pollen. The transgenic ryegrass plants in which Lol p 5 gene expression is perturbed showed normal fertile pollen development. CONCLUSIONS: Our studies showed that it is possible to selectively 'switch off' allergen production in pollen of ryegrass demonstrating feasibility of genetic engineering of plants for reduced allergenicity.  相似文献   

9.
More than 100 million individuals exhibit IgE-mediated allergic reactions against Phl p 2, a major allergen from timothy grass pollen. We isolated cDNA coding for three Phl p 2-specific human IgE antibodies from a combinatorial library, which was constructed from lymphocytes of a grass pollen-allergic patient. Recombinant Phl p 2-specific IgE antibody fragments (Fab) recognized a fragment comprising the 64 N-terminal amino acids of Phl p 2 and cross-reacted with group 2 allergens from seven grass species. cDNA coding for the variable regions of one of the IgE Fab were cloned into aplasmid vector expressing the constant region of human IgG(1) to obtain a complete, recombinant Phl p 2-specific human IgG(1). This antibody blocked the binding of grass pollen-allergic patients IgE (n=26; mean inhibition: 58%) to Phl p 2 and caused a 100-fold reduction of Phl p 2-induced basophil histamine release. The recombinant human Phl p 2-specific IgG(1) may be used for environmental allergen detection, for standardization of diagnostic as well as therapeutic grass pollen allergen preparations and for passive therapy of grass pollen allergy.  相似文献   

10.
BACKGROUND: Trees of the family Oleaceae are important allergen sources, with a strongly varying geographic distribution. For example, olive pollen is an important allergen source in Mediterranean countries, whereas ash pollen dominates in Northern and Central Europe and North America. The aim of this study was to compare the profiles of olive and ash pollen allergens and to study the degree of cross-reactivity using populations of allergic patients selectively exposed to olive or ash pollen. METHODS: Olive and ash pollen extracts were analyzed by IgE immunoblotting using sera from Spanish patients highly exposed to olive pollen and Austrian patients without olive but ash pollen exposure. IgE cross-reactivity was studied by qualitative immunoblot inhibition assays and semiquantitative ELISA inhibitions using olive, ash, birch, mugwort, timothy grass pollen extracts and the major olive pollen allergen, Ole e 1. RESULTS: Spanish and Austrian patients exhibited an almost identical IgE-binding profile to olive and ash pollen allergens, with major reactivity directed against Ole e 1, and its homologous ash counterpart, Fra e 1. IgE inhibition experiments demonstrated extensive cross-reactivity between olive and ash pollen allergens. However, whereas cross-reactions between profilins and calcium-binding allergens also occurred between unrelated plant species, cross-reactivity to Ole e 1 was confined to plants belonging to the Oleaceae. CONCLUSIONS: Ole e 1 is a marker allergen for the diagnosis of olive and ash pollen allergy.  相似文献   

11.
BACKGROUND: Determination of the allergen composition of an extract is essential for the improvement of hyposensitization therapy. Surprisingly, although grass pollen extracts have been studied intensively for 20 years, a further major allergen, Phl p 13, was detected recently in timothy grass pollen. OBJECTIVES: We sought to determine the occurrence and importance of group 13 allergens in various grass species and to investigate their proteolytic stability. METHODS: The group 13 allergens were determined by means of 2-dimensional PAGE blotting with patient sera and group 13-specific mAbs. The allergens were isolated chromatographically from several pollen extracts and analyzed by means of microsequencing. Cross-reactivity among various grass species was studied by using Western blots and immunoblot inhibition tests. The stability of the allergens was tested under defined extraction conditions. RESULTS: Group 13 allergens are detectable in all common grasses and show IgE cross-reactivity among them. The allergenic components were identified in the neutral pH range with molecular masses of 50 to 60 kd, and in the case of Phl p 13, maximal binding of the isoforms was observed at 55 kd and at an isoelectric point of 6 to 7.5. Protein sequencing clearly confirms structural identities between different grass species, although individual variations are found. If low-molecular-mass components were depleted by means of gel filtration, a rapid degradation of group 13 allergens was observed. This is in contrast to other pollen allergens described thus far. CONCLUSION: Group 13 allergens are widespread and are major allergens in the grasses. Predicted from their primary structures, these allergens are polygalacturonases. This class of enzymes is already known from microorganisms, and these enzymes are recognized as potential inducers of asthma. Our studies indicate that the group 13 allergens show a considerable microheterogeneity and degradation, especially after depletion of low-molecular-mass components. One has to be aware of this pivotal fact when soluble grass pollen extracts are prepared for diagnostics and hyposensitization therapy.  相似文献   

12.
Whether the modulation of antibody responses can contribute to the improvement of clinical symptoms in patients receiving allergen immunotherapy represents a controversial issue. We have used purified [seven recombinant (r) and one natural] timothy grass pollen allergens as well as recombinant B cell epitope-containing fragments of the major timothy grass pollen allergen, Phl p 1, to investigate humoral immune responses in eight allergic patients receiving grass pollen-specific immunotherapy. We found that the administration of aluminium hydroxide-adsorbed grass pollen extract induced complex changes in allergen/epitope-specific antibody responses: increases in IgG subclass (IgG1, IgG2, IgG4) responses against allergens recognized before the therapy were observed. All eight patients started to mount IgE and IgG4 responses to continuous Phl p 1 epitopes not recognized before the therapy and a de novo induction of IgE antibodies against new allergens was found in one patient. Evidence for a protective role of IgG antibodies specific for continuous Phl p 1 epitopes was provided by the demonstration that preincubation of rPhl p 1 with human serum containing therapy-induced Phl p 1-specific IgG inhibited rPhl p 1-induced histamine release from basophils of a grass pollen-allergic patient. Our finding that immunotherapy induced antibody responses against previously not recognized B cell epitopes indicates the vaccination character of this treatment. The fact that patients started to mount de novo IgE as well as protective IgG responses against epitopes may explain the unpredictability of specific immunotherapy performed with allergen extracts and emphasizes the need for novel forms of component-resolved immunotherapy.  相似文献   

13.
The occurrence of systemic anaphylactic side-effects in the course of allergen-specific immunotherapy has been strongly reduced by the adsorption of allergens to aluminium hydroxide, the most frequently used adjuvant in humans. Using the major timothy grass pollen allergen, Phl p 5b, in its recombinant form for immunization of mice, we demonstrate that carbohydrate-based particles (CBP) exhibit several potential advantages over aluminium-hydroxide as adjuvant for immunotherapy. Similar to alum-bound rPhl p 5b, CBP-bound rPhl p 5b induced a stronger antibody and cytokine response than unbound rPhl p 5b after subcutaneous injection in mice. The antibodies induced by CBP-bound rPhl p 5b, exhibited potentially beneficial activities as they cross-reacted with group 5 allergens from five other grass species and inhibited the binding of grass pollen allergic patients IgE to Phl p 5b. Alum-bound rPhl p 5b induced a preferential allergen-specific Th2-response characterized by high immunoglobulin G1 (IgG1) antibody levels and elevated interleukin (IL)-4 and IL-5 production in cultured splenocytes. By contrast, CBP-bound rPhl p 5b, but not rPhl p 5b alone or coadministered with CBP, induced a mixed allergen-specific T helper 1 (Th1)/Th2 immune response characterized by the additional production of allergen-specific IgG2a/b antibody responses and elevated interferon-gamma production. Conjugation of rPhl p 5b to CBP yielded a stable vaccine formulation with preserved immunogenic features of the allergen and, in contrast to alum, induced no granulomatous tissue reactions. Based on these results, CBP is suggested as a potentially useful adjuvant for specific immunotherapy of IgE-mediated allergies.  相似文献   

14.
BACKGROUND: Polygalacturonases were recently identified as important grass pollen allergens and designated group 13 allergens. The objective of the present study was to investigate the presence of group 13 grass pollen allergens in different grass species, their release and ultrastructural location in dry and hydrated grass pollen. METHODS: Nitrocellulose-blotted allergen extracts from 12 wild and cultivated grass genera were probed with a rabbit antiserum raised against purified recombinant timothy grass pollen allergen, Phl p 13. The release kinetics of Phl p 13 from timothy grass pollen hydrated for 0.5 min to 3 h were analyzed by immunoblotting. Phl p 13 was localized in dry and hydrated grass pollen grains by immunogold field emission scanning and transmission electron microscopy. RESULTS: Group 13 allergens were detected in all 12 wild and cultivated grass genera representing the major subfamilies of the Poaceae. Ultrastructurally, the allergen was located in the wall and in the cytoplasm of timothy grass pollen grains. In the cytoplasm, Phl p 13 was associated with polysaccharide particles and as yet undescribed stacks of microtubule-like structures. After hydration in rain water, pollen grains expel cytoplasmic particles of respirable size containing Phl p 13, which becomes detectable in aqueous supernatants already after 0.5 min. CONCLUSIONS: Group 13 allergens represent one set of marker allergens which specifically occur in pollen of the major grass subfamilies and are rapidly released in association with respirable particles after pollen hydration. They may be considered as environmental markers for grass pollen exposure and group 13-specific IgE antibodies as immunological markers for genuine grass pollen sensitization.  相似文献   

15.
BACKGROUND: The major timothy grass pollen allergen Phl p 1 is one of the most potent and frequently recognized environmental allergens. OBJECTIVE: We sought to study at a molecular and structural level the IgE recognition of Phl p 1 and its relation to allergenic activity. METHODS: Monoclonal human IgE antibody fragments specific for Phl p 1 and group 1 allergens from various grasses were isolated from a combinatorial library made of lymphocytes from patients with grass pollen allergy. Recombinant Phl p 1 fragments and the 3-dimensional structure of Phl p 1 were used to localize the major binding site for the IgE antibodies. A rPhl p 1 fragment containing this binding site was expressed in Escherichia coli, purified, and tested for IgE reactivity and allergenic activity with sera and basophils from patients with grass pollen allergy. RESULTS: Monoclonal antibodies, as well as polyclonal serum IgE, from patients with grass pollen allergy defined a C-terminal fragment of Phl p 1 that represents a sterically oriented portion on the Phl p 1 structure. This Phl p 1 portion bound most of the allergen-specific IgE antibodies and contained the majority of the allergenic activity of Phl p 1. CONCLUSION: IgE recognition of spatially clustered epitopes on allergens might be a general factor determining their allergenic activity. CLINICAL IMPLICATIONS: Geographic distribution of IgE epitopes on an allergen might influence its allergenic activity and hence explain discrepancies between diagnostic test results based on IgE serology and provocation testing. It might also form a basis for the development of low allergenic vaccines.  相似文献   

16.
In an earlier study an allergen from Phleum pratense (timothy) pollen, Phl p V, has been isolated and physicochemically characterized. In this study Phl p V and immunochemically similar components from other grass pollens (group V allergens) have been investigated using immunoelectrophoretic techniques. To study the allergenic importance of the group V allergens, the allergenic compositions of 10 grass pollen extracts were investigated in crossed radioimmunoelectrophoresis (CRIE) using 20 sera from grass pollen-allergic donors. Group V allergens were identified using monospecific rabbit antibodies raised against Phl p V, anti-Phl p V, which react with other group V allergens usually producing dense precipitates in immunoelectrophoresis. In this way group V allergens were identified in eight extracts, and when present the precipitate corresponding to the group V allergen was the dominant IgE binding precipitate. All identified group V allergens bound IgE in at least 17 of the 20 investigated sera. Monospecific rabbit antibodies raised against the group I allergen of Lolium perenne (rye grass), anti-Lol p I, do not precipitate group V allergens, indicating that there are no immunochemical similarities between group I and group V allergens. In SDS-PAGE anti-Phl p V identifies IgE-binding components with molecular weights between 26 and 33 kD. In contrast, anti-Lol p I binds to components of slightly higher molecular weight. Apparently, the group V components are allergens that are physicochemically and immunochemically distinct from group I allergens.  相似文献   

17.
The aim of this review is to show the impact of the use of purified and recombinant allergens to discriminate between co- and cross-sensitization to respiratory allergens. The author describes the evolution of diagnostic tests over the last decades; the tests initially allowed the detection of simultaneously positive cutaneous tests and/or simultaneous positivity of specific IgE to different allergen extracts, but they did not differentiate cross-sensitization from co-sensitization. RAST inhibition studies with crude extracts then established cross-reactivity, but did not identify the cross-reactive allergens involved. Later, immunoblot and CRIE inhibition were able to detect multiple cross-reactive allergens and to assess their physicochemical properties. But it is only since purified and recombinant allergens have been used in the different investigations that identification of cross-reactive allergens has been made possible at a molecular level. This historical approach is illustrated by examples selected from some of the main respiratory allergen sources: tree pollen, grass pollen, weed pollen, acarids, cockroaches and mammalians. For each of these allergen sources, the author gives an updated presentation of major and minor cross-reactive allergen molecules and refers to the last decade's major publications concerning immunochemical investigations carried out in the field of cross-reactive respiratory allergens. Emphasis is placed on the clinical applications for allergic patients: improvement in the accuracy of the diagnosis of sensitization, new concepts of immunotherapy based on genetically engineered hypoallergenic variants of cross-reactive allergens used alone or in combination, evaluation of allergen load with environmental tests using monoclonal antibodies against cross-reactive allergens.  相似文献   

18.
Sera of atopic individuals with predominant sensitization to either tree pollen (TAs) or tree and grass pollens (TGAs) as well as of nonatopic subjects (NAs) were analyzed for IgE, IgG, and IgG4 antibodies specific for grass pollen allergens. Of 600 atopic individuals with serum IgE antibodies specific for birch pollen allergens, 54% also had serum IgE antibodies specific for grass pollen. The mean titers of IgG antibodies specific for grass pollen proteins were about 10 times higher in the sera of TGAs than those in the TAs and NAs. SDS-PAGE immunoblotting analysis of grass pollen proteins using sera of TGAs, TAs, and NAs with respect to the binding of these proteins with IgE and IgG antibodies in these sera exhibited a similar pattern of variation. Quantitation by enzyme immunoassay of the antibody binding to a recombinant grass pollen allergen, rKBG8.3, further demonstrated that elevated IgG antibody levels in TGAs are mainly due to a broader range of specificities, and not to high specific binding to the individual protein. Statistically significant correlation was found between IgE and IgG4 antibodies specific for the Kentucky bluegrass (KBG) extract, but not for the isolated recombinant allergen. These results indicate that the grass pollens elicit a complex array of antibody specificities in both atopics and nonatopics, and that the profile of antibodies specific to the pollen extract and pure allergens differs, suggesting that single grass allergens may be inadequate for replacing grass pollen extracts for immunotherapy.  相似文献   

19.
Total IgE, RAST results with tree pollen allergens, and prick test results with birch, grass and mugwort, pollen allergens were correlated to 872 hay fever patients' reported food hypersensitivity (FH). A positive correlation was found between FH and the RAST and prick test results with birch pollen allergen. At each level of birch pollen sensitivity the incidence of FH was lower in patients with high total IgE than in those with lower total IgE. A negative correlation was found between grass pollen allergy and FH in birch pollen allergics. It is suggested that antigens in some foods have a specific ability to bridge anti-birch IgE molecules on mast cells. An explanation of the negative correlation between FH and total IgE and grass pollen allergy could be that a high number of non-birch-specific IgE molecules on the mast cells will reduce the probability that two anti-birch IgE molecules should bind on nearby sites.  相似文献   

20.
Allergens are recognized as the proteins that induce immunoglobulin E (IgE) responses in humans. The proteins come from a range of sources and, not surprisingly, have many different biological functions. However, the delivery of allergens to the nose is exclusively on particles, which carry a range of molecules in addition to the protein allergens. These molecules include pathogen-associated molecular patterns (PAMPs) that can alter the response. Although the response to allergens is characterized by IgE antibodies, it also includes other isotypes (IgG, IgA, and IgG4), as well as T cells. The challenge is to identify the characteristics of these exposures that favor the production of this form of response. The primary features of the exposure appear to be the delivery in particles, such as pollen grains or mite feces, containing both proteins and PAMPs, but with overall low dose. Within this model, there is a simple direct relationship between the dose of exposure to mite or grass pollen and the prevalence of IgE responses. By contrast, the highest levels of exposure to cat allergen are associated with a lower prevalence of IgE responses. Although the detailed mechanisms for this phenomenon are not clear, it appears that enhanced production of interleukin-10 in response to specific Fel d 1 peptides could influence the response. However, it is striking that the animal sources that are most clearly associated with decreased responses at high allergen dose are derived from animals from which humans evolved more recently (~65 million years ago). Although the nose is still recognized as the primary route for sensitization to inhalant allergens, there is increasing evidence that the skin is also an important site for the generation of IgE antibody responses. By contrast, it is now evident that delivery of foreign proteins by the oral route or sublingually will favor the generation of tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号